WE DUG UP THE FOUNDER Eﬁ
OF OUR COMPANY AND 3

| WITH ANY LUCK, OUR
THEN WE REPLACED HIS BUSINESS PRACTICES

TOMBSTONE WITH A
WRAPPED HIM IN é HUGE MAGNET.

COPPER WIRE

902004 Scatt Adams, Ine./Dist. by UFS, Inc.

www.dilbert.com

@ Washington University in St.Louis

CSE 502N
Fundamentals of Computer Science

Fall 2004
Lecture 11:
Binary Heaps & Heapsort

Priority Queues
(CLRS 6)

Washington University in St.Louis

Binary heaps

Heap properties

m A binary heap is an array-based data structure that may be viewed as a
(nearly) complete binary tree
» Each node corresponds to an array element
» Tree is filled on all levels except possibly the lowest level which is filled from
left to right
m An array 4 that represents a heap has two attributes:
» length[A] = the number of elements in the array
» heap-size[A] = the number of elements in the heap
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m A max-heap is a binary heap that maintains the max-heap
property: A[Parent(i)] = A[i]
» Largest element is stored at the root
m A min-heap is a binary heap that maintains the min-heap
property: A[Parent(i)] < A[i]
» Smallest element is stored at the root
m The height of a node is the number of edges on the longest
simple downward path from the node to a leaf
m The height of the heap is the height of the root node
» Since the heap is a nearly complete binary tree, its height is @(lg n)
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Maintaining the heap property

m Max-Heapify assumes the binary trees rooted at Right(7) and Left(i)
are max-heaps, but A[/] may be smaller than its children

m What is the running time?
m T(n) = (time to adjust i, Left(), Right(7)) + (time to run Max-Heapify
on one of children)
» Maximum size of a child subtree is 2n/3 (occurs when lowest level is half full)

® T(n) <T(2n/3) + O(1) MAX-HEAPIFY (A, i)
m T(n)=0(gn) I [« LEFT(i)

2 r < RIGHT(i)

3 if] < heap-size[A] and A[l] > A[i]

4 then largest < [

5 else largest < i

6 if r < heap-size[A] and A[r] > Allargest]
7 then largest < r

8 if largest # i

9 then exchange A[i] <> A[largest]

0

| MAX-HEAPIFY (A, largest)
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Building a heap

m Use Max-Heapify in a bottom-up BUILD-MAX-HEAP(A)
manner to convert an array into a 1 heap-size[A] <« length[A]
max-heap 2 fori < |length[A]/2] downto 1
» Elements A[(Ln/2]+ 1) ... n] are all 3 do MAX-HEAPIFY (A, i)

leaves of the tree
m Loop invariant: at the start of each iteration of the for loop of lines 2-
3, each node i+1,i+2,...,n is the root of a max-heap
m Initialization: prior to the first iteration of the loop, i =[n/2
» 1]fach node |_n/2J+1, |_n/2J+2,. ..,n 1s a leaf and is thus the root of a trivial max-
eap
m Maintenance: by the loop invariant Left(i) and Right(7) are both roots
of max-heaps
» This is the condition required for Max-Heapify to make node 7 a max-heap root
» Max-Heapify preserves property that nodes i,i+1,...,n are max-heap roots
» Following Max-Heapify, decrementing 7 reestablishes the loop invariant
m Termination: at termination, i=0; by the loop invariant each node
1,2,...,n is a max-heap root
» Thus, node 1 is a max-heap root
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Running time of Build-Max-Heap

Heapsort

m Easy to derive an O(n Ig n) bound
» Upper bound for Max-Heapify is O(Ig n)
» Build-Max-Heap calls Max-Heapify | n/2| times

m Can we derive a tighter bound?
m Time to execute Max-Heapify varies with the height of the node in the

tree
» Execution time for node of height /4 is O(%)

®m An n-element heap has height ng nl
m An n-element heap has at most [ /2" | nodes of any height 4

ng”J n ngnJh s h
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m We can show that Build-Max-Heap is O(n)
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HEAPSORT(A)

I BUILD-MAX-HEAP(A)
2 fori <« length|A] downto 2

3 do exchange A[1] <> A[{]
4 heap-size[ A] < heap-size[ A] — 1
5 MAX-HEAPIFY (A, 1)

m Heapsort sorts array A in place, back to front (max to min)

m At the completion of each iteration of Max-Heapify, A[1] is the
maximum element left in the heap

m Each iteration of the for loop places the maximum element in its
sorted position and reduces the heap-size (removes it from the heap),
then runs Max-Heapify to find the maximum element left in the heap

m T(n) = O(n) + (n-1)O(Ig n) = O(n Ig n)
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Priority queues

m A priority queue is a data structure for maintaining a set of S elements
with associated key values

m Elements may be inserted into a priority queue at any time

m In max-priority queues only the maximum element may be removed

from the queue
» The increase-key operation may be used to increase the value of an element’s
key and possibly change the relative ordering of elements

» Min-priority queues implement symmetric operations
m Priority queues are useful for a multitude of scheduling tasks where
the highest priority element/job/packet should be scheduled first
m Max-priority queues leverage the constant time Heap-Maximum
operation
HEAP-MAXIMUM (A)

1 return A[1]
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Extract-Max

m For priority queues implemented with max-heaps,
Heap-Extract-Max can be used to remove the maximum element

m T(n)=0O(gn)

HEAP-EXTRACT-MAX (A)

1 if heap-size[A] < 1

2 then error “heap underflow”

3 max < A[l] o(1)

4 A[l] < Alheap-size[ A]]

5 heap-size[A] < heap-size[A] — 1

6 MAX-HEAPIFY (A, 1) O(lg n)
7 return max
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Increase-Key

Insert

m Given the index 7 of an element and a new key value (greater than the
current key value), Heap-Increase-Key increases the key value of the
element and ensures max-heap property holds

m After changing key value, Heap-Increase-Key traverses a path from
A[i] toward the root

» Compares keys of an element and its parent and exchanges if the element’s key
is greater than the parent’s key

m T(n)=0(gn)

HEAP-INCREASE-KEY (A, i, key)
if key < A[i]
then error “new key is smaller than current key”
Ali] « key
whilei > 1 and A[PARENT(i)] < A[{]
do exchange A[/] < A[PARENT(i)]
i < PARENT(i)
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m Given a new key value, Max-Heap-Insert creates a new
heap element with the give key value and ensures max-heap
property is maintained

m Increases heap-size by 1

m Assigns new element the minimum key value

m Calls Heap-Increase-Key using new element’s index and
new key value

m T(n) = 0O(g n)

MAX-HEAP-INSERT (A, key)

I heap-size[A] « heap-size| A] + 1

2 Alheap-size[A]] < —o0

3 HEAP-INCREASE-KEY(A, heap-size[ Al, key)
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