Automatic Generation of Polynomial Invariants for System Verification

Enric Rodríguez-Carbonell

Technical University of Catalonia

Plan of the Talk

- Introduction
- Need for program verification
- Invariants and abstract interpretation
. Polynomial invariants

Plan of the Talk

- Introduction
- Generation of Invariant Polynomial Equalities (with D. Kapur: ISSAC'04, SAS'04)
. Related work
- Abstract domain of ideals
- Particular case: loops without nesting

Plan of the Talk

- Introduction
- Generation of Invariant Polynomial Equalities
- Applications of Polynomial Equality Invariants
- Imperative programs
(with D. Kapur: ICTAC'04)
- Petri nets
(with R. Clarisó, J. Cortadella: ATPN’05)
- Hybrid systems
(with A. Tiwari: HSCC'05)

Plan of the Talk

- Introduction
- Generation of Invariant Polynomial Equalities
- Applications of Polynomial Equality Invariants
- Generation of Invariant Polynomial Inequalities (with R. Bagnara, E. Zaffanella: SAS'05)
- Abstract domain of polynomial cones

Plan of the Talk

- Introduction
- Generation of Invariant Polynomial Equalities
- Applications of Polynomial Equality Invariants
- Generation of Invariant Polynomial Inequalities
- Conclusions and Future Work
- Introduction
- Generation of Invariant Polynomial Equalities
- Applications of Polynomial Equality Invariants
- Generation of Invariant Polynomial Inequalities
- Conclusions and Future Work

Need for Software Verification

- Critical systems
- safety
- security

Need for Software Verification

- Critical systems
- safety
- security

- ...

Failure of the Ariane 5 launcher in 1996

Need for Software Verification

- Critical systems
- safety
- security

- ...

Failure of the Ariane 5 launcher in 1996

- Fundamental finding errors asap.
- Invariants are crucial for program verification!

Invariants in Verification

CORRECTNESS OF THE SYSTEM: SYSTEM STATES \cap BAD STATES $=\varnothing$

Invariants in Verification

SYSTEM STATES

INVARIANT

CORRECTNESS OF THE SYSTEM:

SYSTEM STATES \cap BAD STATES $=\varnothing$
SUFFICIENT CONDITION:
INVARIANT \cap BAD STATES $=\varnothing$

Overview of Abstract Interpretation

Abstract interpretation allows computing invariants:

Overview of Abstract Interpretation

Abstract interpretation allows computing invariants:

- intervals (Cousot \& Cousot 1976, Harrison 1977)

$$
x \in[0,1] \wedge y \in[0, \infty)
$$

Overview of Abstract Interpretation

Abstract interpretation allows computing invariants:

- intervals (Cousot \& Cousot 1976, Harrison 1977)

$$
x \in[0,1] \wedge y \in[0, \infty)
$$

- linear inequalities (Cousot \& Halbwachs 1978, Colón \& Sankaranarayanan \& Sipma 2003)

$$
x+2 y-3 z \leq 3
$$

Overview of Abstract Interpretation

Abstract interpretation allows computing invariants:

- intervals (Cousot \& Cousot 1976, Harrison 1977)

$$
x \in[0,1] \wedge y \in[0, \infty)
$$

- linear inequalities (Cousot \& Halbwachs 1978, Colón \& Sankaranarayanan \& Sipma 2003)

$$
x+2 y-3 z \leq 3
$$

- polynomial equalities and inequalities

$$
x=y^{2} \quad(a+1)^{2}>b^{2} \geq a^{2}
$$

Abstract Interpretation: Overapproximation

Sets of variable values overapproximated by abstract values

Abstract Interpretation: Operations

- Invariants computed by symbolic execution of the system with abstract values
- This requires abstracting concrete operations on states:

Abstract Interpretation: Extrapolation

- Termination is not guaranteeed in general
- Widening operators ensure termination by extrapolating union

Abstract Interpretation: Extrapolation

- Termination is not guaranteeed in general
- Widening operators ensure termination by extrapolating union

Abstract Interpretation: Extrapolation

- Termination is not guaranteeed in general
- Widening operators ensure termination by extrapolating union

Why Care about Polynomial Invariants?

- Linear invariants used to verify many classes of systems:
- Imperative programs
- Logic programs
- Hybrid systems

Why Care about Polynomial Invariants?

- Linear invariants used to verify many classes of systems:
- Imperative programs
- Logic programs
- Hybrid systems
- ...
- But some applications require polynomial invariants:

The abstract interpreter ASTRÉE employs polynomial invariants to verify absence of run-time errors in flight control software

- Introduction
- Generation of Invariant Polynomial Equalities
- Related work
- Abstract domain of ideals
- Particular case: loops without nesting
- Applications of Polynomial Equality Invariants
- Generation of Invariant Polynomial Inequalities
- Conclusions and Future Work

Related Work (1)

- Iterative fixpoint approaches
- Forward propagation

。 Rodríguez-Carbonell \& Kapur 2004

- Colón 2004
. Backward propagation
。 Müller-Olm \& Seidl 2004
- Constraint-based approaches
. Sankaranarayanan \& Sipma \& Manna 2004

Related Work (2)

Work	Restrictions	Conds $=$	Conds \neq	Complete
MOS, POPL'04	bounded deg	no	no	yes
SSM, POPL'04	fi xed form	yes	no	no
MOS, IPL'04	fi xed form	no	yes	yes
COL, SAS'04	bounded deg	yes	no	no
RCK, SAS'04	bounded deg	yes	yes	yes*
RCK, ISSAC'04	no restriction	no	no	yes

- Introduction
- Generation of Invariant Polynomial Equalities
- Related work
- Abstract domain of ideals
- Particular case: loops without nesting
- Applications of Polynomial Equality Invariants
- Generation of Invariant Polynomial Inequalities
- Conclusions and Future Work

Overview of our Method

- States abstracted to ideal of polynomials evaluating to 0

Overview of our Method

- States abstracted to ideal of polynomials evaluating to 0
- Programming language admits
- Polynomial assignments: variable $:=$ polynomial
. Polynomial equalities and disequalities in conditions:

$$
\text { polynomial }=0 \quad, \quad \text { polynomial } \neq 0
$$

Overview of our Method

- States abstracted to ideal of polynomials evaluating to 0
- Programming language admits
- Polynomial assignments: variable $:=$ polynomial
- Polynomial equalities and disequalities in conditions:

$$
\text { polynomial }=0 \quad, \quad \text { polynomial } \neq 0
$$

- Implementation successfully applied to many programs

Overview of our Method

- States abstracted to ideal of polynomials evaluating to 0
- Programming language admits
- Polynomial assignments: variable $:=$ polynomial
- Polynomial equalities and disequalities in conditions:

$$
\text { polynomial }=0 \quad, \quad \text { polynomial } \neq 0
$$

- Implementation successfully applied to many programs
- Ideals of polynomials represented by special finite bases of generators: Gröbner bases

Overview of our Method

- States abstracted to ideal of polynomials evaluating to 0
- Programming language admits
- Polynomial assignments: variable $:=$ polynomial
- Polynomial equalities and disequalities in conditions:

$$
\text { polynomial }=0 \quad, \quad \text { polynomial } \neq 0
$$

- Implementation successfully applied to many programs
- Ideals of polynomials represented by special finite bases of generators: Gröbner bases
- Many tools available manipulating ideals, Gröbner bases, e.g. Macaulay 2, Maple

Ideals of Polynomials (1)

- Intuitively, an ideal is a set of polynomials and all their consequences

Ideals of Polynomials (1)

- Intuitively, an ideal is a set of polynomials and all their consequences
- An ideal is a set of polynomials I such that
. $0 \in I$
- If $p, q \in I$, then $p+q \in I$
- If $p \in I$ and q any polynomial, $p q \in I$

Ideals of Polynomials (2)

- E.g. polynomials evaluating to 0 on a set of points S

Ideals of Polynomials (2)

- E.g. polynomials evaluating to 0 on a set of points S
. 0 evaluates to 0 everywhere

$$
\forall \omega \in S, \quad 0(\omega)=0
$$

Ideals of Polynomials (2)

- E.g. polynomials evaluating to 0 on a set of points S
. 0 evaluates to 0 everywhere

$$
\forall \omega \in S, \quad 0(\omega)=0
$$

- If p, q evaluate to 0 on S, then $p+q$ evaluates to 0 on S

$$
\forall \omega \in S, \quad p(\omega)=q(\omega)=0 \Longrightarrow p(\omega)+q(\omega)=0
$$

Ideals of Polynomials (2)

- E.g. polynomials evaluating to 0 on a set of points S
. 0 evaluates to 0 everywhere

$$
\forall \omega \in S, \quad 0(\omega)=0
$$

- If p, q evaluate to 0 on S, then $p+q$ evaluates to 0 on S

$$
\forall \omega \in S, \quad p(\omega)=q(\omega)=0 \Longrightarrow p(\omega)+q(\omega)=0
$$

- If p evaluates to 0 on S, then $p q$ evaluates to 0 on S

$$
\forall \omega \in S, \quad p(\omega)=0 \Longrightarrow p(\omega) \cdot q(\omega)=0
$$

Ideals of Polynomials (3)

- E.g. multiples of a polynomial $p,\langle p\rangle$
- $0=0 \cdot p \in\langle p\rangle$
- $q_{1} \cdot p+q_{2} \cdot p=\left(q_{1}+q_{2}\right) p \in\langle p\rangle$
. If q_{2} is any polynomial, then $q_{2} \cdot q_{1} \cdot p \in\langle p\rangle$

Ideals of Polynomials (3)

- E.g. multiples of a polynomial $p,\langle p\rangle$
- $0=0 \cdot p \in\langle p\rangle$
- $q_{1} \cdot p+q_{2} \cdot p=\left(q_{1}+q_{2}\right) p \in\langle p\rangle$
. If q_{2} is any polynomial, then $q_{2} \cdot q_{1} \cdot p \in\langle p\rangle$
- In general, ideal generated by p_{1}, \ldots, p_{k} :

$$
\left\langle p_{1}, \ldots, p_{k}\right\rangle=\left\{\sum_{j=1}^{k} q_{j} \cdot p_{j} \text { for arbitrary } q_{j}\right\}
$$

Ideals of Polynomials (3)

- E.g. multiples of a polynomial $p,\langle p\rangle$
- $0=0 \cdot p \in\langle p\rangle$
- $q_{1} \cdot p+q_{2} \cdot p=\left(q_{1}+q_{2}\right) p \in\langle p\rangle$
- If q_{2} is any polynomial, then $q_{2} \cdot q_{1} \cdot p \in\langle p\rangle$
- In general, ideal generated by p_{1}, \ldots, p_{k} :

$$
\left\langle p_{1}, \ldots, p_{k}\right\rangle=\left\{\sum_{j=1}^{k} q_{j} \cdot p_{j} \text { for arbitrary } q_{j}\right\}
$$

- Hilbert's basis theorem: all ideals are finitely generated \longrightarrow there is finite representation for ideals

Operations with Ideals

- Several operations available. Given ideals I, J in the variables x_{1}, \ldots, x_{n} :

Operations with Ideals

- Several operations available. Given ideals I, J in the variables x_{1}, \ldots, x_{n} :
- projection: $I \cap \mathbb{C}\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$

Operations with Ideals

- Several operations available. Given ideals I, J in the variables x_{1}, \ldots, x_{n} :
- projection: $I \cap \mathbb{C}\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$
- addition: $I+J=\{p+q \mid p \in I, q \in J\}$

Operations with Ideals

- Several operations available. Given ideals I, J in the variables x_{1}, \ldots, x_{n} :
- projection: $I \cap \mathbb{C}\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$
- addition: $I+J=\{p+q \mid p \in I, q \in J\}$
. quotient: $I: J=\{p \mid \forall q \in J, p \cdot q \in I\}$

Operations with Ideals

- Several operations available. Given ideals I, J in the variables x_{1}, \ldots, x_{n} :
- projection: $I \cap \mathbb{C}\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$
- addition: $I+J=\{p+q \mid p \in I, q \in J\}$
- quotient: $I: J=\{p \mid \forall q \in J, p \cdot q \in I\}$
- intersection: $I \cap J$

Operations with Ideals

- Several operations available. Given ideals I, J in the variables x_{1}, \ldots, x_{n} :
- projection: $I \cap \mathbb{C}\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$
- addition: $I+J=\{p+q \mid p \in I, q \in J\}$
- quotient: $I: J=\{p \mid \forall q \in J, p \cdot q \in I\}$
- intersection: $I \cap J$
- All operations implemented using Gröbner bases
- These are used in abstraction of concrete semantics

Our Widening Operator

- Parametric widening $I \nabla_{d} J$
- Based on taking polynomials of $I \cap J$ of degree $\leq d$

Our Widening Operator

- Parametric widening $I \nabla_{d} J$
- Based on taking polynomials of $I \cap J$ of degree $\leq d$
- Termination guaranteed

Example

$a:=0 ; b:=0 ;$
while $b \neq c$ do

$$
a:=a+2 b+1 ; b:=b+1 ;
$$

end while

Example

$a:=0 ; b:=0 ;$
while $b \neq c$ do

$$
a:=a+2 b+1 ; b:=b+1 ;
$$

end while

$$
\begin{aligned}
& F_{0}(I)=\langle 0\rangle \\
& F_{1}(I)=\left(\langle a\rangle+\left\langle I_{0}\left(a \leftarrow a^{\prime}\right)\right\rangle\right) \cap \mathbb{C}[a, b, c] \\
& F_{2}(I)=\left(\langle b\rangle+\left\langle I_{1}\left(b \leftarrow b^{\prime}\right)\right\rangle\right) \cap \mathbb{C}[a, b, c] \\
& F_{3}(I)=I_{3} \nabla_{2}\left(I_{2} \cap I_{6}\right) \\
& F_{4}(I)=\left\langle I_{3}\right\rangle:\langle b-c\rangle \\
& F_{5}(I)=I_{4}(a \leftarrow a-2 b-1) \\
& F_{6}(I)=I_{5}(b \leftarrow b-1) \\
& F_{7}(I)=\mathrm{I}\left(\mathrm{~V}\left(I_{3}+\langle b-c\rangle\right)\right)
\end{aligned}
$$

Example

$a:=0 ; b:=0 ;$
while $b \neq c$ do

$$
a:=a+2 b+1 ; b:=b+1 ;
$$

end while

```
\(F_{0}(I)=\langle 0\rangle\)
\(F_{1}(I)=\left(\langle a\rangle+\left\langle I_{0}\left(a \leftarrow a^{\prime}\right)\right\rangle\right) \cap \mathbb{C}[a, b, c]\)
\(F_{2}(I)=\left(\langle b\rangle+\left\langle I_{1}\left(b \leftarrow b^{\prime}\right)\right\rangle\right) \cap \mathbb{C}[a, b, c]\)
\(F_{3}(I)=I_{3} \nabla_{2}\left(I_{2} \cap I_{6}\right)\)
\(F_{4}(I)=\left\langle I_{3}\right\rangle:\langle b-c\rangle\)
\(F_{5}(I)=I_{4}(a \leftarrow a-2 b-1)\)
\(F_{6}(I)=I_{5}(b \leftarrow b-1)\)
\(F_{7}(I)=\mathrm{I}\left(\mathrm{V}\left(I_{3}+\langle b-c\rangle\right)\right)\)
```

In 6 steps found loop invariant:

$$
a=b^{2}
$$

- Introduction
- Generation of Invariant Polynomial Equalities
- Related work
- Abstract domain of ideals
- Particular case: loops without nesting
- Applications of Polynomial Equality Invariants
- Generation of Invariant Polynomial Inequalities
- Conclusions and Future Work

Particular case: loops without nesting

- Are there programs for which no widening is required?

Particular case: loops without nesting

- Are there programs for which no widening is required?
- Yes: unnested loops with solvable assignments with eigenvalues in \mathbb{Q}^{+}

Particular case: loops without nesting

- Are there programs for which no widening is required?
- Yes: unnested loops with solvable assignments with eigenvalues in \mathbb{Q}^{+}
- Solvable assignments generalize linear assignments

Particular case: loops without nesting

- Are there programs for which no widening is required?
- Yes: unnested loops with solvable assignments with eigenvalues in \mathbb{Q}^{+}
- Solvable assignments generalize linear assignments

$$
\begin{aligned}
& a:=0 ; \\
& b:=0 ; \\
& \text { while } b \neq c \text { do } \\
& \qquad a:=a+2 b+1 \\
& \quad b:=b+1
\end{aligned}
$$

end while

Overview of the Method

- $\left(a_{n}, b_{n}, c_{n}\right) \equiv$ program state after n loop iterations

$$
\left\{\begin{array}{l}
a_{n+1}=a_{n}+2 b_{n}+1 \\
b_{n+1}=b_{n}+1
\end{array} \quad, \quad\left\{\begin{array}{l}
a_{0}=0 \\
b_{0}=0
\end{array}\right.\right.
$$

Overview of the Method

- $\left(a_{n}, b_{n}, c_{n}\right) \equiv$ program state after n loop iterations

$$
\left\{\begin{array}{l}
a_{n+1}=a_{n}+2 b_{n}+1 \\
b_{n+1}=b_{n}+1
\end{array} \quad, \quad\left\{\begin{array}{l}
a_{0}=0 \\
b_{0}=0
\end{array}\right.\right.
$$

- Solution to recurrence: $\left\{\begin{array}{l}a_{n}=n^{2} \\ b_{n}=n\end{array}\right.$
- Program states characterized by $\exists n\left(a=n^{2} \wedge b=n\right)$

Overview of the Method

- $\left(a_{n}, b_{n}, c_{n}\right) \equiv$ program state after n loop iterations

$$
\left\{\begin{array}{l}
a_{n+1}=a_{n}+2 b_{n}+1 \\
b_{n+1}=b_{n}+1
\end{array},\left\{\begin{array}{l}
a_{0}=0 \\
b_{0}=0
\end{array}\right.\right.
$$

- Solution to recurrence: $\left\{\begin{array}{l}a_{n}=n^{2} \\ b_{n}=n\end{array}\right.$
- Program states characterized by $\exists n\left(a=n^{2} \wedge b=n\right)$
- Quantifi er elimination: $b=n \Longrightarrow a=b^{2}$ is loop invariant

Overview of the Method

- $\left(a_{n}, b_{n}, c_{n}\right) \equiv$ program state after n loop iterations

$$
\left\{\begin{array}{l}
a_{n+1}=a_{n}+2 b_{n}+1 \\
b_{n+1}=b_{n}+1
\end{array},\left\{\begin{array}{l}
a_{0}=0 \\
b_{0}=0
\end{array}\right.\right.
$$

- Solution to recurrence: $\left\{\begin{array}{l}a_{n}=n^{2} \\ b_{n}=n\end{array}\right.$
- Program states characterized by $\exists n\left(a=n^{2} \wedge b=n\right)$
- Quantifi er elimination: $b=n \Longrightarrow a=b^{2}$ is loop invariant
- Gröbner bases can be used to eliminate loop counters

Our Handling of Conditional Statements (1)

```
\(x:=R ;\)
\(y:=0\);
\(r:=R^{2}-N\);
while ? do
    if ? then
\[
\begin{aligned}
r & :=r+2 x+1 ; \\
x & :=x+1 ;
\end{aligned}
\]
else
\[
\begin{aligned}
r & :=r-2 y-1 ; \\
y & :=y+1 ;
\end{aligned}
\]
end if
end while
```


Our Handling of Conditional Statements (2)

- 1st idea:

Our Handling of Conditional Statements (2)

- 1st idea:

1. Compute invariants for two distinct loops:
while ? do

$$
\begin{aligned}
r & :=r+2 x+1 ; \\
x & :=x+1 ;
\end{aligned}
$$

end while
while ? do

$$
\begin{aligned}
r & :=r-2 y-1 ; \\
y & :=y+1 ;
\end{aligned}
$$

end while

Our Handling of Conditional Statements (2)

- 1st idea:

1. Compute invariants for two distinct loops:

$$
\begin{aligned}
& \text { while ? do } \\
& \qquad \begin{aligned}
r & :=r+2 x+1 \\
x & :=x+1
\end{aligned}
\end{aligned}
$$

end while
while ? do

$$
\begin{aligned}
r & :=r-2 y-1 ; \\
y & :=y+1 ;
\end{aligned}
$$

end while
2. Compute common invariants for both loops

Our Handling of Conditional Statements (2)

- 1st idea:

1. Compute invariants for two distinct loops:

$$
\begin{aligned}
& \text { while ? do } \\
& \qquad r:=r+2 x+1 ; \\
& x
\end{aligned}
$$

end while
while ? do

$$
\begin{aligned}
r & :=r-2 y-1 ; \\
y & :=y+1 ;
\end{aligned}
$$

end while
2. Compute common invariants for both loops

- Finding common invariants \equiv

Finding intersection of invariant ideals

Our Handling of Conditional Statements (2)

- 1st idea:

1. Compute invariants for two distinct loops:

$$
\begin{aligned}
& \text { while ? do } \\
& \qquad r:=r+2 x+1 ; \\
& x
\end{aligned}
$$

end while
while ? do

$$
\begin{aligned}
r & :=r-2 y-1 ; \\
y & :=y+1 ;
\end{aligned}
$$

end while
2. Compute common invariants for both loops

- Finding common invariants \equiv

Finding intersection of invariant ideals

- But this is not sound!

Our Handling of Conditional Statements (3)

- 2nd idea: take intersection as initial condition and repeat

Our Handling of Conditional Statements (3)

- 2nd idea: take intersection as initial condition and repeat

Program
$\bar{x}:=\bar{\alpha} ;$
while ? do

$$
\begin{aligned}
& \bar{x}:=f(\bar{x}) ; \\
& \text { or }
\end{aligned}
$$

$$
\bar{x}:=g(\bar{x}) ;
$$

end while

Algorithm

$I^{\prime}:=\langle 1\rangle ; I:=\left\langle x_{1}-\alpha_{1}, \cdots, x_{m}-\alpha_{m}\right\rangle ;$
while $I^{\prime} \neq I$ do

$$
\begin{aligned}
& I^{\prime}:=I ; \\
& I:=\bigcap_{n=0}^{\infty}\left[I\left(\bar{x} \leftarrow f^{-n}(\bar{x})\right)\right. \\
& \left.\quad \bigcap I\left(\bar{x} \leftarrow g^{-n}(\bar{x})\right)\right] ;
\end{aligned}
$$

end while

Properties of our Algorithm

- No widening employed!
- Termination in $n+1$ steps, where $n=$ number of variables

Properties of our Algorithm

- No widening employed!
- Termination in $n+1$ steps, where $n=$ number of variables
- Correct and complete: finds all polynomial equality invariants

Properties of our Algorithm

- No widening employed!
- Termination in $n+1$ steps, where $n=$ number of variables
- Correct and complete:
finds all polynomial equality invariants
- Implemented in Maple:

1. Solving recurrences
2. Eliminating variables
3. Intersecting ideals

Gröbner bases

Example

$$
\begin{aligned}
& x:=R ; \\
& y:=0 ; \\
& r:=R^{2}-N ; \\
& \text { while ? do } \\
& \quad \text { if ? then } \\
& \qquad \quad r:=r+2 x+1 ; \\
& \quad x:=x+1 ; \\
& \quad \text { else } \quad r:=r-2 y-1 ; \\
& \quad y:=y+1 ; \\
& \quad \text { end if }
\end{aligned}
$$

Example

$$
\begin{aligned}
& x:=R ; \\
& y:=0 ; \\
& r:=R^{2}-N ; \\
& \text { while ? do } \\
& \quad \text { if ? then } \\
& \qquad \quad r:=r+2 x+1 ; \\
& \qquad x:=x+1 ;
\end{aligned}
$$

else

$$
\begin{aligned}
r & :=r-2 y-1 ; \\
y & :=y+1 ;
\end{aligned}
$$

end if
end while

- Introduction
- Generation of Invariant Polynomial Equalities
- Applications of Polynomial Equality Invariants
- Imperative programs
- Petri nets
- Hybrid systems
- Generation of Invariant Polynomial Inequalities
- Conclusions and Future Work

Imperative Programs

Pre: $\{N \geq 1\}$
$x:=R ; y:=0 ; r:=R^{2}-N$;
Inv: $\left\{N \geq 1 \wedge x^{2}-y^{2}=r+N\right\}$
while $r \neq 0$ do
if $r<0$ then

$$
\begin{aligned}
r & :=r+2 x+1 ; \\
x & :=x+1 ;
\end{aligned}
$$

else

$$
\begin{aligned}
r & :=r-2 y-1 ; \\
y & :=y+1 ;
\end{aligned}
$$

end if

end while

Post: $\{x \neq y \wedge N \bmod (x-y)=0\}$

Imperative Programs

Pre: $\{N \geq 1\}$
$x:=R ; y:=0 ; r:=R^{2}-N$;
Inv: $\left\{N \geq 1 \wedge x^{2}-y^{2}=r+N\right\}$

- $N \geq 1 \Longrightarrow$

$$
R^{2}-0^{2}=\left(R^{2}-N\right)+N
$$

while $r \neq 0$ do
if $r<0$ then

$$
\begin{aligned}
r & :=r+2 x+1 ; \\
x & :=x+1 ;
\end{aligned}
$$

else

$$
\begin{aligned}
r & :=r-2 y-1 ; \\
y & :=y+1 ;
\end{aligned}
$$

end if
end while
Post: $\{x \neq y \wedge N \bmod (x-y)=0\}$

Imperative Programs

Pre: $\{N \geq 1\}$
$x:=R ; y:=0 ; r:=R^{2}-N$;
Inv: $\left\{N \geq 1 \wedge x^{2}-y^{2}=r+N\right\}$
while $r \neq 0$ do
if $r<0$ then

$$
\begin{aligned}
r & :=r+2 x+1 ; \\
x & :=x+1 ;
\end{aligned}
$$

else

$$
\begin{aligned}
r & :=r-2 y-1 ; \\
y & :=y+1 ;
\end{aligned}
$$

end if
end while
Post: $\{x \neq y \wedge N \bmod (x-y)=0\}$

Imperative Programs

Pre: $\{N \geq 1\}$
$x:=R ; y:=0 ; r:=R^{2}-N$;
Inv: $\left\{N \geq 1 \wedge x^{2}-y^{2}=r+N\right\}$
while $r \neq 0$ do
if $r<0$ then

$$
\begin{aligned}
& r:=r+2 x+1 ; \\
& x:=x+1 ;
\end{aligned}
$$

else

$$
\begin{aligned}
r & :=r-2 y-1 ; \\
y & :=y+1 ;
\end{aligned}
$$

end if

end while
Post: $\{x \neq y \wedge N \bmod (x-y)=0\}$

Imperative Programs

Pre: $\{N \geq 1\}$
$x:=R ; y:=0 ; r:=R^{2}-N$; Inv: $\left\{N \geq 1 \wedge x^{2}-y^{2}=r+N\right\}$
while $r \neq 0$ do
if $r<0$ then

$$
\begin{aligned}
& r:=r+2 x+1 ; \\
& x:=x+1 ;
\end{aligned}
$$

else

$$
\begin{aligned}
r & :=r-2 y-1 ; \\
y & :=y+1 ;
\end{aligned}
$$

end if
end while
Post: $\{x \neq y \wedge N \bmod (x-y)=0\}$

- $N \geq 1 \Longrightarrow$

$$
R^{2}-0^{2}=\left(R^{2}-N\right)+N
$$

- $x^{2}-y^{2}=r+N \wedge r<0 \Longrightarrow$ $(x+1)^{2}-y^{2}=(r+2 x+1)+N$
- $x^{2}-y^{2}=r+N \wedge r>0 \Longrightarrow$ $x^{2}-(y+1)^{2}=(r-2 y-1)+N$
- $N \geq 1 \wedge x^{2}-y^{2}=r+N \Longrightarrow$ $x \neq y \wedge N \bmod (x-y)=0$
- Introduction
- Generation of Invariant Polynomial Equalities
- Applications of Polynomial Equality Invariants
- Imperative programs
- Petri nets
- Hybrid systems
- Generation of Invariant Polynomial Inequalities
- Conclusions and Future Work

Petri Nets: Introduction

- Petri nets: mathematical model for studying systems
- concurrency
- parallelism
. non-determinism

Petri Nets: Introduction

- Petri nets: mathematical model for studying systems
- concurrency
- parallelism
. non-determinism
- Applications:
- Manufacturing and Task Planning
- Communication Networks
. Hardware Design

Definitions

- A Petri net is a bipartite directed graph where:
- Nodes partitioned into places (\bigcirc) and transitions (|)
- Arcs are labelled with weights
- A marking maps a number of tokens to each place

Dynamics (1)

- Dynamics of a Petri net described by
- initial marking
. firing of transitions

Dynamics (1)

- Dynamics of a Petri net described by
- initial marking
- firing of transitions
- A transition is enabled if there are \geq tokens in each input place than indicated in the arcs

Dynamics (1)

- Dynamics of a Petri net described by
- initial marking
- firing of transitions
- A transition is enabled if there are \geq tokens in each input place than indicated in the arcs
- When a transition is enabled, it can fire: the number of tokens indicated in the arcs is

1. removed from input places
2. added to output places

Dynamics (2)

Dynamics (3)

- Enabling of transitions may also depend on inhibitor arcs
- An inhibitor arc is an arc connecting place p to transition t so that there cannot be tokens in p for t to be enabled

Dynamics (3)

- Enabling of transitions may also depend on inhibitor arcs
- An inhibitor arc is an arc connecting place p to transition t so that there cannot be tokens in p for t to be enabled

Dynamics (4)

- Deadlocks are markings for which all transitions are disabled

Dynamics (4)

- Deadlocks are markings for which all transitions are disabled
- Given a Petri net with an initial marking:
- Invariant properties of reachable states ?
. Any deadlocks ?

Translation into Loop Programs

- Define variable x_{i} meaning number of tokens at place p_{i}

Translation into Loop Programs

- Define variable x_{i} meaning number of tokens at place p_{i}
- Initial marking transformed into initializing assignments

Translation into Loop Programs

- Define variable x_{i} meaning number of tokens at place p_{i}
- Initial marking transformed into initializing assignments
- Transitions transformed into conditional statements

Translation into Loop Programs

- Define variable x_{i} meaning number of tokens at place p_{i}
- Initial marking transformed into initializing assignments
- Transitions transformed into conditional statements
- Enabling of a transition with input place p_{i} and label c_{i} :

$$
\cdots\left(x_{i} \neq 0\right) \wedge\left(x_{i} \neq 1\right) \wedge \cdots \wedge\left(x_{i} \neq c_{i}-1\right) \cdots
$$

Translation into Loop Programs

- Define variable x_{i} meaning number of tokens at place p_{i}
- Initial marking transformed into initializing assignments
- Transitions transformed into conditional statements
- Enabling of a transition with input place p_{i} and label c_{i} :

$$
\cdots\left(x_{i} \neq 0\right) \wedge\left(x_{i} \neq 1\right) \wedge \cdots \wedge\left(x_{i} \neq c_{i}-1\right) \cdots
$$

- Enabling of a transition with inhibitor place $p_{i}: x_{i}=0$

Translation into Loop Programs

- Define variable x_{i} meaning number of tokens at place p_{i}
- Initial marking transformed into initializing assignments
- Transitions transformed into conditional statements
- Enabling of a transition with input place p_{i} and label c_{i} :

$$
\cdots\left(x_{i} \neq 0\right) \wedge\left(x_{i} \neq 1\right) \wedge \cdots \wedge\left(x_{i} \neq c_{i}-1\right) \cdots
$$

- Enabling of a transition with inhibitor place $p_{i}: x_{i}=0$
- Firing of a transition
- with input place p_{i} and label $c_{i}: x_{i}:=x_{i}-c_{i}$;
- with output place p_{i} and label $c_{i}: x_{i}:=x_{i}+c_{i}$;

Generating Polynomial Invariants (1)

- Abstract interpretation is applied to the loop program to obtain polynomial invariants of the Petri net

Generating Polynomial Invariants (1)

- Abstract interpretation is applied to the loop program to obtain polynomial invariants of the Petri net
- Example:

Generating Polynomial Invariants (2)

- Polynomial invariants obtained:

$$
\operatorname{Inv}= \begin{cases}5 x_{1}+3 x_{2}+x_{3}-10 & =0 \\ 5 x_{3}^{2}+2 x_{2}-11 x_{3} & =0 \\ x_{2} x_{3}+2 x_{3}^{2}-5 x_{3} & =0 \\ 5 x_{2}^{2}-17 x_{2}+6 x_{3} & =0\end{cases}
$$

Generating Polynomial Invariants (2)

- Polynomial invariants obtained:

$$
\operatorname{Inv}= \begin{cases}5 x_{1}+3 x_{2}+x_{3}-10 & =0 \\ 5 x_{3}^{2}+2 x_{2}-11 x_{3} & =0 \\ x_{2} x_{3}+2 x_{3}^{2}-5 x_{3} & =0 \\ 5 x_{2}^{2}-17 x_{2}+6 x_{3} & =0\end{cases}
$$

- In this example invariants characterize reachability set

$$
\operatorname{Inv} \Leftrightarrow\left(x_{1}, x_{2}, x_{3}\right) \in\{(0,3,1),(1,1,2),(2,0,0)\}
$$

Generating Polynomial Invariants (2)

- Polynomial invariants obtained:

$$
\operatorname{Inv}= \begin{cases}5 x_{1}+3 x_{2}+x_{3}-10 & =0 \\ 5 x_{3}^{2}+2 x_{2}-11 x_{3} & =0 \\ x_{2} x_{3}+2 x_{3}^{2}-5 x_{3} & =0 \\ 5 x_{2}^{2}-17 x_{2}+6 x_{3} & =0\end{cases}
$$

- In this example invariants characterize reachability set

$$
\operatorname{Inv} \Leftrightarrow\left(x_{1}, x_{2}, x_{3}\right) \in\{(0,3,1),(1,1,2),(2,0,0)\}
$$

- In general overapproximation of reach set is obtained
- Introduction
- Generation of Invariant Polynomial Equalities
- Applications of Polynomial Equality Invariants
- Imperative programs
- Petri nets
- Hybrid systems
- Generation of Invariant Polynomial Inequalities
- Conclusions and Future Work

Hybrid Systems: Introduction

- Hybrid System: discrete system in analog environment

Hybrid Systems: Introduction

- Hybrid System: discrete system in analog environment
- Examples:
- A thermostat that heats/cools depending on the temperature in the room

Hybrid Systems: Introduction

- Hybrid System: discrete system in analog environment
- Examples:
. A thermostat that heats/cools depending on the temperature in the room

- A robot controller that changes the direction of movement if the robot is too close to a wall.

Definition

- A hybrid system is a finite automaton with real-valued variables that change continuously according to a system of differential equations at each location

Definition

- A hybrid system is a finite automaton with real-valued variables that change continuously according to a system of differential equations at each location
maximum temperature

Definition

- A hybrid system is a finite automaton with real-valued variables that change continuously according to a system of differential equations at each location

- We restrict to linear differential equations at locations

Dynamics (1)

- A computation is a sequence of states (discrete location, valuation of variables)

$$
\left(l_{0}, x_{0}\right),\left(l_{1}, x_{1}\right),\left(l_{2}, x_{2}\right), \ldots
$$

such that

Dynamics (1)

- A computation is a sequence of states (discrete location, valuation of variables)

$$
\left(l_{0}, x_{0}\right),\left(l_{1}, x_{1}\right),\left(l_{2}, x_{2}\right), \ldots
$$

such that

1. Initial state $\left(l_{0}, x_{0}\right)$ satisfies the initial condition

Dynamics (1)

- A computation is a sequence of states (discrete location, valuation of variables)

$$
\left(l_{0}, x_{0}\right),\left(l_{1}, x_{1}\right),\left(l_{2}, x_{2}\right), \ldots
$$

such that

1. Initial state $\left(l_{0}, x_{0}\right)$ satisfies the initial condition
2. For each consecutive pair of states $\left(l_{i}, x_{i}\right),\left(l_{i+1}, x_{i+1}\right)$:

- Discrete transition: there is a transition of the automaton $\left(l_{i}, l_{i+1}, \rho\right)$ such that $\left(x_{i}, x_{i+1}\right) \models \rho$

Dynamics (1)

- A computation is a sequence of states (discrete location, valuation of variables)

$$
\left(l_{0}, x_{0}\right),\left(l_{1}, x_{1}\right),\left(l_{2}, x_{2}\right), \ldots
$$

such that

1. Initial state $\left(l_{0}, x_{0}\right)$ satisfies the initial condition
2. For each consecutive pair of states $\left(l_{i}, x_{i}\right),\left(l_{i+1}, x_{i+1}\right)$:

- Discrete transition: there is a transition of the automaton $\left(l_{i}, l_{i+1}, \rho\right)$ such that $\left(x_{i}, x_{i+1}\right) \models \rho$
- Continuous evolution: there is a trajectory going from x_{i} to x_{i+1} along the flow determined by the differential equation $\dot{x}=A x+B$ at location $l_{i}=l_{i+1}$

Dynamics (2)

- Goal: generate invariant polynomial equalities

Dynamics (2)

- Goal: generate invariant polynomial equalities
- We know how to deal with discrete systems
. How to handle continuous evolution?

Dynamics (2)

- Goal: generate invariant polynomial equalities
- We know how to deal with discrete systems
. How to handle continuous evolution?
- Problem:
computing polynomial invariants of linear systems of differential equations

Form of the Solution

Solution to $\dot{x}=A x+B$ can be expressed as polynomials in t, $e^{ \pm a t}, \cos (b t), \sin (b t)$, where $\lambda=a+b i$ are eigenvalues of matrix A.

$$
\begin{gathered}
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{v}_{x} \\
\dot{v}_{y}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 / 2 \\
0 & 0 & 1 / 2 & 0
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y}
\end{array}\right) \\
\left\{\begin{aligned}
& x=x^{*}+2 \sin (t / 2) v_{x}^{*}+(2 \cos (t / 2)-2) v_{y}^{*} \\
& y=y^{*}+(-2 \cos (t / 2)+2) v_{x}^{*}+2 \sin (t / 2) v_{y}^{*} \\
& v_{x}=\cos (t / 2) v_{x}^{*}-\sin (t / 2) v_{y}^{*} \\
& v_{y}=\sin (t / 2) v_{x}^{*}+\cos (t / 2) v_{y}^{*}
\end{aligned}\right.
\end{gathered}
$$

Elimination of Time

Idea: eliminate terms depending on t from solution:

- transform solution into polynomials using new variables
- eliminate by means of Gröbner bases using auxiliary equations

Elimination of Time

Idea: eliminate terms depending on t from solution:

- transform solution into polynomials using new variables
- eliminate by means of Gröbner bases using auxiliary equations

$$
\begin{aligned}
& \text { SOLUTION } \\
x & =x^{*}+2 z v_{x}^{*}+(2 w-2) v_{y}^{*} \\
y & =y^{*}+(-2 w+2) v_{x}^{*}+2 z v_{y}^{*} \\
v_{x}= & w v_{x}^{*}-z v_{y}^{*} \\
v_{y}= & z v_{x}^{*}+w v_{y}^{*}
\end{aligned}
$$

INITIAL CONDITIONS

$$
\left\{\begin{array}{l}
v_{x}^{*}=2 \\
v_{y}^{*}=-2
\end{array}\right.
$$

AUXILIARY EQUATIONS

$$
\left\{w^{2}+z^{2}=1\right.
$$

\Downarrow
$v_{x}^{2}+v_{y}^{2}=8$ (conservation of energy)

Example

$$
\begin{aligned}
\text { RIGHT } & \rightarrow v_{y}=-2 \wedge v_{x}=2 \wedge 2 d b-8 b+y+x=0 \\
\text { MAGNETIC } & \rightarrow x-2 v_{y}-d=4 \wedge v_{x}^{2}+v_{y}^{2}=8 \wedge 2 v_{x}+y+2 d b-8 b+d=4 \\
\text { LEFT } & \rightarrow v_{y}=-2 \wedge v_{x}=-2 \wedge 2 d b-8 b+y-x=8
\end{aligned}
$$

- Introduction
- Generation of Invariant Polynomial Equalities
- Applications of Polynomial Equality Invariants
- Generation of Invariant Polynomial Inequalities
- Conclusions and Future Work

Drawing a Parallel from Equalities

Linear equalities
[Karr'76]

Polynomial equalities
[Colon'04]

Drawing a Parallel from Equalities

Linear equalities
[Karr’76]

Polynomial equalities
[Colon'04]

Linear inequalities
[Cousot \& Halbwachs'78]

Polynomial inequalities
[Bagnara \& Rodríguez-Carbonell \& Zaffanella'05]

From Linear to Polynomial Equalities

$$
\begin{aligned}
a & :=0 ; \\
b & :=0 ; \\
c & :=1 ;
\end{aligned}
$$

while ? do

$$
\begin{aligned}
a & :=a+1 ; \\
b & :=b+c ; \\
c & :=c+2 ;
\end{aligned}
$$

end while

From Linear to Polynomial Equalities

$$
\begin{aligned}
a & :=0 ; \\
b & :=0 ; \\
c & :=1 ;
\end{aligned}
$$

$$
\{c=2 a+1\}
$$

while ? do

$$
\begin{aligned}
a & :=a+1 ; \\
b & :=b+c ; \\
c & :=c+2 ;
\end{aligned}
$$

end while

From Linear to Polynomial Equalities

$a:=0$;
$b:=0$;
$c:=1 ;$
$s:=0 ;$

Introduce new variable s

 standing for a^{2}
Extend program with new variable s

while ? do

$$
\begin{array}{rlrl}
a & :=a+1 ; & a:=0 & \rightarrow \\
b:=b+c ; & s:=0 \\
c:=c+2 ; & a:=a+1 \quad \rightarrow & s:=s+2 a+1
\end{array}
$$

$$
s:=s+2 a+1
$$

end while

From Linear to Polynomial Equalities

$a:=0$;
$b:=0$;
$c:=1 ;$
$s:=0$;
$\{b=s \wedge c=2 a+1\}$
while ? do

$$
\begin{aligned}
a & :=a+1 ; \\
b & :=b+c \\
c & :=c+2 \\
s & :=s+2 a+1 ;
\end{aligned}
$$

end while

From Linear to Polynomial Inequalities

$\{$ Pre: $b \geq 0\}$
$a:=0$;
while $(a+1)^{2} \leq b$ do

$$
a:=a+1
$$

end while
$\left\{\right.$ Post: $\left.(a+1)^{2}>b \wedge b \geq a^{2}\right\}$

From Linear to Polynomial Inequalities

$\{$ Pre: $b \geq 0\}$
$a:=0$;
while $(a+1)^{2} \leq b$ do
Linear analysis cannot deal with the quadratic condition

$$
a:=a+1 ;
$$

$$
(a+1)^{2} \leq b
$$

end while
$\left\{\right.$ Post: $\left.(a+1)^{2}>b \wedge b \geq a^{2}\right\}$

From Linear to Polynomial Inequalities

$\{$ Pre: $b \geq 0\}$
$a:=0$;
$\{a \geq 0 \wedge b \geq 0\}$
while $(a+1)^{2} \leq b$ do
Loop invariant $\{a \geq 0 \wedge b \geq 0\}$ not precise enough

$$
a:=a+1 ;
$$

end while
$\left\{\right.$ Post: $\left.(a+1)^{2}>b \wedge b \geq a^{2}\right\}$

From Linear to Polynomial Inequalities

$\{$ Pre: $b \geq 0\}$
$a:=0$;
$s:=0$;
Introduce new variable s standing for a^{2}
while $(a+1)^{2} \leq b$ do
Extend program with new
variable s

$$
\begin{aligned}
& a:=a+1 ; \\
& s:=s+2 a+1 ; \longleftarrow \quad a:=0 \rightarrow s:=0 \\
& \text { while }
\end{aligned}
$$

end while

$$
\begin{aligned}
a:=0 & \rightarrow s:=0 \\
a:=a+1 & \rightarrow s:=s+2 a+1
\end{aligned}
$$

$\left\{\right.$ Post: $\left.(a+1)^{2}>b \wedge b \geq a^{2}\right\}$

From Linear to Polynomial Inequalities

$\{$ Pre: $b \geq 0\}$
$a:=0$;
$s:=0$;
$\{b \geq s \wedge \cdots\}$
while $(a+1)^{2} \leq b$ do

$$
\begin{aligned}
& a:=a+1 ; \\
& s:=s+2 a+1 ;
\end{aligned}
$$

Loop invariant $\left\{b \geq a^{2} \wedge \cdots\right\}$ enough to prove partial correctness
end while
$\left\{\right.$ Post: $\left.(a+1)^{2}>b \wedge b \geq a^{2}\right\}$

Linearization of Polynomial Constraints

- Abstract values = sets of constraints
- Given a degree bound d, all terms x^{α} with $\operatorname{deg}\left(x^{\alpha}\right) \leq d$ are considered as different and independent variables

Vector Spaces \leftrightarrow Polynomial Cones

$$
\text { polynomial }=0
$$

- \forall polynomial $p, p \sim p=0$
- Vector space = set of polynomials closed under

$$
\begin{gathered}
0=0 \\
p=0 \quad q=0 \quad \lambda, \mu \in \mathbb{R} \\
\hline \lambda p+\mu q=0
\end{gathered}
$$

Vector Spaces \leftrightarrow Polynomial Cones

$$
\text { polynomial }=0
$$

- \forall polynomial $p, p \sim p=0$
- Vector space = set of polynomials closed under

$$
\begin{gathered}
\overline{0=0} \\
p=0 \quad q=0 \quad \lambda, \mu \in \mathbb{R} \\
\hline \lambda p+\mu q=0
\end{gathered}
$$

$$
\text { polynomial } \geq 0
$$

- \forall polynomial $p, p \sim p \geq 0$
- Polynomial cone = set of polynomials closed under

\[

\]

Explicitly Adding Other Inference Rules

$$
\begin{gathered}
\text { polynomial }=0 \\
p=0 \quad \operatorname{deg}(p q) \leq d \\
\hline p q=0
\end{gathered}
$$

Explicitly Adding Other Inference Rules

$$
\begin{gathered}
\text { polynomial }=0 \\
p=0 \quad \operatorname{deg}(p q) \leq d \\
p q=0
\end{gathered}
$$

polynomial ≥ 0

$$
\begin{gathered}
\frac{p=0 \quad \operatorname{deg}(p q) \leq d}{p q=0} \\
\frac{p \geq 0 \quad q \geq 0 \quad \operatorname{deg}(p q) \leq d}{p q \geq 0}
\end{gathered}
$$

- Introduction
- Generation of Invariant Polynomial Equalities
- Applications of Polynomial Equality Invariants
- Generation of Invariant Polynomial Inequalities
- Conclusions and Future Work

Conclusions

- Designed a new abstract domain for generating invariant polynomial equalities based on ideals of polynomials

Conclusions

- Designed a new abstract domain for generating invariant polynomial equalities based on ideals of polynomials
- Identified a class of programs for which all polynomial equality invariants can be generated

Conclusions

- Designed a new abstract domain for generating invariant polynomial equalities based on ideals of polynomials
- Identified a class of programs for which all polynomial equality invariants can be generated
- Applied polynomial equality invariants to verifying imperative programs, Petri nets and hybrid systems

Conclusions

- Designed a new abstract domain for generating invariant polynomial equalities based on ideals of polynomials
- Identified a class of programs for which all polynomial equality invariants can be generated
- Applied polynomial equality invariants to verifying imperative programs, Petri nets and hybrid systems
- Designed a new abstract domain for generating invariant polynomial inequalities based on polynomial cones

Future Work

- Extend the techniques to interprocedural analyses

Future Work

- Extend the techniques to interprocedural analyses
- Develop methods for tuning the precision/efficiency trade-off

Future Work

- Extend the techniques to interprocedural analyses
- Develop methods for tuning the precision/efficiency trade-off
- Find new areas of application for polynomial invariants

Future Work

- Extend the techniques to interprocedural analyses
- Develop methods for tuning the precision/efficiency trade-off
- Find new areas of application for polynomial invariants

Future Work

- Extend the techniques to interprocedural analyses
- Develop methods for tuning the precision/efficiency trade-off
- Find new areas of application for polynomial invariants
- But I am now working on something different: Satisfiability Modulo Theories (SMT) See http://www.barcelogic.org

Thank you!

