Proving Unsatisfiability in Non-linear Arithmetic by Duality

[work in progress]

Daniel Larraz, Albert Oliveras, Enric Rodríguez-Carbonell and Albert Rubio

Universitat Politècnica de Catalunya, Barcelona, Spain

Dagstuhl Seminar on Deduction and Arithmetic, October 2013

Overview of the Talk

- Introduction
- Motivation
- Constraint-based program analysis
- Non-linear constraint solving
- Related work in SMT(NA) [$\mathrm{NA}=$ Non-linear Arithmetic]
- Review of [Borralleras et al., JAR'12]: pros and cons
- Duality: Positivstellensatz
- Proving unsatisfiability by finding solutions
- Open questions and future work

Introduction

- Non-linear Constraint Solving: Given a quantifier-free formula F containing polynomial inequality atoms, is F satisfiable?
- $\operatorname{In} \mathbb{Z}$: undecidable (Hilbert's 10th problem)
- In \mathbb{R} : decidable, even with quantifiers (Tarski).

But traditional algorithms have prohibitive worst-case complexity

- Lots of applications: non-linear constraints arise in many contexts. Here, focus will be on program analysis
- Goal: a procedure that works well in practice for our application

Targeted Programs

- Imperative programs
- Integer variables and linear expressions (other constructions considered unknowns)
int $\operatorname{gcd}($ int a, int $b)\{$
int tmp;
while $(\mathrm{a}>=0$ \&\& $\mathrm{b}>0)\{$

$$
\mathrm{tmp}=\mathrm{b} ;
$$

if $(\mathrm{a}=\mathrm{b}) \quad \mathrm{b}=0$;
else \{
int $z=a ;$
while ($\mathrm{z}>\mathrm{b}$) $\mathrm{z}-=\mathrm{b}$;
b = z; \}
$a=t m p ;\}$
return a; \}

Targeted Programs

- Imperative programs
- Integer variables and linear expressions (other constructions considered unknowns)

As a transition system:

$\tau_{0}:$			$a^{\prime}=?$,	$b^{\prime}=?$,	$t m p^{\prime}=?$,	$z^{\prime}=?$
$\tau_{1}:$	$b \geq 1$,	$a \geq 0$,	$a=b$,	$a^{\prime}=b$,	$b^{\prime}=0$,	$t m p^{\prime}=b$,
$\tau_{2}:$	$b \geq 1$,	$a \geq 0$,	$a<b$,	$a^{\prime}=a$,	$b^{\prime}=b$,	$t m p^{\prime}=b$,
$\tau_{3}:$	$b \geq 1$,	$a \geq 0$,	$a>b$,	$a^{\prime}=a$,	$b^{\prime}=b$,	$t m p^{\prime}=b$,
$\tau_{4}:$	$b<z$,		$a^{\prime}=a$,	$b^{\prime}=b$,	$t m p^{\prime}=t m p$,	$z^{\prime}=z-b$
$\tau_{5}:$	$b \geq z$,		$a^{\prime}=t m p$,	$b^{\prime}=z$,	$t m p^{\prime}=t m p$,	$z^{\prime}=z$

Invariants

- An invariant of a program at a location is an assertion over the program variables that is true whenever the location is reached
- Useful in safety analysis:
if F are forbidden states, prove that $\neg F$ is (implied by an) invariant
- An invariant is inductive at a program location if:
- Initiation condition: it holds the first time the location is reached
- Consecution condition: it is preserved by every cycle back to location

We are interested in inductive invariants

Invariants

$\tau_{0}:$

$$
\begin{array}{lllll}
& a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, & z^{\prime}=? \\
a=b, & a^{\prime}=b, & b^{\prime}=0, & t m p^{\prime}=b, & z^{\prime}=z \\
a<b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, & z^{\prime}=a \\
a>b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, & z^{\prime}=a \\
& a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=t m p, & z^{\prime}=z-b \\
& a^{\prime}=t m p, & b^{\prime}=z, & t m p^{\prime}=t m p, & z^{\prime}=z
\end{array}
$$

$\tau_{1}: \quad b \geq 1, \quad a \geq 0$,

$$
\tau_{2}: \quad b \geq 1, \quad a \geq 0
$$

$$
\tau_{3}: \quad b \geq 1, \quad a \geq 0
$$

$$
\tau_{4}: \quad b<z
$$

$$
\tau_{5}: \quad b \geq z
$$

Assertion $b \geq 1$ is invariant at $/ 8$

Constraint-based (Linear) Invariant Generation

Introduced in [Colón,Sankaranarayanan \& Sipma, CAV'03]
Keys:

Constraint-based (Linear) Invariant Generation

Introduced in [Colón,Sankaranarayanan \& Sipma, CAV'03]
Keys:

- Fix a template of candidate invariant

$$
\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n} \geq \beta
$$

where $\alpha_{1}, \ldots, \alpha_{n}, \beta$ are unknowns, for each program location

Constraint-based (Linear) Invariant Generation

Introduced in [Colón,Sankaranarayanan \& Sipma, CAV'03]
Keys:

- Fix a template of candidate invariant

$$
\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n} \geq \beta
$$

where $\alpha_{1}, \ldots, \alpha_{n}, \beta$ are unknowns, for each program location

- Impose initiation and consecution conditions obtaining $\exists \forall$ problem

Constraint-based (Linear) Invariant Generation

Introduced in [Colón,Sankaranarayanan \& Sipma, CAV'03]
Keys:

- Fix a template of candidate invariant

$$
\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n} \geq \beta
$$

where $\alpha_{1}, \ldots, \alpha_{n}, \beta$ are unknowns, for each program location

- Impose initiation and consecution conditions obtaining $\exists \forall$ problem
- Transform into \exists problem over non-linear arith. with Farkas' Lemma

Constraint-based (Linear) Invariant Generation

Introduced in [Colón,Sankaranarayanan \& Sipma, CAV'03]
Keys:

- Fix a template of candidate invariant

$$
\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n} \geq \beta
$$

where $\alpha_{1}, \ldots, \alpha_{n}, \beta$ are unknowns, for each program location

- Impose initiation and consecution conditions obtaining $\exists \forall$ problem
- Transform into \exists problem over non-linear arith. with Farkas' Lemma
- Solve resulting non-linear constraints

Farkas' Lemma

In matrix notation:

$$
\begin{gathered}
\left(\forall x \in \mathbb{R}^{n}\right)\left(A x \geq b \Rightarrow c^{\top} x \geq d\right) \\
\text { iff } \\
\left(\exists \lambda \in \mathbb{R}^{m}\right)\left(\lambda \geq 0 \wedge\left(\left(\lambda^{\top} A=c^{\top} \wedge \lambda^{\top} b \geq d\right) \vee\left(\lambda^{\top} A=0 \wedge \lambda^{\top} b=-1\right)\right)\right.
\end{gathered}
$$

Particularities of Our SMT(NA) Problems

- Existentially quantified variables are:
- unknown template coefficients of invariants and ranking functions
- Farkas' multipliers
- Non-linear monomials are quadratic of the form
unknown template coefficient • Farkas' multiplier
- Existentially quantified variables are of real type... But it is reasonable to assume that if satisfiable there is a solution where unknown template coefficients are integers
(when we program, we think invariants/ranking functs. with integer coefficients, right?)

Related Work in SMT(NA)

- Methods aimed at proving unsatisfiability:
- Gröbner bases [Tiwari, CSL'05; De Moura, Passmore, SMT'09]
- Semidefinite programming [Parrilo, MP'03]
- Mixed approaches [Platzer, Quesel, Rummer, CADE'09]
- Methods aimed at proving satisfiability:
- Cylindrical Algebraic Decomposition (CAD) [Collins, ATFL'75]
- Translating into
- SAT [Fuhs et al., SAT'07]
- SMT(BV) [Zankl, Middeldorp, LPAR'10]
- SMT(LA) [Borralleras et al., JAR'12]
- Model-constructing satisfiability calculus [De Moura, Jovanovic, IJCAR'12]

Review of [Borralleras et al., JAR'12]

- Our method is aimed at proving satisfiability in the integers (as opposed to finding non-integer solutions, or proving unsatisfiability)
- Basic idea: use bounds on integer variables to linearize the formula
- Refinement: analyze unsatisfiable cores to enlarge bounds (and sometimes even prove unsatisfiability)

Review of [Borralleras et al., JAR'12]

- For any formula there is an equisatisfiable one of the form

$$
F \wedge\left(\bigwedge_{i} y_{i}=M_{i}\right)
$$

where F is linear and each M_{i} is non-linear

- Example

$$
\begin{gathered}
u^{4} v^{2}+2 u^{2} v w+w^{2} \leq 4 \wedge 1 \leq u, v, w \leq 2 \\
x_{u^{4} v^{2}}+2 x_{u^{2} v w}+x_{w^{2}} \leq 4 \wedge 1 \leq u, v, w \leq 2 \wedge \\
x_{u^{4} v^{2}}=u^{4} v^{2} \wedge x_{u^{2} v w}=u^{2} v w \wedge x_{w^{2}}=w^{2}
\end{gathered}
$$

Review of [Borralleras et al., JAR'12]

- Idea: linearize non-linear monomials with case analysis on some of the variables with finite domain
- Assume variables are in \mathbb{Z}
- $F \wedge x_{u^{4} v^{2}}=u^{4} v^{2} \wedge x_{u^{2} v w}=u^{2} v w \wedge x_{w^{2}}=w^{2}$ where F is $x_{u^{4} v^{2}}+2 x_{u^{2} v w}+x_{w^{2}} \leq 4 \wedge 1 \leq u, v, w \leq 2$
- Since $1 \leq w \leq 2$, add $x_{u^{2} v}=u^{2} v$ and

$$
w=1 \rightarrow x_{U^{2} v w}=x_{U^{2} v}
$$

$$
w=2 \rightarrow x_{u^{2} v w}=2 x_{u^{2} v}
$$

Review of [Borralleras et al., JAR'12]

Applying the same idea recursively, the following linear formula is obtained:
$x_{u^{4} v^{2}}+2 x_{u^{2} v w}+x_{w^{2}} \leq 4$
$\wedge 1 \leq u, v, w \leq 2$
$\wedge w=1 \rightarrow x_{U^{2} v w}=x_{U^{2} v}$
A model can be computed:
$\wedge w=2 \rightarrow x_{u^{2} v w}=2 x_{u^{2} v}$

$$
\wedge u=1 \rightarrow x_{u^{2} v}=v
$$

$$
\wedge u=2 \rightarrow x_{u^{2} v}=4 v
$$

$$
\begin{aligned}
& u=1 \\
& v=1 \\
& w=1
\end{aligned}
$$

$$
\wedge w=1 \rightarrow x_{w^{2}}=1
$$

$$
\wedge w=2 \rightarrow x_{w^{2}}=4
$$

$$
\wedge v=1 \rightarrow x_{u^{4} v^{2}}=x_{u^{4}}
$$

$$
\wedge v=2 \rightarrow x_{u^{4} v^{2}}=4 x_{u^{4}}
$$

$$
\wedge u=1 \rightarrow x_{u^{4}}=1
$$

$$
\wedge u=2 \rightarrow x_{u^{4}}=16
$$

Review of [Borralleras et al., JAR'12]

- If linearization achieves a linear formula then we have a sound and complete decision procedure Note also that actually not all variables need to be integers: only enough to get a linear formula
- If we don't have enough variables with finite domain...
... we can add bounds at cost of losing completeness We cannot trust UNSAT answers any more!
- But we can analyze why the CNF is UNSAT: an unsatisfiable core (= unsatisfiable subset of clauses) can be obtained from the trace of the DPLL execution [Zhang \& Malik'03]
- If core contains no extra bound: truly UNSAT If core contains extra bound: guide to enlarge domains

Review of [Borralleras et al., JAR'12]

- $u^{4} v^{2}+2 u^{2} v w+w^{2} \leq 3$ cannot be linearized
- Consider $u^{4} v^{2}+2 u^{2} v w+w^{2} \leq 3 \wedge 1 \leq u, v, w \leq 2$
- The linearization is unsatisfiable:

$$
\begin{aligned}
& x_{u^{4} v^{2}}+2 x_{u^{2} v w}+x_{w^{2}} \leq 3 \\
& \wedge 1 \leq x_{u^{4} v^{2}} \wedge x_{u^{4} v^{2}} \leq 64 \\
& \wedge 1 \leq x_{u^{2} v w} \wedge x_{u^{2} v w} \leq 16 \\
& \wedge 1 \leq x_{w^{2}} \wedge x_{w^{2}} \leq 4 \\
& \wedge 1 \leq u \wedge u \leq 2 \\
& \wedge 1 \leq v \wedge v \leq 2 \\
& \wedge 1 \leq w \wedge w \leq 2
\end{aligned}
$$

- Should decrease lower bounds for u, v, w

Review of [Borralleras et al., JAR'12]

- In favour: very effective when handling satisfiable instances
- Best solver in QF_NIA division in SMT-COMP'09, SMT-COMP'10
- According to our experiments, even faster than latest version of Z3 on benchmarks coming from our application
- Against: often fails to detect unsatisfiability on unsatisfiable instances (and then keeps enlarging domains forever!)

Need more powerful non-linear reasoning than with unsat cores!

- Let's focus on conjunctions of polynomial inequalities from now on

Duality: Positivstellensatz

- Idea: (following [Parrilo, MP'03]) exploit the effectiveness on sat instances by applying duality

Duality: Positivstellensatz

- Idea: (following [Parrilo, MP'03]) exploit the effectiveness on sat instances by applying duality
- Some definitions: given $A \subseteq \mathbb{Q}[x]$, where $x=x_{1}, \ldots, x_{n}$:
- the multiplicative monoid generated by $A, \operatorname{Monoid}(A)$, is the set of products of zero or more elements in A

Duality: Positivstellensatz

- Idea: (following [Parrilo, MP'03]) exploit the effectiveness on sat instances by applying duality
- Some definitions: given $A \subseteq \mathbb{Q}[x]$, where $x=x_{1}, \ldots, x_{n}$:
- the multiplicative monoid generated by $A, \operatorname{Monoid}(A)$, is the set of products of zero or more elements in A
- the cone generated by A, $\operatorname{Cone}(A)$, is the set of sums of products of the form $p P Q^{2}$, where $p \in \mathbb{Q}, p>0, P \in \operatorname{Monoid}(A)$ and $Q \in \mathbb{Q}[x]$

Duality: Positivstellensatz

- Idea: (following [Parrilo, MP'03]) exploit the effectiveness on sat instances by applying duality
- Some definitions: given $A \subseteq \mathbb{Q}[x]$, where $x=x_{1}, \ldots, x_{n}$:
- the multiplicative monoid generated by $A, \operatorname{Monoid}(A)$, is the set of products of zero or more elements in A
- the cone generated by A, $\operatorname{Cone}(A)$, is the set of sums of products of the form $p P Q^{2}$, where $p \in \mathbb{Q}, p>0, P \in \operatorname{Monoid}(A)$ and $Q \in \mathbb{Q}[x]$
- the ideal generated by $A, \operatorname{Ideal}(A)$, is the set of sums of products of the form $P Q$, where $P \in A$ and $Q \in \mathbb{Q}[x]$

Duality: Positivstellensatz

- Idea: (following [Parrilo, MP'03])
exploit the effectiveness on sat instances by applying duality
- Some definitions: given $A \subseteq \mathbb{Q}[x]$, where $x=x_{1}, \ldots, x_{n}$:
- the multiplicative monoid generated by $A, \operatorname{Monoid}(A)$, is the set of products of zero or more elements in A
- the cone generated by A, $\operatorname{Cone}(A)$, is the set of sums of products of the form $p P Q^{2}$, where $p \in \mathbb{Q}, p>0, P \in \operatorname{Monoid}(A)$ and $Q \in \mathbb{Q}[x]$
- the ideal generated by $A, \operatorname{Ideal}(A)$, is the set of sums of products of the form $P Q$, where $P \in A$ and $Q \in \mathbb{Q}[x]$
- Positivstellensatz: Let $F_{>}, F_{\geq}, F_{=} \subset \mathbb{Q}[x]$. The system

$$
\left\{f>0 \mid f \in F_{>}\right\} \cup\left\{f \geq 0 \mid f \in F_{\geq}\right\} \cup\left\{f=0 \mid f \in F_{=}\right\}
$$

is unsatisfiable in \mathbb{R}^{n} iff there are $P \in \operatorname{Monoid}\left(F_{>}\right)$,
$Q \in \operatorname{Cone}\left(F_{>} \cup F_{\geq}\right)$and $R \in \operatorname{Ideal}\left(F_{=}\right)$such that $P+Q+R=0$

Proving Unsatisfiability by Finding Solutions

We can prove a system unsatisfiable by finding a solution to another one!
Find the Positivstellensatz witness P, Q, R as follows:

- Set a degree bound d

Proving Unsatisfiability by Finding Solutions

We can prove a system unsatisfiable by finding a solution to another one!
Find the Positivstellensatz witness P, Q, R as follows:

- Set a degree bound d
- If $F_{=}=\left\{f_{1}, \ldots, f_{m}\right\}$, then R is of the form $R=\sum_{i=1}^{m} R_{i} f_{i}$. Let R_{i} be template polynomial with unknown coeffs and $\operatorname{deg}\left(R_{i}\right)=d-\operatorname{deg}\left(f_{i}\right)$.

Proving Unsatisfiability by Finding Solutions

We can prove a system unsatisfiable by finding a solution to another one!
Find the Positivstellensatz witness P, Q, R as follows:

- Set a degree bound d
- If $F_{=}=\left\{f_{1}, \ldots, f_{m}\right\}$, then R is of the form $R=\sum_{i=1}^{m} R_{i} f_{i}$. Let R_{i} be template polynomial with unknown coeffs and $\operatorname{deg}\left(R_{i}\right)=d-\operatorname{deg}\left(f_{i}\right)$.
- Let $\operatorname{Monoid}_{d}\left(F_{>}\right)=\left\{f_{1}, \ldots, f_{m}\right\}$ be the polynomials in $\operatorname{Monoid}\left(F_{>}\right)$ of degree $\leq d$. Then P is of the form $P=\sum_{i=1}^{m} p_{i} f_{i}$, where $p_{i} \geq 0$ are unknown coefficients with the additional constraint $\vee_{i=1}^{m} p_{i}>0$.

Proving Unsatisfiability by Finding Solutions

We can prove a system unsatisfiable by finding a solution to another one!
Find the Positivstellensatz witness P, Q, R as follows:

- Set a degree bound d
- If $F_{=}=\left\{f_{1}, \ldots, f_{m}\right\}$, then R is of the form $R=\sum_{i=1}^{m} R_{i} f_{i}$. Let R_{i} be template polynomial with unknown coeffs and $\operatorname{deg}\left(R_{i}\right)=d-\operatorname{deg}\left(f_{i}\right)$.
- Let $\operatorname{Monoid}_{d}\left(F_{>}\right)=\left\{f_{1}, \ldots, f_{m}\right\}$ be the polynomials in $\operatorname{Monoid}\left(F_{>}\right)$ of degree $\leq d$. Then P is of the form $P=\sum_{i=1}^{m} p_{i} f_{i}$, where $p_{i} \geq 0$ are unknown coefficients with the additional constraint $\vee_{i=1}^{m} p_{i}>0$.
- Let $\operatorname{Monoid}_{d}\left(F_{>} \cup F_{\geq}\right)=\left\{f_{1}, \ldots, f_{m}\right\}$. Then Q is of the form $Q=\sum_{i=1}^{m} Q_{i} f_{i}$, where Q_{i} is a template polynomial with unknown coeffs which is a sum of squares and has $\operatorname{deg}\left(Q_{i}\right)=d-\operatorname{deg}\left(f_{i}\right)$.

Proving Unsatisfiability by Finding Solutions

We can prove a system unsatisfiable by finding a solution to another one!
Find the Positivstellensatz witness P, Q, R as follows:

- Set a degree bound d
- If $F_{=}=\left\{f_{1}, \ldots, f_{m}\right\}$, then R is of the form $R=\sum_{i=1}^{m} R_{i} f_{i}$. Let R_{i} be template polynomial with unknown coeffs and $\operatorname{deg}\left(R_{i}\right)=d-\operatorname{deg}\left(f_{i}\right)$.
- Let $\operatorname{Monoid}_{d}\left(F_{>}\right)=\left\{f_{1}, \ldots, f_{m}\right\}$ be the polynomials in $\operatorname{Monoid}\left(F_{>}\right)$ of degree $\leq d$. Then P is of the form $P=\sum_{i=1}^{m} p_{i} f_{i}$, where $p_{i} \geq 0$ are unknown coefficients with the additional constraint $\vee_{i=1}^{m} p_{i}>0$.
- Let $\operatorname{Monoid}_{d}\left(F_{>} \cup F_{\geq}\right)=\left\{f_{1}, \ldots, f_{m}\right\}$. Then Q is of the form $Q=\sum_{i=1}^{m} Q_{i} f_{i}$, where Q_{i} is a template polynomial with unknown coeffs which is a sum of squares and has $\operatorname{deg}\left(Q_{i}\right)=d-\operatorname{deg}\left(f_{i}\right)$.
- In $P+Q+R$, make coeffs of every monomial in the x vars equal to 0

Proving Unsatisfiability by Finding Solutions

We can prove a system unsatisfiable by finding a solution to another one!
Find the Positivstellensatz witness P, Q, R as follows:

- Set a degree bound d
- If $F_{=}=\left\{f_{1}, \ldots, f_{m}\right\}$, then R is of the form $R=\sum_{i=1}^{m} R_{i} f_{i}$. Let R_{i} be template polynomial with unknown coeffs and $\operatorname{deg}\left(R_{i}\right)=d-\operatorname{deg}\left(f_{i}\right)$.
- Let $\operatorname{Monoid}_{d}\left(F_{>}\right)=\left\{f_{1}, \ldots, f_{m}\right\}$ be the polynomials in $\operatorname{Monoid}\left(F_{>}\right)$ of degree $\leq d$. Then P is of the form $P=\sum_{i=1}^{m} p_{i} f_{i}$, where $p_{i} \geq 0$ are unknown coefficients with the additional constraint $\vee_{i=1}^{m} p_{i}>0$.
- Let $\operatorname{Monoid}_{d}\left(F_{>} \cup F_{\geq}\right)=\left\{f_{1}, \ldots, f_{m}\right\}$. Then Q is of the form $Q=\sum_{i=1}^{m} Q_{i} f_{i}$, where Q_{i} is a template polynomial with unknown coeffs which is a sum of squares and has $\operatorname{deg}\left(Q_{i}\right)=d-\operatorname{deg}\left(f_{i}\right)$.
- In $P+Q+R$, make coeffs of every monomial in the x vars equal to 0 Solutions to these constraints yield unsatisfiability witnesses!

Example

- Let us consider the system $-x^{2}-x y-x-1 \geq 0 \wedge y=0$.
- Then $F_{>}=\{ \}, F_{\geq}=\left\{-x^{2}-x y-x-1\right\}, F_{=}=\{y\}$.
- Set degree bound $d=2$.

Example

- Let us consider the system $-x^{2}-x y-x-1 \geq 0 \wedge y=0$.
- Then $F_{>}=\{ \}, F_{\geq}=\left\{-x^{2}-x y-x-1\right\}, F_{=}=\{y\}$.
- Set degree bound $d=2$.
- $R \equiv\left(\alpha_{x} x+\alpha_{y} y+\alpha_{0}\right) y$, where $\alpha_{x}, \alpha_{y}, \alpha_{0}$ are unknowns

Example

- Let us consider the system $-x^{2}-x y-x-1 \geq 0 \wedge y=0$.
- Then $F_{>}=\{ \}, F_{\geq}=\left\{-x^{2}-x y-x-1\right\}, F_{=}=\{y\}$.
- Set degree bound $d=2$.
- $R \equiv\left(\alpha_{x} x+\alpha_{y} y+\alpha_{0}\right) y$, where $\alpha_{x}, \alpha_{y}, \alpha_{0}$ are unknowns
- As $F_{>}=\{ \}$, we have $\operatorname{Monoid}_{d}\left(F_{>}\right)=\operatorname{Monoid}\left(F_{>}\right)=\{1\}$ $P \equiv \beta$, where β is an unknown constrained to $\beta>0$

Example

- Let us consider the system $-x^{2}-x y-x-1 \geq 0 \wedge y=0$.
- Then $F_{>}=\{ \}, F_{\geq}=\left\{-x^{2}-x y-x-1\right\}, F_{=}=\{y\}$.
- Set degree bound $d=2$.
- $R \equiv\left(\alpha_{x} x+\alpha_{y} y+\alpha_{0}\right) y$, where $\alpha_{x}, \alpha_{y}, \alpha_{0}$ are unknowns
- As $F_{>}=\{ \}$, we have $\operatorname{Monoid}_{d}\left(F_{>}\right)=\operatorname{Monoid}\left(F_{>}\right)=\{1\}$ $P \equiv \beta$, where β is an unknown constrained to $\beta>0$
- $\operatorname{Monoid}_{d}\left(F_{>} \cup F_{\geq}\right)=\left\{1,-x^{2}-x y-x-1\right\}$.

$$
Q \equiv(\underbrace{\gamma_{x^{2}} x^{2}+\gamma_{x y} x y+\gamma_{y^{2}} y^{2}+\gamma_{x} x+\gamma_{y} y+\gamma_{0}}_{\Gamma(x, y)})+\gamma_{0}^{\prime}\left(-x^{2}-x y-x-1\right)
$$

where γ_{*} are unknowns s.t. $\Gamma(x, y)$ is a sum of squares, and $\gamma_{0}^{\prime} \geq 0$

Example

- Let us consider the system $-x^{2}-x y-x-1 \geq 0 \wedge y=0$.
- Then $F_{>}=\{ \}, F_{\geq}=\left\{-x^{2}-x y-x-1\right\}, F_{=}=\{y\}$.
- Set degree bound $d=2$.
- $R \equiv\left(\alpha_{x} x+\alpha_{y} y+\alpha_{0}\right) y$, where $\alpha_{x}, \alpha_{y}, \alpha_{0}$ are unknowns
- As $F_{>}=\{ \}$, we have $\operatorname{Monoid}_{d}\left(F_{>}\right)=\operatorname{Monoid}\left(F_{>}\right)=\{1\}$ $P \equiv \beta$, where β is an unknown constrained to $\beta>0$
- $\operatorname{Monoid}_{d}\left(F_{>} \cup F_{\geq}\right)=\left\{1,-x^{2}-x y-x-1\right\}$.
$Q \equiv(\underbrace{\gamma_{x^{2}} x^{2}+\gamma_{x y} x y+\gamma_{y^{2}} y^{2}+\gamma_{x} x+\gamma_{y} y+\gamma_{0}}_{\Gamma(x, y)})+\gamma_{0}^{\prime}\left(-x^{2}-x y-x-1\right)$
where γ_{*} are unknowns s.t. $\Gamma(x, y)$ is a sum of squares, and $\gamma_{0}^{\prime} \geq 0$
- Hence $P+\boldsymbol{Q}+\boldsymbol{R}$ is: $\left(\gamma_{x^{2}}-\gamma_{0}^{\prime}\right) x^{2}+\left(\gamma_{x y}-\gamma_{0}^{\prime}\right) x y+\cdots$
yielding equations $\gamma_{x^{2}}-\gamma_{0}^{\prime}=\gamma_{x y}-\gamma_{0}^{\prime}=\cdots=0$

Example

- Let us consider the system $-x^{2}-x y-x-1 \geq 0 \wedge y=0$.
- Then $F_{>}=\{ \}, F_{\geq}=\left\{-x^{2}-x y-x-1\right\}, F_{=}=\{y\}$.
- Set degree bound $d=2$.
- $R \equiv\left(\alpha_{x} x+\alpha_{y} y+\alpha_{0}\right) y$, where $\alpha_{x}, \alpha_{y}, \alpha_{0}$ are unknowns
- As $F_{>}=\{ \}$, we have $\operatorname{Monoid}_{d}\left(F_{>}\right)=\operatorname{Monoid}\left(F_{>}\right)=\{1\}$ $P \equiv \beta$, where β is an unknown constrained to $\beta>0$
- $\operatorname{Monoid}_{d}\left(F_{>} \cup F_{\geq}\right)=\left\{1,-x^{2}-x y-x-1\right\}$.

$$
Q \equiv(\underbrace{\gamma_{x^{2}} x^{2}+\gamma_{x y} x y+\gamma_{y^{2}} y^{2}+\gamma_{x} x+\gamma_{y} y+\gamma_{0}}_{\Gamma(x, y)})+\gamma_{0}^{\prime}\left(-x^{2}-x y-x-1\right)
$$

where γ_{*} are unknowns s.t. $\Gamma(x, y)$ is a sum of squares, and $\gamma_{0}^{\prime} \geq 0$

- Hence $P+\boldsymbol{Q}+\boldsymbol{R}$ is: $\left(\gamma_{x^{2}}-\gamma_{0}^{\prime}\right) x^{2}+\left(\gamma_{x y}-\gamma_{0}^{\prime}\right) x y+\cdots$
yielding equations $\gamma_{x^{2}}-\gamma_{0}^{\prime}=\gamma_{x y}-\gamma_{0}^{\prime}=\cdots=0$
- A solution is $\Gamma(x, y)=\left(x+\frac{1}{2}\right)^{2}, \gamma_{0}^{\prime}=1, \alpha_{x}=1, \beta=\frac{3}{4}$, rest $=0$

Sums of Squares

- How can we solve the constraint: "polynomial P is a sum of squares"?
- In [Parrilo, MP'03]: semidefinite programming. Some disadvantages:
- Some SDP algorithms can fail to converge if the problem is not strictly feasible (= solution set is not full-dimensional).
Some works [Monniaux, Corbineau, ITP'11] try to alleviate this problem
- SDP algorithms use floating-point: postprocessing is needed!

Sums of Squares

- How can we solve the constraint: "polynomial P is a sum of squares"?
- In [Parrilo, MP'03]: semidefinite programming. Some disadvantages:
- Some SDP algorithms can fail to converge if the problem is not strictly feasible (= solution set is not full-dimensional).
Some works [Monniaux, Corbineau, ITP'11] try to alleviate this problem
- SDP algorithms use floating-point: postprocessing is needed!
- Let's use an SMT(NA) solver instead of an SDP solver!
- The basic idea in SDP techniques can be reused: polynomial $P \in \mathbb{Q}[x]$ is a sum of squares iff there exist a vector of monomials $\mu^{T}=\left(m_{1}, \ldots, m_{k}\right)$ over variables x, and a positive semidefinite matrix M with coefficients in \mathbb{Q} such that $P=\mu^{T} M \mu$.
- Recall: a symmetric matrix $M \in \mathbb{R}^{N \times N}$ is positive semidefinite if for all $x \in \mathbb{R}^{N}$, we have $x^{T} M x \geq 0$.

Sums of Squares

- There exist several equivalent conditions that ensure that a symmetric matrix $M \in \mathbb{R}^{N \times N}$ is positive semidefinite:
- Sylvester criterion: all principal minors are non-negative
- Cholesky decomposition: there exists a lower triangular matrix L with non-negative diagonal coefficients such that $M=L L^{T}$
- Gram matrix: there exists a matrix $R \in \mathbb{R}^{N \times N}$ such that $M=R^{T} R$

Sums of Squares

- There exist several equivalent conditions that ensure that a symmetric matrix $M \in \mathbb{R}^{N \times N}$ is positive semidefinite:
- Sylvester criterion: all principal minors are non-negative
- Cholesky decomposition: there exists a lower triangular matrix L with non-negative diagonal coefficients such that $M=L L^{T}$
- Gram matrix: there exists a matrix $R \in \mathbb{R}^{N \times N}$ such that $M=R^{T} R$
- However, for efficiency reasons we opt for a light-weight approach: Instead of general sums of squares, we consider products of polys of the form $\sum_{i=1}^{n} q_{i}\left(x_{i}\right)$, where each $q_{i}\left(x_{i}\right)$ is a univariate non-negative polynomial of degree 2 .
- A univariate polynomial $a x^{2}+b x+c$ is non-negative if and only if $(a=0 \wedge b=0 \wedge c \geq 0) \vee\left(a>0 \wedge b^{2}-4 a c \leq 0\right)$
- In our experiments so far, we have been able to prove unsatisfiability for all problems (from our program analysis application) we tried

Filtering with Unsat Cores

- If the conjuntion of polynomial inequalities to be proved unsat is long, the resulting SMT problem can be huge, even with low degree bound

Filtering with Unsat Cores

- If the conjuntion of polynomial inequalities to be proved unsat is long, the resulting SMT problem can be huge, even with low degree bound
- Idea: to exploit failed attempts with the SAT-aimed approach
- Use unsat cores to heuristically select candidate relevant constraints
- Let P be an (unsat) conjunction of polynomial inequalities
- Let C be core obtained after ? iterations of [Borralleras et al., JAR'12]
- Let $P^{\prime}=P \cap C$ be the original inequalities that appear in the core
- P^{\prime} is a good candidate to be unsat

Filtering with Unsat Cores

- If the conjuntion of polynomial inequalities to be proved unsat is long, the resulting SMT problem can be huge, even with low degree bound
- Idea: to exploit failed attempts with the SAT-aimed approach
- Use unsat cores to heuristically select candidate relevant constraints
- Let P be an (unsat) conjunction of polynomial inequalities
- Let C be core obtained after ? iterations of [Borralleras et al., JAR'12]
- Let $P^{\prime}=P \cap C$ be the original inequalities that appear in the core
- P^{\prime} is a good candidate to be unsat
- In most cases, as far as we have experimented, this procedure:
- does reduce significantly the size of the conjunction, and
- does preserve unsatisfiability
- If unsatisfiability of P^{\prime} fails, we can always try with original P

Open Questions and Future Work

- Any completeness result for the kind of problems under consideration?

Open Questions and Future Work

- Any completeness result for the kind of problems under consideration?
- Is there any way of simplifying even further the refutation template?

Open Questions and Future Work

- Any completeness result for the kind of problems under consideration?
- Is there any way of simplifying even further the refutation template?
- We sketched a theory solver for NA in a $\operatorname{DPLL}(T)$ framework. But:
- Cheap way of making it incremental?
- Explanations may not be minimal. Worth looking for minimal explanations (e.g., with Max-SMT)?

Open Questions and Future Work

- Any completeness result for the kind of problems under consideration?
- Is there any way of simplifying even further the refutation template?
- We sketched a theory solver for NA in a $\operatorname{DPLL}(T)$ framework. But:
- Cheap way of making it incremental?
- Explanations may not be minimal. Worth looking for minimal explanations (e.g., with Max-SMT)?
- We implemented a prototype in Prolog that, given a conjunction of polynomial inequalities, produces the SMT problem of finding a Positivstellensatz refutation.
This is what we have used in the experiments referred here.
Future work: full integration into an SMT(NA) system

Thank you!

