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Overview of the Talk

• Introduction

• Motivation

• Constraint-based program analysis

• Non-linear constraint solving

• Related work in SMT(NA) [NA = Non-linear Arithmetic]

• Review of [Borralleras et al., JAR’12]: pros and cons

• Duality: Positivstellensatz

• Proving unsatisfiability by finding solutions

• Open questions and future work

Larraz, Oliveras, Rodŕıguez-Carbonell, Rubio Proving Unsatisfiability in Non-linear Arithmetic by Duality



3

Introduction

• Non-linear Constraint Solving: Given a quantifier-free formula F
containing polynomial inequality atoms, is F satisfiable?

• In Z: undecidable (Hilbert’s 10th problem)

• In R: decidable, even with quantifiers (Tarski).
But traditional algorithms have prohibitive worst-case complexity

• Lots of applications: non-linear constraints arise in many contexts.
Here, focus will be on program analysis

• Goal: a procedure that works well in practice for our application
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Targeted Programs

• Imperative programs

• Integer variables and linear expressions
(other constructions considered unknowns)

int gcd ( int a, int b ) {
int tmp;
while ( a >= 0 && b > 0 ) {

tmp = b;
if (a == b) b = 0;
else {

int z = a;
while ( z > b ) z -= b;
b = z; }

a = tmp; }
return a; }
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Targeted Programs

• Imperative programs

• Integer variables and linear expressions
(other constructions considered unknowns)

As a transition system:

l8l3

τ2

τ1
τ3

τ4

τ5

τ0

τ0 : a′ = ?, b′ = ?, tmp′ = ?, z ′ = ?
τ1 : b ≥ 1, a ≥ 0, a = b, a′ = b, b′ = 0, tmp′ = b, z ′ = z
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z, a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5 : b ≥ z, a′ = tmp, b′ = z, tmp′ = tmp, z ′ = z
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Invariants

• An invariant of a program at a location is an assertion over the
program variables that is true whenever the location is reached

• Useful in safety analysis:
if F are forbidden states, prove that ¬F is (implied by an) invariant

• An invariant is inductive at a program location if:

• Initiation condition: it holds the first time the location is reached

• Consecution condition: it is preserved by every cycle back to location

We are interested in inductive invariants
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Invariants

l8l3

τ2

τ1
τ3

τ4

τ5

τ0

τ0 : a′ = ?, b′ = ?, tmp′ = ?, z ′ = ?
τ1 : b ≥ 1, a ≥ 0, a = b, a′ = b, b′ = 0, tmp′ = b, z ′ = z
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5 : b ≥ z , a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z

Assertion b ≥ 1 is invariant at l8
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Constraint-based (Linear) Invariant Generation

Introduced in [Colón,Sankaranarayanan & Sipma, CAV’03]

Keys:

• Fix a template of candidate invariant

α1x1 + . . .+ αnxn ≥ β

where α1, . . . , αn, β are unknowns, for each program location

• Impose initiation and consecution conditions obtaining ∃∀ problem

• Transform into ∃ problem over non-linear arith. with Farkas’ Lemma

• Solve resulting non-linear constraints
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Farkas’ Lemma

In matrix notation:

(∀x ∈ Rn) (Ax ≥ b ⇒ cT x ≥ d)

iff

(∃λ ∈ Rm) (λ ≥ 0 ∧ ((λTA = cT ∧ λTb ≥ d) ∨ (λTA = 0 ∧ λTb = −1)))
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Particularities of Our SMT(NA) Problems

• Existentially quantified variables are:

• unknown template coefficients of invariants and ranking functions
• Farkas’ multipliers

• Non-linear monomials are quadratic of the form

unknown template coefficient · Farkas’ multiplier

• Existentially quantified variables are of real type...
But it is reasonable to assume that if satisfiable there is a solution
where unknown template coefficients are integers

(when we program, we think invariants/ranking functs. with integer coefficients, right?)
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Related Work in SMT(NA)

• Methods aimed at proving unsatisfiability:

• Gröbner bases [Tiwari, CSL’05; De Moura, Passmore, SMT’09]
• Semidefinite programming [Parrilo, MP’03]
• Mixed approaches [Platzer, Quesel, Rummer, CADE’09]

• Methods aimed at proving satisfiability:

• Cylindrical Algebraic Decomposition (CAD) [Collins, ATFL’75]
• Translating into

• SAT [Fuhs et al., SAT’07]
• SMT(BV) [Zankl, Middeldorp, LPAR’10]
• SMT(LA) [Borralleras et al., JAR’12]

• Model-constructing satisfiability calculus
[De Moura, Jovanovic, IJCAR’12]
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Review of [Borralleras et al., JAR’12]

• Our method is aimed at proving satisfiability in the integers
(as opposed to finding non-integer solutions,
or proving unsatisfiability)

• Basic idea: use bounds on integer variables to linearize the formula

• Refinement: analyze unsatisfiable cores to enlarge bounds
(and sometimes even prove unsatisfiability)
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Review of [Borralleras et al., JAR’12]

• For any formula there is an equisatisfiable one of the form

F ∧ (
∧
i

yi = Mi )

where F is linear and each Mi is non-linear

• Example

u4v 2 + 2u2vw + w 2 ≤ 4 ∧ 1 ≤ u, v ,w ≤ 2

xu4v2 + 2xu2vw + xw2 ≤ 4 ∧ 1 ≤ u, v ,w ≤ 2 ∧

xu4v2 = u4v 2 ∧ xu2vw = u2vw ∧ xw2 = w 2
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Review of [Borralleras et al., JAR’12]

• Idea: linearize non-linear monomials with case analysis
on some of the variables with finite domain

• Assume variables are in Z

• F ∧ xu4v2 = u4v 2 ∧ xu2vw = u2vw ∧ xw2 = w 2

where F is xu4v2 + 2xu2vw + xw2 ≤ 4 ∧ 1 ≤ u, v ,w ≤ 2

• Since 1 ≤ w ≤ 2, add xu2v = u2v and
w = 1 → xu2vw = xu2v

w = 2 → xu2vw = 2xu2v
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Review of [Borralleras et al., JAR’12]

Applying the same idea recursively, the following linear formula is obtained:

xu4v2 + 2xu2vw + xw2 ≤ 4

∧ 1 ≤ u, v ,w ≤ 2

∧ w = 1 → xu2vw = xu2v

∧ w = 2 → xu2vw = 2xu2v

∧ u = 1 → xu2v = v

∧ u = 2 → xu2v = 4v

∧ w = 1 → xw2 = 1

∧ w = 2 → xw2 = 4

∧ v = 1 → xu4v2 = xu4

∧ v = 2 → xu4v2 = 4xu4

∧ u = 1 → xu4 = 1

∧ u = 2 → xu4 = 16

A model can be computed:

u = 1
v = 1
w = 1
xu4v2 = 1
xu4 = 1
xu2vw = 1
xu2v = 1
xw2 = 1
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Review of [Borralleras et al., JAR’12]

• If linearization achieves a linear formula then we have
a sound and complete decision procedure

Note also that actually not all variables need to be integers:
only enough to get a linear formula

• If we don’t have enough variables with finite domain...
... we can add bounds at cost of losing completeness
We cannot trust UNSAT answers any more!

• But we can analyze why the CNF is UNSAT:
an unsatisfiable core (= unsatisfiable subset of clauses) can be
obtained from the trace of the DPLL execution [Zhang & Malik’03]

• If core contains no extra bound: truly UNSAT

If core contains extra bound: guide to enlarge domains
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Review of [Borralleras et al., JAR’12]

• u4v 2 + 2u2vw + w 2 ≤ 3 cannot be linearized

• Consider u4v 2 + 2u2vw + w 2 ≤ 3 ∧ 1 ≤ u, v ,w ≤ 2

• The linearization is unsatisfiable:

xu4v2 + 2xu2vw + xw2 ≤ 3
∧ 1 ≤ xu4v2 ∧ xu4v2 ≤ 64
∧ 1 ≤ xu2vw ∧ xu2vw ≤ 16
∧ 1 ≤ xw2 ∧ xw2 ≤ 4
∧ 1 ≤ u ∧ u ≤ 2
∧ 1 ≤ v ∧ v ≤ 2
∧ 1 ≤ w ∧ w ≤ 2
· · ·

• Should decrease lower bounds for u, v ,w
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Review of [Borralleras et al., JAR’12]

• In favour: very effective when handling satisfiable instances

• Best solver in QF NIA division in SMT-COMP’09, SMT-COMP’10

• According to our experiments, even faster than latest version of Z3
on benchmarks coming from our application

• Against: often fails to detect unsatisfiability on unsatisfiable instances
(and then keeps enlarging domains forever!)

Need more powerful non-linear reasoning than with unsat cores!

• Let’s focus on conjunctions of polynomial inequalities from now on
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Duality: Positivstellensatz

• Idea: (following [Parrilo, MP’03])
exploit the effectiveness on sat instances by applying duality
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Duality: Positivstellensatz

• Idea: (following [Parrilo, MP’03])
exploit the effectiveness on sat instances by applying duality

• Some definitions: given A ⊆ Q[x ], where x = x1, . . . , xn:

• the multiplicative monoid generated by A, Monoid(A), is the set of
products of zero or more elements in A

• the cone generated by A, Cone(A), is the set of sums of products of
the form pPQ2, where p ∈ Q, p > 0, P ∈ Monoid(A) and Q ∈ Q[x ]

• the ideal generated by A, Ideal(A), is the set of sums of products of
the form PQ, where P ∈ A and Q ∈ Q[x ]

• Positivstellensatz: Let F>,F≥,F= ⊂ Q[x ]. The system

{f > 0 | f ∈ F>} ∪ {f ≥ 0 | f ∈ F≥} ∪ {f = 0 | f ∈ F=}

is unsatisfiable in Rn iff there are P ∈ Monoid(F>),
Q ∈ Cone(F> ∪ F≥) and R ∈ Ideal(F=) such that P + Q + R = 0
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Proving Unsatisfiability by Finding Solutions

We can prove a system unsatisfiable by finding a solution to another one!

Find the Positivstellensatz witness P,Q,R as follows:

• Set a degree bound d
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• In P + Q + R, make coeffs of every monomial in the x vars equal to 0
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Proving Unsatisfiability by Finding Solutions

We can prove a system unsatisfiable by finding a solution to another one!
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are unknown coefficients with the additional constraint ∨mi=1pi > 0.

• Let Monoidd(F> ∪ F≥) = {f1, . . . , fm}. Then Q is of the form
Q =

∑m
i=1 Qi fi , where Qi is a template polynomial with unknown

coeffs which is a sum of squares and has deg(Qi ) = d − deg(fi ).

• In P + Q + R, make coeffs of every monomial in the x vars equal to 0

Solutions to these constraints yield unsatisfiability witnesses!
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Example

• Let us consider the system −x2 − xy − x − 1 ≥ 0 ∧ y = 0.

• Then F> = {}, F≥ = {−x2 − xy − x − 1}, F= = {y}.
• Set degree bound d = 2.
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• Let us consider the system −x2 − xy − x − 1 ≥ 0 ∧ y = 0.

• Then F> = {}, F≥ = {−x2 − xy − x − 1}, F= = {y}.
• Set degree bound d = 2.

• R ≡ (αx x + αy y + α0) y , where αx , αy , α0 are unknowns
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• As F> = {}, we have Monoidd(F>) = Monoid(F>) = {1}
P ≡ β, where β is an unknown constrained to β > 0

• Monoidd(F> ∪ F≥) = {1,−x2 − xy − x − 1}.

Q≡(γx2x2 + γxyxy + γy2y 2 + γxx + γyy + γ0︸ ︷︷ ︸
Γ(x ,y)

)+γ′0(−x2−xy−x−1)

where γ∗ are unknowns s.t. Γ(x , y) is a sum of squares, and γ′0 ≥ 0
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Q≡(γx2x2 + γxyxy + γy2y 2 + γxx + γyy + γ0︸ ︷︷ ︸
Γ(x ,y)

)+γ′0(−x2−xy−x−1)

where γ∗ are unknowns s.t. Γ(x , y) is a sum of squares, and γ′0 ≥ 0

• Hence P + Q + R is: (γx2 − γ′0)x2 + (γxy − γ′0)xy + · · ·
yielding equations γx2 − γ′0 = γxy − γ′0 = · · · = 0
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• Let us consider the system −x2 − xy − x − 1 ≥ 0 ∧ y = 0.

• Then F> = {}, F≥ = {−x2 − xy − x − 1}, F= = {y}.
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Q≡(γx2x2 + γxyxy + γy2y 2 + γxx + γyy + γ0︸ ︷︷ ︸
Γ(x ,y)

)+γ′0(−x2−xy−x−1)

where γ∗ are unknowns s.t. Γ(x , y) is a sum of squares, and γ′0 ≥ 0

• Hence P + Q + R is: (γx2 − γ′0)x2 + (γxy − γ′0)xy + · · ·
yielding equations γx2 − γ′0 = γxy − γ′0 = · · · = 0

• A solution is Γ(x , y) = (x + 1
2 )2, γ′0 = 1, αx = 1, β = 3

4 , rest = 0
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Sums of Squares

• How can we solve the constraint: “polynomial P is a sum of squares”?

• In [Parrilo, MP’03]: semidefinite programming. Some disadvantages:

• Some SDP algorithms can fail to converge if the problem is not strictly
feasible (= solution set is not full-dimensional).
Some works [Monniaux, Corbineau, ITP’11] try to alleviate this problem

• SDP algorithms use floating-point: postprocessing is needed!
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Sums of Squares

• How can we solve the constraint: “polynomial P is a sum of squares”?

• In [Parrilo, MP’03]: semidefinite programming. Some disadvantages:

• Some SDP algorithms can fail to converge if the problem is not strictly
feasible (= solution set is not full-dimensional).
Some works [Monniaux, Corbineau, ITP’11] try to alleviate this problem

• SDP algorithms use floating-point: postprocessing is needed!

• Let’s use an SMT(NA) solver instead of an SDP solver!

• The basic idea in SDP techniques can be reused:
polynomial P ∈ Q[x ] is a sum of squares iff there exist a vector of
monomials µT = (m1, . . . ,mk) over variables x , and a positive
semidefinite matrix M with coefficients in Q such that P = µTMµ.

• Recall: a symmetric matrix M ∈ RN×N is positive semidefinite if
for all x ∈ RN , we have xT M x ≥ 0.
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Sums of Squares

• There exist several equivalent conditions that ensure that
a symmetric matrix M ∈ RN×N is positive semidefinite:

• Sylvester criterion: all principal minors are non-negative

• Cholesky decomposition: there exists a lower triangular matrix L with
non-negative diagonal coefficients such that M = LLT

• Gram matrix: there exists a matrix R ∈ RN×N such that M = RTR
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Sums of Squares

• There exist several equivalent conditions that ensure that
a symmetric matrix M ∈ RN×N is positive semidefinite:

• Sylvester criterion: all principal minors are non-negative

• Cholesky decomposition: there exists a lower triangular matrix L with
non-negative diagonal coefficients such that M = LLT

• Gram matrix: there exists a matrix R ∈ RN×N such that M = RTR

• However, for efficiency reasons we opt for a light-weight approach:

Instead of general sums of squares,
we consider products of polys of the form

∑n
i=1 qi (xi ),

where each qi (xi ) is a univariate non-negative polynomial of degree 2.

• A univariate polynomial ax2 + bx + c is non-negative if and only if
(a = 0 ∧ b = 0 ∧ c ≥ 0) ∨ (a > 0 ∧ b2 − 4ac ≤ 0)

• In our experiments so far, we have been able to prove unsatisfiability
for all problems (from our program analysis application) we tried
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Filtering with Unsat Cores

• If the conjuntion of polynomial inequalities to be proved unsat is long,
the resulting SMT problem can be huge, even with low degree bound
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Filtering with Unsat Cores

• If the conjuntion of polynomial inequalities to be proved unsat is long,
the resulting SMT problem can be huge, even with low degree bound

• Idea: to exploit failed attempts with the SAT-aimed approach

• Use unsat cores to heuristically select candidate relevant constraints

• Let P be an (unsat) conjunction of polynomial inequalities

• Let C be core obtained after ? iterations of [Borralleras et al., JAR’12]

• Let P ′ = P ∩ C be the original inequalities that appear in the core

• P ′ is a good candidate to be unsat
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Filtering with Unsat Cores

• If the conjuntion of polynomial inequalities to be proved unsat is long,
the resulting SMT problem can be huge, even with low degree bound

• Idea: to exploit failed attempts with the SAT-aimed approach

• Use unsat cores to heuristically select candidate relevant constraints

• Let P be an (unsat) conjunction of polynomial inequalities

• Let C be core obtained after ? iterations of [Borralleras et al., JAR’12]

• Let P ′ = P ∩ C be the original inequalities that appear in the core

• P ′ is a good candidate to be unsat

• In most cases, as far as we have experimented, this procedure:

• does reduce significantly the size of the conjunction, and

• does preserve unsatisfiability

• If unsatisfiability of P ′ fails, we can always try with original P
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Open Questions and Future Work

• Any completeness result for the kind of problems under consideration?
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Open Questions and Future Work

• Any completeness result for the kind of problems under consideration?

• Is there any way of simplifying even further the refutation template?
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Open Questions and Future Work

• Any completeness result for the kind of problems under consideration?

• Is there any way of simplifying even further the refutation template?

• We sketched a theory solver for NA in a DPLL(T) framework. But:

• Cheap way of making it incremental?

• Explanations may not be minimal.
Worth looking for minimal explanations (e.g., with Max-SMT)?
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Open Questions and Future Work

• Any completeness result for the kind of problems under consideration?

• Is there any way of simplifying even further the refutation template?

• We sketched a theory solver for NA in a DPLL(T) framework. But:

• Cheap way of making it incremental?

• Explanations may not be minimal.
Worth looking for minimal explanations (e.g., with Max-SMT)?

• We implemented a prototype in Prolog that,
given a conjunction of polynomial inequalities,
produces the SMT problem of finding a Positivstellensatz refutation.

This is what we have used in the experiments referred here.

Future work: full integration into an SMT(NA) system
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Thank you!
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