Inference of Numerical Relations from Digital Circuits

Enric Rodríguez-Carbonell Jordi Cortadella

Universitat Politècnica de Catalunya
Barcelona
Overview of the Talk

1. **Introduction**

2. **Overview of the Method**

3. **Simple Example: Binary Addition**

4. **Abstract Domain**

5. **Inductive Method**

6. **Working with Small Coefficients**

7. **Future Work**
Introduction

Need for Hardware Verification

Errors in hardware are:

- **very costly:**
 - Pentium division bug cost Intel **0.5 billion $**
 - Wide Field Infrared Explorer (WIRE) spacecraft from NASA failed soon after launch

- **irreversible:** no patches possible once product is on market

Need for Hardware Verification to Increase Reliability!
Introduction

Verifying Hardware

- When verifying hardware we have:
 - Gate list
 - High-level specification

- **PROBLEM:** Huge gap!

- **SOLUTION:** Abstraction
 Reverse engineering discovers properties hidden in circuits
\(\bar{x}, \bar{y}, \bar{s} : 4\text{-bit integers} \)

\[
\bar{s} + 16c_4 = c_0 + \bar{x} + \bar{y}
\]
Introduction

Arithmetic Circuits are Difficult

- Arithmetic circuits are difficult to verify
- BDD’s representing multipliers have huge size
- Current techniques cannot handle real-sized multipliers
- Arithmetics has not been sufficiently exploited

\implies Combination logics/arithmetics
Overview of the Talk

1. Introduction
2. Overview of the Method
3. Simple Example: Binary Addition
4. Abstract Domain
5. Inductive Method
6. Working with Small Coefficients
7. Future Work
Overview of the Method

- **GOAL**: extract numerical relations from arithmetic circuits
- **APPLICATION**: preprocessing step to alleviate formal verification with other methods
- Boolean values abstracted to integers
- Boolean functions abstracted to polynomials
- Gaussian elimination used to infer numerical relations
Overview of the Talk

1. Introduction
2. Overview of the Method
3. Simple Example: Binary Addition
4. Abstract Domain
5. Inductive Method
6. Working with Small Coefficients
7. Future Work
Simple Example: Binary Addition

Full Adder

- Full adder: sum of two bits with carry in and carry out
- Input signals: x, y, c_{in}
- Output signals: s, c_{out}
- **GOAL**: generate the equation

$$s + 2c_{out} = x + y + c_{in}$$
Simple Example: Binary Addition
From Boolean Functions to Polynomials

\[\begin{align*}
x \text{ AND } y &= xy \\
x \text{ XOR } y &= x + y - 2xy \\
x \text{ OR } y &= x + y - xy \\
\text{ NOT } x &= 1 - x
\end{align*} \]

\[x \in \{0, 1\} \implies x^2 = x \]

\[\begin{align*}
s &= x \text{ XOR } y \text{ XOR } c_{\text{in}} \\
c_{\text{out}} &= (x \text{ AND } y) \text{ OR } (x \text{ AND } c_{\text{in}}) \text{ OR } (y \text{ AND } c_{\text{in}})
\end{align*} \]

\[\begin{align*}
s &= x + y - 2xy + c_{\text{in}} - 2c_{\text{in}}x - 2c_{\text{in}}y + 4c_{\text{in}}xy \\
c_{\text{out}} &= xy + c_{\text{in}}x + c_{\text{in}}y - c_{\text{in}}^2xy - x^2yc_{\text{in}} - xy^2c_{\text{in}} + x^2y^2c_{\text{in}}^2
\end{align*} \]

\[\begin{align*}
s &= x + y - 2xy + c_{\text{in}} - 2c_{\text{in}}x - 2c_{\text{in}}y + 4c_{\text{in}}xy \\
c_{\text{out}} &= xy + c_{\text{in}}x + c_{\text{in}}y - 2c_{\text{in}}xy
\end{align*} \]
Simple Example: Binary Addition

Applying Gaussian Elimination

- Non-linear terms are considered as new variables
- Variables eliminated using Gaussian elimination

\[
\begin{align*}
 s &= x + y + c_{\text{in}} - 2xy - 2c_{\text{in}}x - 2c_{\text{in}}y + 4c_{\text{in}}xy \\
 c_{\text{out}} &= xy + c_{\text{in}}x + c_{\text{in}}y - 2c_{\text{in}}xy \\
 \downarrow \\
 s + 2c_{\text{out}} &= x + y + c_{\text{in}}
\end{align*}
\]

- Sometimes the aimed equation has non-linear terms: for carry look-ahead,

\[
2^n \cdot (G + Pc_{\text{in}}) + \sum_{i=0}^{n-1} 2^i s_i = c_{\text{in}} + \sum_{i=0}^{n-1} 2^i(x_i + y_i)
\]

\[\longrightarrow\] Heuristics to select the terms to be eliminated
Overview of the Talk

1. Introduction
2. Overview of the Method
3. Simple Example: Binary Addition
4. Abstract Domain
5. Inductive Method
6. Working with Small Coefficients
7. Future Work
Abstract Domain

- **ABSTRACT VALUES:**
 vector spaces of polynomials with coefficients in \(\mathbb{Q} \)

- **ABSTRACTION FUNCTION** \(\alpha \)
 \[
 \alpha : \mathcal{P}(\{0,1\}^n) \rightarrow \{ \text{vector spaces in } \mathbb{Q}[x_1, \ldots, x_n] \}
 \]
 \[
 B \mapsto \{ \text{vector space of polynomials evaluating to 0 on } B \}
 \]

- **CONCRETIZATION FUNCTION** \(\gamma \)
 \[
 \gamma : \{ \text{vector spaces in } \mathbb{Q}[x_1, \ldots, x_n] \} \rightarrow \mathcal{P}(\{0,1\}^n)
 \]
 \[
 V \mapsto \{ \text{zeros of } V \text{ in } \{0,1\}^n \} \]
Abstract Domain

Equations of output variables as \rightarrow Polynomial boolean functions of input variables \rightarrow equations

- Not all consequences of equations are linear combinations
 - Linear algebra not complete!!
 - Ideals of polynomials (Gröbner bases) bad complexity

INTERMEDIATE SOLUTION:
- approximate ideal generated by equations
- add new equations by multiplying by monomials, using $x_i^2 = x_i$

\rightarrow Heuristics to select new equations to add
Overview of the Talk

1. Introduction
2. Overview of the Method
3. Simple Example: Binary Addition
4. Abstract Domain
5. Inductive Method
6. Working with Small Coefficients
7. Future Work
Inductive Method

- **PROBLEM:** Not feasible for big number of variables

- **SOLUTION:**
 - Decompose circuit into black-boxes inductively
 - Behaviour of black boxes described by polynomials
 - Bigger black boxes built from smaller black boxes
 - *Local signals* (neither *input* nor *output*) eliminated by Gaussian elimination
Inductive Method
Example: 4-bit Carry-Ripple Adder

\[
\begin{align*}
 s_0 + 2c_1 &= c_0 + x_0 + y_0 \\
 s_1 + 2c_2 &= c_1 + x_1 + y_1 \\
 s_2 + 2c_3 &= c_2 + x_2 + y_2 \\
 s_3 + 2c_4 &= c_3 + x_3 + y_3 \\
 s_0 + 2s_1 + 4s_2 + 8s_3 + 16c_4 &= c_0 + x_0 + 2x_1 + 4x_2 + 8x_3 + y_0 + 2y_1 + 4y_2 + 8y_3 \\
 \bar{s} + 16c_4 &= c_0 + \bar{x} + \bar{y}
\end{align*}
\]
Overview of the Talk

1. Introduction
2. Overview of the Method
3. Simple Example: Binary Addition
4. Abstract Domain
5. Inductive Method
6. Working with Small Coefficients
7. Future Work
Working with Small Coefficients

- Coefficients in numerical relations we are interested are $\pm 2^i$
- Coefficients may be very large in computations
 - Exact arithmetic is slow
 - Risk of overflow

- Use finite fields for the coefficients!

- Advantages:
 - Coefficients can be represented with few bits
 - Arithmetics can be tabulated at compile-time

- Disadvantages:
 - Not sound
 - ... but results can be later checked
Working with Small Coefficients

- Let p be an odd prime number such that 2 generates \mathbb{Z}_p^*
- There are many such prime numbers
- Let $q = (p - 3)/2$. Then:

$$\mathbb{Z}_p^* = \{-2^q, -2^q-1, ..., -2^2, -2, -1, 1, 1, 2, 2^2, ..., 2^q\}$$

- Heuristic approach:
 1. Work with polynomials with coefficients in the finite field
 2. Once result computed, translate back into coefficients as powers of 2
Working with Small Coefficients

<table>
<thead>
<tr>
<th>$\pm 2^i$</th>
<th>Z_{19}^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>-256</td>
<td>10</td>
</tr>
<tr>
<td>-128</td>
<td>5</td>
</tr>
<tr>
<td>-64</td>
<td>12</td>
</tr>
<tr>
<td>-32</td>
<td>6</td>
</tr>
<tr>
<td>-16</td>
<td>3</td>
</tr>
<tr>
<td>-8</td>
<td>11</td>
</tr>
<tr>
<td>-4</td>
<td>15</td>
</tr>
<tr>
<td>-2</td>
<td>17</td>
</tr>
<tr>
<td>-1</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>13</td>
</tr>
<tr>
<td>64</td>
<td>7</td>
</tr>
<tr>
<td>128</td>
<td>14</td>
</tr>
<tr>
<td>256</td>
<td>9</td>
</tr>
</tbody>
</table>

8-BIT ADDER

\[
s_0 + 2s_1 + 4s_2 + 8s_3 + 16s_4 + 13s_5 + 7s_6 + 14s_7 + 10c_4 =
\]
\[
c_0 + x_0 + 2x_1 + 4x_2 + 8x_3 + 16x_4 + 13x_5 + 7x_6 + 14x_7 + y_0 +
\]
\[
2y_1 + 4y_2 + 8y_3 + 16y_4 + 13y_5 + 7y_6 + 14y_7
\]

\[
\downarrow
\]

\[
s_0 + 2s_1 + 4s_2 + 8s_3 + 16s_4 + 32s_5 + 64s_6 + 128s_7 + 256c_4 =
\]
\[
c_0 + x_0 + 2x_1 + 4x_2 + 8x_3 + 16x_4 + 32x_5 + 64x_6 + 128x_7 + y_0 +
\]
\[
2y_1 + 4y_2 + 8y_3 + 16y_4 + 32y_5 + 64y_6 + 128y_7
\]
Overview of the Talk

1. Introduction
2. Overview of the Method
3. Simple Example: Binary Addition
4. Abstract Domain
5. Inductive Method
6. Working with Small Coefficients
7. Future Work
Future Work

- Heuristics for eliminating terms in Gaussian elimination
- Heuristics for adding new equations
- Implementation in progress
- Regularity-based techniques for partitioning circuits
- Application to adders and multipliers
- Integration to a verification system