
Introduction to SMT
Solving CSP’s with SMT

Robert Nieuwenhuis, Albert Oliveras, Enric Rodrı́guez-Carbonell, ...

SAT and SMT for Solving CSP’s - Session 2

Seminar on Constraint Programming

31 March 2011

University of Bergen

Introduction to SMT Solving CSP’s with SMT – p.1/35

Overview of the Session

Pros/cons of SAT &
Constraint Programming

Satisfiability Modulo Theories

Theories for Global Constraints

Introduction to SMT Solving CSP’s with SMT – p.2/35

Good vs. Bad in SAT Solvers

What’s GOOD?

SAT solvers outperform other tools on real-world problems

with a single, fully automatic variable selection strategy!

Hence problem solving is essentially declarative

What’s BAD?

very low-level language: needs modeling and encoding tools

no good encodings for many aspects: arithmetic, ...

Optimization not as well studied as satisfiability

Introduction to SMT Solving CSP’s with SMT – p.3/35

Good vs. Bad in CP Solvers

What’s GOOD?

Expressive modeling constructs and languages

Specialized algorithms for many (global) constraints

Optimization aspects better studied

What’s BAD, or, well, not so good?

Biased by random or artificial problems (not realistic)

Performance(?)
(no learning, backtracking instead of backjumping, ...)

Not quite automatic or push-button
Heuristics tuning per problem (or even per instance)

Introduction to SMT Solving CSP’s with SMT – p.4/35

Why Are SAT Solvers Really Good?

Three key ingredients that only work if used TOGETHER:

Learn at each conflict the backjump clause as a lemma:

makes UnitPropagate more powerful

prevents future similar conflicts

Decide on variable with most occurrences in recent conflicts:

so-called activity-based heuristics

idea: work off clusters of tightly related variables

Forget from time to time low-activity lemmas:

crucial to keep UnitPropagate fast and afford memory usage

idea: lemmas from worked off clusters no longer needed!

Introduction to SMT Solving CSP’s with SMT – p.5/35

Not the Same Success in CP...

Not easy to get everything together right

Heuristics make solver work simultaneously on too unrelated
vars

would require storing too many lemmas at the same time

No simple uniform underlying language (as SAT’s clauses):

hard to express lemmas (in SAT, 1st-class citizens: clauses)

hard to understand conflict analysis

hard to implement things really efficiently

Learning lemmas not found very useful...

misled by random/academic pbs

Indeed, it is useless isolatedly, and also on random pbs!

Can we get the best of the two worlds?
See next slides for a solution

Introduction to SMT Solving CSP’s with SMT – p.6/35

Overview of the Session

Pros/cons of SAT & Constraint Programming

Satisfiability Modulo Theories

Theories for Global Constraints

Introduction to SMT Solving CSP’s with SMT – p.7/35

What is Satisfiability Modulo Theories (SMT)?

Some problems are more naturally expressed in other logics
than propositional logic, e.g:

Software verification needs reasoning about equality,
arithmetic, data structures, ...

SMT consists in deciding the satisfiability of a (ground)
first-order formula with respect to a background theory

Example (Equality with Uninterpreted Functions – EUF):

g(a)=c ∧ (f (g(a)) 6= f (c) ∨ g(a)=d) ∧ c 6=d

SMT is widely applied in hardware/software verification

Theories of interest here:
EUF, arithmetic, arrays, bit vectors, combinations of these

With other theories SMT can also be used
to solve Constraint Satisfaction Problems

Introduction to SMT Solving CSP’s with SMT – p.8/35

Lazy Approach to SMT

Methodology:

Example: consider EUF and

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1,2∨3, 4} to SAT solver

SAT solver returns model [1, 2, 4]
Theory solver says T-inconsistent

Introduction to SMT Solving CSP’s with SMT – p.9/35

Lazy Approach to SMT

Methodology:

Example: consider EUF and

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1,2∨3, 4} to SAT solver

SAT solver returns model [1, 2, 4]
Theory solver says T-inconsistent

Send {1,2∨3, 4,1∨2∨4} to SAT solver

SAT solver returns model [1, 2, 3,4]
Theory solver says T-inconsistent

Introduction to SMT Solving CSP’s with SMT – p.9/35

Lazy Approach to SMT

Methodology:

Example: consider EUF and

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1,2∨3, 4} to SAT solver

SAT solver returns model [1, 2, 4]
Theory solver says T-inconsistent

Send {1,2∨3, 4,1∨2∨4} to SAT solver

SAT solver returns model [1, 2, 3,4]
Theory solver says T-inconsistent

Send {1,2∨3, 4,1∨2∨4,1∨2∨3∨4} to SAT solver

SAT solver says UNSATISFIABLE
Introduction to SMT Solving CSP’s with SMT – p.9/35

Lazy Approach to SMT (2)

Why “lazy”?
Theory information used lazily when checking T-consistency
of propositional models

Characteristics:

+ Modular and flexible

- Theory information does not guide the search

Tools:

Barcelogic (UPC)

CVC3 (Univ. New York +
Iowa)

DPT (Intel)

MathSAT (Univ. Trento)

Yices (SRI)

Z3 (Microsoft)

...

Introduction to SMT Solving CSP’s with SMT – p.10/35

Lazy Approach to SMT - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Introduction to SMT Solving CSP’s with SMT – p.11/35

Lazy Approach to SMT - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Introduction to SMT Solving CSP’s with SMT – p.11/35

Lazy Approach to SMT - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Introduction to SMT Solving CSP’s with SMT – p.11/35

Lazy Approach to SMT - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, identify a T-inconsistent
subset M0 ⊆ M and add ¬M0 as a clause

Introduction to SMT Solving CSP’s with SMT – p.11/35

Lazy Approach to SMT - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, identify a T-inconsistent
subset M0 ⊆ M and add ¬M0 as a clause

Upon a T-inconsistency, add clause and restart

Introduction to SMT Solving CSP’s with SMT – p.11/35

Lazy Approach to SMT - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, identify a T-inconsistent
subset M0 ⊆ M and add ¬M0 as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, do conflict analysis and backjump

Introduction to SMT Solving CSP’s with SMT – p.11/35

Lazy Approach to SMT - Important Points

Advantages of the lazy approach:

Everyone does what it is good at:

SAT solver takes care of Boolean information

Theory solver takes care of theory information

Theory solver only receives conjunctions of literals

Modular approach:

SAT solver and T-solver communicate via a simple API

SMT for a new theory only requires new T-solver

SAT solver can be extended to a lazy SMT system
with very few new lines of code (40?)

Introduction to SMT Solving CSP’s with SMT – p.12/35

Lazy Approach to SMT - Theory propagation

As pointed out the lazy approach has one drawback:

Theory information does not guide the search

How can we improve that? Theory propagation

T-Propagate

M || F ⇒ M l || F if

{

M |=T l
l or ¬l occurs in F and not in M

Search guided by T-Solver by finding T-consequences,
instead of only validating it as in basic lazy approach.

Naive implementation: Add ¬l . If T-inconsistent then infer l .

But for efficient T-Propagate we need specialized T-Solvers

This approach has been namedDPLL(T)
Introduction to SMT Solving CSP’s with SMT – p.13/35

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

Introduction to SMT Solving CSP’s with SMT – p.14/35

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

Introduction to SMT Solving CSP’s with SMT – p.14/35

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 || 1, 2∨3, 4 ⇒ (UnitPropagate)

Introduction to SMT Solving CSP’s with SMT – p.14/35

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 2 3 || 1, 2∨3, 4 ⇒ (T-Propagate)

Introduction to SMT Solving CSP’s with SMT – p.14/35

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 2 3 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 3 4 || 1, 2∨3, 4 ⇒ (Fail)

Introduction to SMT Solving CSP’s with SMT – p.14/35

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 2 3 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 3 4 || 1, 2∨3, 4 ⇒ (Fail)

fail

Introduction to SMT Solving CSP’s with SMT – p.14/35

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 2 3 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 3 4 || 1, 2∨3, 4 ⇒ (Fail)

fail

No search!

Introduction to SMT Solving CSP’s with SMT – p.14/35

DPLL(T) - Overall algorithm

High-level view gives the same algorithm as a CDCL SAT solver:

while(true){

while (propagate_gives_conflict()){
if (decision_level==0) return UNSAT;
else analyze_conflict();

}

restart_if_applicable();
remove_lemmas_if_applicable();

if (!decide()) returns SAT; // All vars assigned
}

Differences are in:

propagate_gives_conflict

analyze_conflict

Introduction to SMT Solving CSP’s with SMT – p.15/35

DPLL(T) - Propagation

propagate_gives_conflict() returns Bool

// unit propagate
if (unit_prop_gives_conflict()) then return true

return false

Introduction to SMT Solving CSP’s with SMT – p.16/35

DPLL(T) - Propagation

propagate_gives_conflict() returns Bool

do {

// unit propagate
if (unit_prop_gives_conflict()) then return true

// check T-consistency of the model
if (solver.is_model_inconsistent()) then return true

// theory propagate
solver.theory_propagate()

} while (doneSomeTheoryPropagation)

return false

Introduction to SMT Solving CSP’s with SMT – p.16/35

DPLL(T) - Propagation (2)

Three operations:

Unit propagation (SAT solver)

Consistency checks (T-solver)

Theory propagation (T-solver)

Cheap operations are computed first

If theory is expensive, calls to T-solver are sometimes skipped

Only strictly necessary to call T-consistency at the leaves
(i.e. when we have a full propositional model)

T-propagation is not necessary for correctness

Introduction to SMT Solving CSP’s with SMT – p.17/35

DPLL(T) - Conflict Analysis

Remember conflict analysis in SAT solvers:

C:= conflicting clause

while C contains more than one lit of last DL

l:=last literal assigned in C
C:=Resolution(C,reason(l))

end while

// let C=C ′∨ l where l is the only lit of last DL
backjump(maxDL(C ′))
add l to the model with reason C
learn(C)

Introduction to SMT Solving CSP’s with SMT – p.18/35

DPLL(T) - Conflict Analysis

Conflict analysis in DPLL(T):

if boolean conflict then C:= conflicting clause
else C:=¬(solver.explain_inconsistency())

while C contains more than one lit of last DL

l:=last literal assigned in C
C:=Resolution(C,reason(l))

end while

// let C=C ′∨ l where l is the only lit of last DL
backjump(maxDL(C ′))
add l to the model with reason C
learn(C)

Introduction to SMT Solving CSP’s with SMT – p.18/35

DPLL(T) - Conflict Analysis (2)

What does explain_inconsistency return?

An explanation of the inconsistency:
A (small) conjuntion of literals l1∧ . . .∧ ln such that:

It is T-inconsistent
Lits were in the model when T-inconsistency was detected

What is now reason(l)?

If l was unit propagated: clause that propagated it

If l was T-propagated:

An explanation of the propagation:
A (small) clause ¬l1∨ . . .∨¬ln∨ l such that:

l1∧ . . .∧ ln |=T l
l1, . . . , ln were in the model when l was T-propagated

Pre-compute explanations at each T-Propagate?
Better only on demand, during conflict analysis

Introduction to SMT Solving CSP’s with SMT – p.19/35

DPLL(T) - Conflict Analysis (3)

Let M be c=b and let F contain

a=b ∨ g(a) 6=g(b), h(a)=h(c) ∨ p, g(a)=g(b) ∨ ¬p

Take the following sequence:

1. Decide h(a) 6=h(c)

2. T-Propagate a 6=b (due to h(a) 6=h(c) and c=b)

3. UnitPropagate g(a) 6=g(b)

4. UnitPropagate p

5. Conflicting clause g(a)=g(b) ∨ ¬p

Explain(a 6=b) is {h(a) 6=h(c),c=b}

?

h(a)=h(c)∨c 6=b∨a 6=b

a=b∨g(a) 6=g(b)

h(a)=h(c)∨ p g(a)=g(b)∨¬p

h(a)=h(c)∨g(a)=g(b)

h(a)=h(c)∨a=b

h(a)=h(c) ∨ c 6=b

Introduction to SMT Solving CSP’s with SMT – p.20/35

DPLL(T) – T-Solver API in a Nutshell

What does DPLL(T) need from T-Solver?

T-consistency check of a set of literals M, with:

Explain of T-inconsistency:
find small T-inconsistent subset of M

Incrementality: if l is added to M,
check for M l faster than reprocessing M l from scratch.

Theory propagation: find input T-consequences of M, with:

Explain T-Propagate of l :
find (small) subset of M that T-entails l .

Backtrack n: undo last n literals added

Introduction to SMT Solving CSP’s with SMT – p.21/35

Overview of the Session

Pros/cons of SAT & Constraint Programming

Satisfiability Modulo Theories

Theories for Global Constraints

Introduction to SMT Solving CSP’s with SMT – p.22/35

SMT(all_different)

all_different(x1, . . . ,xn) if x1, . . . ,xn take different values

Global constraint appearing in many CSP’s

Example 1: Round-Robin Sports Scheduling

Example 2: Quasi-Group Completion (QGC)
Each row, column in a part. filled grid n×nmust contain 1,. . .n

Vars xi j standing for value at row i, column j

no repetitions in rows

all_different(x11,x12, . . . ,x1n−1,x1n)

. . .

all_different(xn1,xn2, . . . ,xnn−1,xnn)

no repetitions in cols

all_different(x11,x21, . . . ,xn−11,xn1)

. . .

all_different(x1n,x2n, . . . ,xn−1n,xnn)

Specialized filtering algorithms exist in CP
Introduction to SMT Solving CSP’s with SMT – p.23/35

SMT(all_different) (2)

3-D SAT encoding infers no value here by
unit propagation

all_different filtering infers z= 3
Why?

x y z

3 4

3 4 5

4 5

5

Introduction to SMT Solving CSP’s with SMT – p.24/35

SMT(all_different) (2)

3-D SAT encoding infers no value here by
unit propagation

all_different filtering infers z= 3
Why? Because {x,y}= {1,2}

x y z

3 4

3 4 5

4 5

5

Introduction to SMT Solving CSP’s with SMT – p.24/35

SMT(all_different) (2)

3-D SAT encoding infers no value here by
unit propagation

all_different filtering infers z= 3
Why? Because {x,y}= {1,2}

x y z

3 4

3 4 5

4 5

5
Idea:

Use 3-D encoding + SMT where T is all_different

T-solver is incremental CP filtering but with explain:
in our example, the literal p133 (meaning z= 3) is entailed by
{p113, p114, . . . , p135} (meaning x 6= 3, x 6= 4, . . . , z 6= 5)

From time to time invoke T-solver before Decide, but do
always cheap SAT stuff first: Backjump, UnitPropagate, etc.

Introduction to SMT Solving CSP’s with SMT – p.24/35

Value Graph of all_different

A graph G= (V,E) is bipartite
if V can be partitioned into two disjoint sets U and V such that
all edges have one endpoint in U and the other in V

Given variables X = {x1, . . . ,xn}with domains D1, . . . ,Dn,
(x1 = α1, . . . ,xn = αn) is a solution to all_different(x1, . . . ,xn)
iff αi ∈ Di , and i 6= j implies αi 6= α j

The value graph of all_different(x1, . . . ,xn) is the bipartite
graph G= (X∪

⋃n
i=1Di,E) where (xi ,d) ∈ E iff d ∈ Di

For simplicity, we will assume that |X|= |
⋃n

i=1Di |

all_different(x1,x2,x3)

D1 = {1,2}
D2 = {2,3}
D3 = {2,3}

x2

x1

x3

1

2

3

Introduction to SMT Solving CSP’s with SMT – p.25/35

Matching Theory

A matching M in a graph G= (V,E) is
a subset of edges in E without common vertices

A maximummatching is a matching of maximum size

A matching M covers a set X
if every vertex in X is an endpoint of an edge in M

Solutions to all_different(X) = matchings covering X

all_different(x1,x2,x3)

D1 = {1,2}
D2 = {2,3}
D3 = {2,3}

x1 = 1
x2 = 2
x3 = 3

x2

x1

x3

1

2

3

Introduction to SMT Solving CSP’s with SMT – p.26/35

Matching Theory

A matching M in a graph G= (V,E) is
a subset of edges in E without common vertices

A maximummatching is a matching of maximum size

A matching M covers a set X
if every vertex in X is an endpoint of an edge in M

Solutions to all_different(X) = matchings covering X

Algorithm for checking satisfiability of all_different(X):

// Returns true if there is a solution, otherwise false

M = Compute maximum matching(G)

if (|M| < |X|) return false

return true
Introduction to SMT Solving CSP’s with SMT – p.26/35

Matching Theory

A matching M in a graph G= (V,E) is
a subset of edges in E without common vertices

A maximummatching is a matching of maximum size

A matching M covers a set X
if every vertex in X is an endpoint of an edge in M

Solutions to all_different(X) = matchings covering X

Algorithm for checking satisfiability of all_different(X):

Can be extended to filter out arc-inconsistent edges

// Returns true if there is a solution, otherwise false

M = Compute maximum matching(G)

if (|M| < |X|) return false

Remove edges from graph(G, M)

return true
Introduction to SMT Solving CSP’s with SMT – p.26/35

Matching Theory (2)

Theorem. all_different(X) is arc-consistent iff
every edge of the graph belongs to a matching covering X

A matching edge belongs to the matching , else it is free

An alternating cycle is a simple cycle
whose edges are alternately matching and free

A vital edge belongs to any maximum matching

Theorem. A non-vital edge belongs to a maximummatching
iff for an arbitrary maximummatching M
it belongs to an even-length alternating cycle wrt. M

x2

x1

x3

1

2

3

Introduction to SMT Solving CSP’s with SMT – p.27/35

Matching Theory (2)

Theorem. all_different(X) is arc-consistent iff
every edge of the graph belongs to a matching covering X

A matching edge belongs to the matching , else it is free

An alternating cycle is a simple cycle
whose edges are alternately matching and free

A vital edge belongs to any maximum matching

Theorem. A non-vital edge belongs to a maximummatching
iff for an arbitrary maximummatching M
it belongs to an even-length alternating cycle wrt. M

x2

x1

x3

1

2

3

Introduction to SMT Solving CSP’s with SMT – p.27/35

Matching Theory (3)

It simplifies things to orient edges:

Matching edges are oriented from left to right

Free edges are oriented from right to left

x2

x1

x3

1

2

3

Theorem. A non-vital edge belongs to a max matching iff
for any max matching M it belongs to a cycle in oriented graph

x2

x1

x3

1

2

3

Introduction to SMT Solving CSP’s with SMT – p.28/35

Removing Arc-Inconsistent Edges

Remove edges from graph(G)

mark all edges in G as UNUSED

compute SCCs, mark as USED edges with vertexs in same SCC

mark matching UNUSED edges as vital

remove remaining UNUSED edges

Removed edges are free edges whose endpoints belong to
different SCCs

Explanation of removed edge (x,d) requires expressing
x and d do not belong to the same SCC

(x1,2) since {(x2,1),(x3,1)}
since x2, x3 consume 2, 3

x2

x1

x3

1

2

3

Introduction to SMT Solving CSP’s with SMT – p.29/35

SMT(PB Constraints)

A pseudo-boolean (PB) constraint is of the form
a1x1+ . . .+anxn ≤ k where xi ∈ {0,1} , ai ,k∈ Z

PB constraints appear in many contexts
(e.g. weighted Max-SAT, cumulative: see later)

SAT encodings not appropriate if there are many PB cons:
too big formulas!

Idea:

Use T-solver for each PB constraint:
T-solver enforces arc-consistency of its PB constraint

Alternatively, a single T-solver can take care of all PB cons and
share information for better filtering

Introduction to SMT Solving CSP’s with SMT – p.30/35

SMT(PB Constraints) (2)

Example of filtering by arc-consistency:

Assume: a1x1+ . . .+anxn ≤ k with ai ≥ 0

Let I0 = {i | xi = 0}, I1 = {i | xi = 1}, I⊥ = {i | xi = ⊥}

Then a1x1+ . . .+anxn ≤ k becomes

Σi∈I0ai ·0
︸ ︷︷ ︸

0

+ Σi∈I1ai ·1 + Σi∈I⊥aixi ≤ k

Σi∈I1ai + Σi∈I⊥aixi ≤ k
Σi∈I⊥aixi ≤ k−Σi∈I1ai

If j ∈ I⊥ is such that a j > k−Σi∈I1ai , then it must be x j = 0

Explanation?

Introduction to SMT Solving CSP’s with SMT – p.31/35

SMT(PB Constraints) (2)

Example of filtering by arc-consistency:

Assume: a1x1+ . . .+anxn ≤ k with ai ≥ 0

Let I0 = {i | xi = 0}, I1 = {i | xi = 1}, I⊥ = {i | xi = ⊥}

Then a1x1+ . . .+anxn ≤ k becomes

Σi∈I0ai ·0
︸ ︷︷ ︸

0

+ Σi∈I1ai ·1 + Σi∈I⊥aixi ≤ k

Σi∈I1ai + Σi∈I⊥aixi ≤ k
Σi∈I⊥aixi ≤ k−Σi∈I1ai

If j ∈ I⊥ is such that a j > k−Σi∈I1ai , then it must be x j = 0

Explanation?

A set {xi = 1 | i ∈ J} where J ⊆ I1 is such that a j > k−Σi∈J ai

Introduction to SMT Solving CSP’s with SMT – p.31/35

SMT(cumulative)

n tasks share common resource with capacity c. Each task:

has a duration di

consumes r i units of resource per hour

must start not before esti (earliest starting time)

must end not after leti (latest ending time)

once started, cannot be interrupted

horizon hmax= latest time any task can end = maxi∈{1...n}leti

cumulative(s1, . . . ,sn) is satisfied by starting times s1, . . . ,sn if:

at all times used resources do not exceed capacity:

∀h∈ {0,. . . ,hmax−1} : Σ i∈{1...n}:
si≤h≤si+di

r i ≤ c

starting times respect feasible window:

∀i ∈ {1. . .n} : esti ≤ si , si +di ≤ leti
Introduction to SMT Solving CSP’s with SMT – p.32/35

SMT(cumulative) (2)

Pure SMT approach, modeling with variables si,h:

si,h means si ≤ h (so si,h−1∧si,h means si = h)

T-solver propagates using CP filtering algs. with explanations

Better “decomposition” approach, adding variables ai,h :

ai,h means task i is active at hour h

Time-resource decomposition:
quadratic no. of clauses like

si,h−di ∧si,h −→ ai,h

ai,h −→ si,h−di

ai,h −→ si,h

T-solver handles, for each hour h and each resource r ,
PB constraints like 3ai,h+4ai′,h+ . . .≤ capacity(r)

Introduction to SMT Solving CSP’s with SMT – p.33/35

Comparison with Lazy Clause Generation

Lazy Clause Generation (LCG) was the instance of SMT where:

each time the T-solver detects that lit can be propagated,
it generates and adds (forever) the explanation clause
so the SAT-solver can UnitPropagate lit with it.

But as we have seen in this seminar, it is usually better to:

Generate explanations only when needed:
at conflict analysis time

Never add explanations as clauses. Otherwise: die keeping
too many explanations (or the whole SAT encoding).

Remember: Forget of the usual lemmas is already crucial to
keep UnitPropagate fast and memory affordable!

Since recently, with these improvements, LCG = SMT.

Introduction to SMT Solving CSP’s with SMT – p.34/35

Bibliography - Some further reading

A. Aggoun, N. Beldiceanu. Extending CHIP in Order to Solve Complex

Scheduling and Placement Problems. Mathematical and Computer

Modelling 17(7), 57-73 (1993)

A. Schutt, T. Feydy, P. Stuckey, M. Wallace. WhyCumulative

Decomposition Is Not as Bad as It Sounds. CP 2009.

J-C. Régin. A Filtering Algorithm for Constraints of Difference in CSPs.

AAAI (1994).

R. Nieuwenhuis, A. Oliveras, C. Tinelli. Solving SAT and SAT Modulo

Theories: From an abstract Davis–Putnam–Logemann–Loveland

procedure to DPLL(T). J. ACM 53(6): 937-977 (2006)

C. W. Barrett, R. Sebastiani, S. A. Seshia, C. Tinelli. Satisfiability

Modulo Theories. Handbook of Satisfiability 2009: 825-885

O. Ohrimenko, P. Stuckey, M. Codish. Propagation = Lazy Clause

Generation. CP 2007.

R. Sebastiani. Lazy Satisfiability Modulo Theories. JSAT 3(3-4): 141-224

(2007). Introduction to SMT Solving CSP’s with SMT – p.35/35

	Overview of the Session
	verd {Good} vs. vermell {Bad} in SAT Solvers
	verd {Good} vs. vermell {Bad} in CP Solvers
	Why Are SAT Solvers Really Good?
	Not the Same Success in CP...
	Overview of the Session
	What is Satisfiability Modulo Theories (SMT)?
	Lazy Approach to SMT
	Lazy Approach to SMT (2)
	Lazy Approach to SMT - Optimizations
	Lazy Approach to SMT - Important Points
	Lazy Approach to SMT - Theory propagation
	 DPLL(T)
; - ; Example
	DPLL(T)
- Overall algorithm
	DPLL(T)
- Propagation
	DPLL(T)
- Propagation (2)
	DPLL(T)
- Conflict Analysis
	DPLL(T)
- Conflict Analysis (2)
	DPLL(T)
- Conflict Analysis (3)
	DPLL(T)
;--; T-Solver API in a Nutshell
	Overview of the Session
	SMT(aronja {$alldiff $})
	SMT(aronja {$alldiff $})
(2)
	Value Graph of $alldiff $
	Matching Theory
	Matching Theory (2)
	Matching Theory (3)
	Removing Arc-Inconsistent Edges
	SMT(aronja {PB Constraints})
	SMT(aronja {PB Constraints})
(2)
	SMT(aronja {$cum $})
	SMT(aronja {$cum $})
(2)
	Comparison with Lazy Clause Generation
	Bibliography - Some further reading

