CSE 5392 Fall 2005 Week 4

crystal.uta.edu/~gdas/Courses/Courses/Fall2005/advAlgos/student_slides/Week4.ppt -

Devendra Patel
Subhesh Pradhan

crystal.uta.edu/~gdas/Courses/Co
urses/Fall2005/advAlgos/student_
slides/Week4.ppt -

Heaps

O Definition:
A heap is a complete binary tree with the condition that every node
(except the root) must have a value greater than or equal to its parent.
Heap representation:
A heap data structure is represented as an array A object with two
attributes:
length[A] - number of elements in the array,

heap-size[A] - number of elements in the heap.
heap-size[A] < length[A]
In an array A the root of the heap resides in A[1] \
Consider a node with index i, /C3> . @ @
=

Index of parent is Parent(i) = L i2d
Index of left child of i is LEFT_CHILD(i) = 2 x i;
Index of right child of i is RIGHT_CHILD(i) = 2 x i+1;

A=[0 2 J4 [3 |8]9 J6 s [7 [|

Operations on Heap

[0 For a dynamic set S
m Insert (S,X)
B delete_min (S)
B Find_min (S)

Note: Heaps need not be represented as binary tree,
they can be n-ary tree.

Insert (S,X)

O From the point of insertion to the root
compare X with each node in the path

B If X < node
~ ﬁx

O Swap (X,node)
2 9
@ @ Point of

insertion

Insert (S,X)

[0 From the point of insertion to the root
compare X with each node in the path

B If X < node (0
O Swap (X,node) AN

=
p\ﬂ @R@
® @ serton

compare

Insert (S,X)

0 From the point of insertion to the root
compare X with each node in the path

B If X < node ©
O Swap (X,node) =

i
® 0@ nsertion

Insert (S,X)

O From the point of insertion to the root
compare X with each node in the path

m If X < node - ®
SN
v m

O Swap (X,node) compare
g8 iy
@ @ Pointof

insertion

Insert (S,X)

O From the point of insertion to the root
compare X with each node in the path

B If X < node

O Swap (X,node) N

/@
L
Insert (S,X) = O(logn) /@>\ @

® 00— s

insertion

Heapify (S, i)

HEAPIFY
HEAPIFY is an important subroutine for maintaining heap property.
Given a node i in the heap with children / and r. Each sub-tree rooted
at/ and ris assumed to be a heap. The sub-tree rooted at /i may violate the
heap property [key(i) > key(l) OR key(i) > key(r)]
Thus Heapify lets the value of the parent node "“float” down so the
sub-tree at i satisfies the heap property.

ooo

Algorithm:

HEAPIFY(A, i)

1./ — LEFT_CHILD (i);

2. r < RIGHT_CHILD (i);

3. if | < heap_size[A] and A[/] < A[/]

4. then smallest < /;

5. else smallest < /;

6. if r < heap_size[A] and A[r] < A[smallest]
Z then smallest < r;

8. if smallest # i

9. then exchange A[/] & A[smallest]
10. HEAPIFY (A,smallest)

1 o o B o o o o o

Heapify (S, i)

Heapify (S, i)

/ i
smallest =I ! \ /\ r

=
@@ @
/®\@

Heapify (S, i)

NN
B

g @ ©

@ o

r

smallest =r

Heapify (S, i)

@
P
/@\ @ﬂ@

@\@ =

i Heapify = O(logn)

Running Time of Heapify

O Fixing relation between i(a node), / (left child of /), r (right
child of i) takes ©(1) time. Let the heap at node i have n
elements. The number of elements at subtree / or r, in worst
case scenario is 2n/3 i.e. when the last level is half full.

Or Mathematically

T(n) < T(2n/3)+ ©(1)
é’-\pplying Master Theorem (Case 2) , we can solve the above
(o)

T(n)=0 (log n)
Alternatively ,
In the worst case the algorithm needs walking down the heap

of height h= log n. Thus the running time of the algorithm is
O(log n)

Build Heap

This procedure builds a heap of the array using the Heapify
algorithm

Initially the array representing heap will have random elements

O BUILD_HEAP(A) =
.~ heap_size [a en
2. fori o [A]/Zgﬂ downto 1 do
3. HEAPIFY (A, i)

Alternative Approach

Build heap might be repeatedly calling Insert (S,X) into an
initially empty heap

Running time for this approach is O(nlogn)

Running Time of Build_Heap

O We represent heap in the following manner

For nodes at level i , there are 21 nodes . And the work is done for h-i levels.

h=logn
Total work done =3 2 * (h-i)
i=1

h=log n
=) 2i*(logn-i) (taking h=logn)
i=1

Running Time of Build_Heap

Substituting j = log n-i we get ,

1
Total work done =3 2logn-i xj
j=log n
log n
=3 (20977 20) %]
=1 jogn
=n Y j/2]
j=1
= 0(n)

Thus running time of Build_Heap = O(n)

HeapSort

HEAPSORT(A)

1) BUILD_HEAP(A)
2) for i <--- length [A] downto 2

3) do exchange A[1] <------ > Ali]
4) heap-size[A] € heap-size[A]-1
5) HEAPIFY(A,1)

Running time of HEAPSORT

The call to BUILD_HEAP takes O(n) time and each of the n-1 calls to MAX-HEAPIFY
takes O (log n) time. Thus HEAPSORT procedure takes O(n log n) time.

Why doesn’t Hea_Psort take O(log n) time as in the case of other Heap
algorithms?

Consider the Build_Heap algorithm, a node is pushed down and since the lower part of
the heap is decreasing at each step the number of leaf node operations performed
decreases logarithmically. While in HeapSort the node moves upwards. Thus the
decreasing lower part does not reduce the number of operations.

Performance of different Data
Structures

Unsorted
Unsorted | Array with | Sorted | Binary Search H
- eap
Array min Array | Tree
variable
Insert (S, X) [O(1) 0(1) O(n) O(path_length) | O(logn)
Delete (S,X) | O(n) o(n) Oo(n) O(path_length) | O(logn)
Find_min (S) | O(n) 0(1) 0(1) O(path_length) | O(1)

Red Black Tree

0 Property

B Smallest path is no less than half of the
largest path

Reference

[0 Some of the material is taken from
Fall 2004 Presentation for Week 4
prepared by Jatinder Paul, Shraddha
Rumade

