Proeragilistic analysis of algorithms:
What'’s it good for?

Conrado Martinez

Univ. Palitécnica de Catalunya, Spain

University of Cape Town
Ferruary 2008

0 Introduction

Introduction

Progagilistic analysis of alaorithms is the right tool
when
o We want to analyze "typical" Behavior of
algorithms

Introduction

Proeragilistic analysis of algorithms is the riaht tool
when
o We want to analyze "typical" Behavior of
algorithms
o We want to compare alaorithms with
asymptotically equivalent performances

Introduction

Progagilistic analysis of alaorithms is the right tool
when
o We want to analyze "typical" Behavior of
algorithms
o We want to compare alaorithms with
asymptotically equivalent performances
o We want to analyze randomized algorithms
(essentiald

Introduction

Progagilistic analysis of alaorithms is the right tool
when

o We want to analyze "typical" Behavior of
algorithms

o We want to compare alaorithms with
asymptotically equivalent performances

o We want to analyze randomized algorithms
(essentiald

o We want to have some mathematical fun)

Introduction

A few well known examples:
o QQuUicksort

Introduction

A few well known examples:
o QQuUicksort
o Find, aka. Quickselect

Introduction

A few well known examples:
@ Quuicksort
o Find, aka. Quickselect
o Hashing

Introduction

A few well known examples:
@ Quuicksort
o Find, aka. Quickselect
o Hashing
o Simplex

Introduction

A few well known examples:
@ Quuicksort
o Find, aka. Quickselect
o Hashing
o Simplex
@ Randomized data structures

Introduction

A few well known examples:
@ Quuicksort
o Find, aka. Quickselect
o Hashing
o Simplex
@ Randomized data structures
@ and many more ...

Introduction

H was indeed very difficuit £or me to make a choice of
examples ...

Introduction

...even it | restricted myself to those few that 've
worked out myself!

@ Randomized Binary search trees

o Optimal samplina £or Quicksort and Quickselect

o Adaptive sampling £or Quickselect

o Updates and associative Queries in relaxed K-d
trees

o Exhaustive and random aeneration of
comginatorial ogjects

o Partial sorting

o Proeagilistic analysis of Binary search trees, skip
lists, ...

@ Exavple 4H: Generating random deranaements

Example 4El: Generatina random deranaements

Le Proerléme des Deranaemernts:

"A numeer of aentlemen, say n, surrender their top
hats in the cloakroom and proceed to the evening’s
enjoywvent. After wining and dining (and wininGg some
more), they stumele Back to the cloakroom and
contfusedly take the first top-hat they see. What is the
proeagility that Nno gentleman aets his own hat?"

Deranaements

o A deranaement is a permutation without fixed
points: m(i) #1 foranyz,1<i<n

Deranaements

@ A derancement is a permutation without fixed
points: m(i) #1 foranyz,1<i<n
o The numeer D, Of deranaements of size n is

1 1 1 1 (_1)71:{&]
e

— | _
Dn=nt-iG-nta at t

Deranaements

@ A derancement is a permutation without fixed
points: m(i) #1 foranyz,1<i<n
o The numeer D, Of deranaements of size n is

)

Do JL_1 1 1 (—1)™
e [T TRl TR =y

@ Asn — o0, D,/n! ~ 1/e ~ 0.36788. In fact, e !is a
extremely cood approximation to the proragility
that a random permutation is a deranaement for
n > 10.

Excursion: Fisher-Yates' shuffle

procedure R.andomPermutation(n)
for i+ 1to ndo Afi] 1
£or 72 + n downto 1 do
7 « Uniform(1,1)
Ali] ¢ Alj]
return A

Excursion: Sattolo’s algorithm

procedure R.andomCyalicPermutation(n)
for i+ 1to ndo Afi] 1
for i «— n downto 1 do
7« Uniform(1,z — 1)
Af] © Alj]
return A

Excursion: The rejection method

Reaquire: n # 1
procedure R.andomDbDeranaement(n)
repeat
A + RandomPermutation(n)
until Is-Derancement(A) return A

Excursion: The rejection method

Reaquire: n # 1
procedure R.andomDbDeranaement(n)
repeat
A + RandomPermutation(n)
until Is-Derancement(A) return A

. 1
P[A is a deranaementt]| ~ -

E[#E of calls to Random] =e-n + O(1)

A recurrence for the numrer of
derangements

Do=1,D; =0
Dn = (n — 1)Dn,1 + (n — 1)Dn,2

A recurrence for the numrer of
derangements

Do=1,D; =0
D, = (n — 1)Dn,1 + (n — 1)Dn,2

Choice 4l n relonas to a cycle of lenath > 2.

The deranaement of size n is BuiHt By constructing a
derancement of size n — 1 and then n is inserted into
any of the cycles (of lenath > 2); there are (n — 1)
pOssikle ways to do that

A recurrence for the numrer of
derangements

Do=1,D; =0
D, = (n — 1)Dn,1 + (n — 1)Dn,2

Choice 4£2: n Belonas to a cycle of lenath 2.

The deranaement of size n is Built By constructing a
cycle of size 2 with n and some 7,1 < j <mn—1; then we
BUilld a8 deranaement of size n — 2 with the remaining
elements

The recursive method

C+{1,2,...,n}
R.andomDeranaement-Rec(n, C)

Reaquire: n # 1
procedure R.andomDerancgement-Rec(n, C)

i$ n <1then return

j < 8 random element from C

p «+ Uniform(0, 1)

i p<(n-1)D, o/D, then
R.andomDberanaement-Rec(n — 2,C \ {j,n})
m(n) < 7;m(j) < n

else
R.andomDberanaement-Rec(n — 1,C \ {n})
n(n) < 7m(3);7(5) < n

Our algorithm

Reaquire: n # 1
procedure R.andomDeranaement(n)
for i+ 1to n do Afi] < i;mark[i] « false
1 NU— N
while © > 2 do
i$ -mark[i] then
J « 8 random unmarked element in A[l..4 — 1]

Alz] < Alj]

i$ 7 has to close a cycle then
mark[j] « true; u «—u —1
Uu—u—1
1+—1—1
return A

Our algorithm

Reaquire: n # 1
procedure R andomDbDeranaement(n)
for i+ 1to n do Afi] < i;mark[i] « false
1 NU— N
while u > 2 do
i$ -mark[i] then
repeat j + Random(1,: — 1)
unvtil ~mark[j]
Ali] > Alj]
p — Uniform(0,1)
£ p<(u—1)Dy 2o/Dy
mark[j] « true;u « u —1
u—u—1
1—1—1
return A

The analysis

o 4k Of marked elements = 4E of cyales (Cy,)

The analysis

o 4k of marked elements = 4F of cycles (C)
o 4k of iterations = 4k of calls to Unitorm = n—-C,

The analysis

o 4k Of marked elements = 4E of cyales (Cy,)
o 4k of iterations = 4k of calls to Unitorm = n—-C,
o G = 4k of calls to R.andom

The analysis

o 4k of marked elements = 4F of cycles (C)

o 3F of iterations = 4k of calls to Uniform = n—C,
o G = 4k of calls to Random

o G; = 4k of calls to Random at iteration i

The analysis

o 4k of marked elements = 4F of cycles (C)

o 3F of iterations = 4k of calls to Uniform = n—C,
o G = 4k of calls to Random

o G; = 4k of calls to Random at iteration i

Elcost] = n — E[Cy] + E[G]

=n-E[Cal+ Y E[Gi]
1<i<n

The analysis
The computation of E[C,] can Be done via standard
aenerating function techniques:

Z z4 ztheycles (4)
i Al

The analysis

The computation of E[C,] can Be done via standard
aenerating function techniques:

Z z4 ztheycles (A)

i 4!
)
— 2z (1-2)

= exp ('u <log 1

The analysis

The computation of E[C,] can Be done via standard
aenerating function techniques:

Z 24 '—H=eycles (4)
AcD ‘A‘

1
= €xp ('U <log —

E[vcn} = %[ln}C(z,'u) L s |

The analysis

The computation of E[C,] can Be done via standard
aenerating function techniques:

Z z4 ztheycles (4)
i Al

1
= exp ('u <log =

]E['UC"} = g_i[z"}c(z,v) — hnvﬂ(l + O(n’“‘e))

E[Cr] =1logn + O(1), V[C,] =logn + O(1)

The analysis

The computation of E[C,] can Be done via standard
aenerating function techniques:

Z z4 ztheycles (4)
i Al

1
= exp ('u <log =

]E['UC"] = l![z"}C’(z,v) = 7(;_ 1)!n”’l(l + O(n~19))

E[Cr] =1logn + O(1), V[C,] =logn + O(1)

Cp,—logn
o 28T, N(0,1
Vlogn - N(O,1)

The analysis

@ M; indicator variarle for the event "Afi] cets
marked"

The analysis

@ M; indicator variarle for the event "Afi] cets
marked"

o M;=1 = G;=0

The analysis

@ M; indicator variarle for the event "Afi] cets
marked"

o M;=1 = G;=0

)

E[G] = > E[G:|M;=0] P[M; =0]
1<i<n

The analysis

o U, = 4 of unmarked elements in A[l1..7];U, =n

The analysis

o U, = 4 of unmarked elements in A[l1..7];U, =n
@ B, = 3F Of marked elements in A[l..i|; B,y =0

The analysis

o U, = 4 of unmarked elements in A[l1..7];U, =n
@ B, = 3F Of marked elements in A[l..i|; B,y =0
o U;+ By =1

The analysis

o U, = 4 of unmarked elements in A[l1..7];U, =n
@ B, = 3F Of marked elements in A[l..i|; B,y =0
o U;+ By =1

o |# Afi] is not marked then G; is geometrically

distriruted with prorarility of success
(U; —1)/(i—1)=(:—1— B;11)/(i — 1); hence

1—1

Gi|M; =0 =E|——=—
E[G: | M; = 0]]Ez'—l—BHl

| M; =0

The analysis

° Bi+1 S Cn

The analysis

OBi+1SCn
@ 0< By <1

The analysis

OB,L'+1§C”
@ 0< By <1
oU;#1and Biy#i—1foral1<i<n

The analysis

® Biy1 <Chy

@ 0< By <1
oUi#land Biy1 #i—1foral1<i<n
olf M;=01then B;;1 <i-—1

The analysis

i1
———— [M; =0| -P[M; =0
o1 By, PIM; = 0]

E[Gl= > E

1<i<n

The analysis

1—1
E[G = > E%Mi:o}-p[mzo]
1<i<n t—1-Bip
.. 1—1
S Z Emln{Z].,W}}
- - Yn

1<i<n

The analysis

-1
EGl= > E Mizo} -P[M; = 0]
1<i<n Z_l_Bz+1
<> E min{il LH
_1<z‘§n - 1-Ch

k+1 [n/2]
< > (Z(z -0+ X Tk

1= k+2

The analysis

1<'LZ< g Z—l—Bz+1 Mi_o} PIM: =0
. 11
1<zZ<nE min {z -1, WH
k+1 [n/2]
< ¥ (Z(Z “0+ 2)
1<k<Ln/2j i—kt2®

=n—1- B[] + £ E[C:2] + O(E[C. log(n — C)

The analysis

6= 3 = 5 | M= 0 BlM =0
.. 1—1
1<zZ<nIE min {z -1, WH
k+1 [n/2]
< > (Z(z SR)
1SkSLn/2J i=hi2®

=n—1- B[] + £ E[C:2] + O(E[C. log(n — C)

= n+ O(E[Cr2]) + Olog n - E[Cy]) = n + O(log? n)

The analysis

Since we also have E[G] > n — E[C,], we have £inally

Elcost] = n — E[Cy,] + E[G] = 2n + O(log® n)

© Example 42 Updatina K-d trees

Example 472 Updatina K-d trees

Example 472 Updatina K-d trees

S

Example 472 Updatina K-d trees

Example 472 Updatina K-d trees

2

Example 472 Updatina K-d trees

Example 472 Updatina K-d trees

Insertion in relaxed K-d trees

rkdt insert (rkdt t, const Elem& x) {

int n = size(t);
int u = random(0,n);
if (u == n)

return insert_at_root(t, x);
else { // t cannot be empty

int i = t -> discr;
if (x[i] < t -> keyl[il)

t -> left = insert(t -> left, x);
else

t -> right = insert(t -> right, x);

return t;

Deletion in relaxed K-d trees

rkdt delete (rkdt t, const Elem& x) {
if (t == NULL) return NULL;
if (t -> key == x)
return join(t -> left, t -> right);

int i = t -> discr;
if (x -> key[i]l < t -> key[il)

t -> left = delete(t -> left, x);
else

t -> right = delete(t -> right, x);
return t;

Split: Case =kl

Split: Case 4

Split: Case 4

Split: Case 472

Split: Case 42

Split: Case 42

Split: Case 42

Analysis of split/join

@ 5, = ava. NUWMBRer Of visited Nnodes in a split
® m, = ava. Numier Of visited nodes in a join

°
2 j+1 2(K — 1)
Sp =14+ —7 Z s; + Z s;
nK 055en n+1 nK 055en
K -1
+T Z Mn,5MMj s
0<5<n

where m, ; is progagility of joinina two trees with
total size j.

Analysis of split/join

@ 5, = ava. NUWMBRer Of visited Nnodes in a split
® m, = ava. Numier Of visited nodes in a join

°
2 j+1 2(K — 1)
Sp =14+ — Z s; + Z s;
nK 055en n-+1 nK 055en
K -1
+T Z Mn,5MMj s
0<5<n

where m, ; is progagility of joinina two trees with
total size j.

Analysis of split/join

@ 5, = ava. NUWMBRer Of visited Nnodes in a split
® m, = ava. Numier Of visited nodes in a join

°
2 j+1 2(K — 1)
Sp =14+ —7 Z s; + Z s;
nK 055en n+1 nK 055en
K -1
+T Z Tn,5 M5
0<5<n

where m, ; is progagility of joinina two trees with
total size j.

Analysis of split/join

o The recurrence for s, is

2 j+1 2(K —1)
Sp =14+ —7 Z s; + Z s;
nK 0<4<nn+1 nK 055en
2(K — 1) Z n-—j
——m,,
nK ogj<nn+1

with so =0.

o The recurrence £or m, has exactly the same shape
with the réles of s, and m, interchanaed; it easily
follows that s, = m,.

Analysis of split/join

o Define

S(z) = Z Sp2"

n>0

o The recurrence for s, translates to

zdzs 1-2zdS
dz? 1—2 dz
<3K2) S(z) 2
-2 -z =
K

(1-2)2 (1-2)%

with initial conditions S(0) =0 and S’(0) = L.

Analysis of split/join

o The homoaeneous second order linear ODE is of
hyperaeometric type.

@ An easy particular solution of the ODE is

1<K) 1
2\K-1)1-=2

Analysis of split/join

Theorem

The generating function S(z) of the expected cost of
split is, for any K > 2,

S(z):l%{(2F1<1 a2—az>_ 1 },

21—? 1—2

where a = a(K) =} (1+/17- 12).

Analysis of split/join

Theorem
The expected cost s, Of splitting a relaxed K-d tree of
size n is
sn = n(K)n?%) +o(n),
with
1 1 T(2a-1)
g 21— % al¥(a) '

Analysis of split/join

15

1.4

13

12

11

=
o

10 20 30 40 50 60 70 80 90 100

Plot of ¢(K)

The cost of insertions and deletions

o The recurrence for the expected cost of an
insertion is

I, 1 2 j+1
I, = 11— — 14+ — — I
" n+1+(n+1)(+nZn+1]>
.~ 1
n+1 Tt C)(7z) jL_n+1 jizn n+177

with Z, the averace cost of an insertion at root

o The expected cost Of deletions D, satisfies a
similar recurrence; it is asymptotically equivalent to
the averace cost of insertions

o We suestitute Z, By the costs ortained previously
(5D

The cost of insertions and deletions

Theorem
Let I, and D,, denote the average cost of a
randomized insertion and randomized deletion in a
random relaxed K-d tree of size n using split and join.
Then

Q it K=2then I, ~ D, =4lnn+ O(1).

Q it K >2then

—1
I, ~ Dy, = n¢—n¢’1 + O(log n),

¢p+1

where 7, = nn® + 0(1).

The cost of insertions and deletions

Theorem

Let I, and D,, denote the average cost of a
randomized insertion and randomized deletion in a
random relaxed K-d tree of size n using split and join.
Then
Qif K=2then I, ~ D, =4lnn+ O(1).
Q it K > 2then
-1

I, ~D, = nmn"’*l + O(logn),

where T, = nn® + 0(1).

Note that for K > 2, ¢(K) > 1!

Copy-rased insertions

Copy-rased insertions

..
Iy

o

Copy-rased insertions

Copy-rased insertions

®
4

Copy-rased insertions

Excursion: Partial match

Given a Query g = (go, - - -, 9k,) Where each g; € [0,1] or
g; = *, £ind all elements z in the K-d tree such that
z; = q; whenever g; # x.

Partial match

void partial_match(rkdt t, query q) {
if (t == NULL) return;
if (matches(t -> key, q))
report (t-> key);
int i = t -> discr;
if (q[il == ’x°) {
partial_match(t -> left, q);
partial_match(t -> right, q);
} else if (ql[i]l < t -> key) {
partial_match(t -> left, q);
} else {
partial_match(t -> left, q);
}

Analysis Of copy-rased updates

The cost of ruilding T usina copy-Rased insertion of a
key z:

C(T) = P(T) + % 7L,| i 1C(L) + % ?: i iC’(R)
X e +em),

where P(T) denotes the numrer of nodes visited Ry a
partial match in T — {z} with Query
g=(zo,- -, Ti-1,%Tit1,---, TK-1)

Analysis Of copy-rased updates

The cost of makina an insertion at root into a tree
of size n:

ktl |, 2K -1
o+) o
0<ken T n 0<k<n

with P, the expected cost of a partial match in a
random relaxed K-d tree of size n with only one
specified coordinate out of K coordinates

Analysis Of copy-rased updates

Theorem (Duch et al. 1998, Martinez et al. 200N

The expected cost P, (measured as the numeer of key
comparisons) of a partial match Query with s out of K
attrirutes specified, 0 < s < K, in a randomly Buikt
relaxed K-d tree of size n is

P, =B(s/K) - nf/F) 1 0(1),
where

p=p(z)=(Vo-8z-1)/2,

B I'2p+1)
Ao = T+) (p+ 1)’

and I'(z) is Euler’'s Gamma function

Analysis Of copy-rased updates

We will use R.oura’s Continuous Master Theorem to
sOlve recurrences of the form:

F,=t, + Z wn,ij) n > no,
0<j<n

where t, is the so-called toll function and the
Quantities w, ; > 0 are called weicghts

Excursion: R.oura’s Continuous Master
Theorem

Theorem (R.oura 200D

Let t, ~ Cn®log®n for some constants C, a > 0 and
b> —1,and let w(z) Be a real function over [0, 1] such

that
(G+1)/n
Z wn’j—/ w(z)dz
j

0<j<n e

for some constant d > 0. Let ¢(z) = [y 2% w(z) dz, and
define H =1— ¢(a) Then
QI H>0then F, ~t,/H.

QI H=0then F, ~t,Inn/H' where
H = —(b+1) [y 2% Inzw(z)dz.

Q I# H < 0 then F, = ©(n%), where a is the uniQue real

solution of ¢(z) = 1.

>

Analysis Of copy-rased updates

Applying the CMT 10 our recurrence we have

o w(z) =2+ —2(1‘;1)

ot, =P, = a=p=p(1/K)=(/9—-8/K —1)/2
Thus H =0

Analysis Of copy-rased updates

Applyina the CMT to our recurrence we have

o w(z) =%+ 2“;*”

ot, =P, = a=9p=p(1/K)=(/9-8/K —1)/2
Thus H =0
We have 1o compute H' with b =0

1
H =—(b+ 1)/ 2°w(z)Inzdz
0

and et
K>+ (4K —2)p+4K — 3

K(e+2)*(e+1)?

H =2

Analysis Of copy-rased updates

Theorem

The averace cost C, Of copy-Based insertion at root
of a random relaxed K-d tree is

Cn=7-n°lnn+o(nlnn),

where
o= oK)= o(1/K) = (o 8/K 1) 2,
_ BL/K) I'(20+ 1)K(o+2)*(0+1)
VT T T 21— L)+ 1)(Ke® + (4K — 2)g+ (4K — 3))|

The averace cost C; of copy-rased deletion of the
root of a random relaxed K-d tree of size n+1is C,.

The cost of insertions and deletions ()

Theorem

For any fixed dimension K > 2, the averace cost of a
randomized insertion or deletion in random relaxed
K-d tree of size n using copy-Rased updates is

I, ~ D, =2lnn+ ©(1).

The cost of insertions and deletions ()

Theorem

For any fixed dimension K > 2, the averace cost of a
randomized insertion or deletion in random relaxed
K-d tree of size n using copy-Rased updates is

I, ~ D, =2lnn+ ©(1).

The "reconstruction” phase has constant cost on the
averacel

Q Sxavple 4£3: Partial sortine

Example 4£3: Partial sorting

o Partial sortina: Given an array A of n elemvents
and a value 1 < m < n, rearranae A so that its first
m POsitions contain the m smallest elemertts in
ascending order

Example 4£3: Partial sorting

o Partial sortina: Given an array A of n elemvents
and a value 1 < m < n, rearranae A so that its first
m POsitions contain the m smallest elemertts in
ascending order

e For m = ©(n) it micht e OK to sort the array;
otherwise, we are doing t0o much work

A few common solutions

o |ldea 4l Partial heapsort

o Build 8 heap with the n elements and perform m
extractions of the heap’s minimum

A few common solutions

o ldea 2l Partial heapsort
o Build 8 heap with the n elements and perform m
extractions of the heap’'s minimum
s The worst-case cost is O(n + mlogn)

A few common solutions

o ldea 2l Partial heapsort
@ Build a heap with the n elements and perform m
extractions of the heap’'s minimum
s The worst-case cost is O(n + mlogn)
s This the “traditonal" implementation of C++ STU's
partial_sort

A few common solutions

o ldea 42 On-line selection
o Build 8 heap with the m first elements; then scan
the remaining n — m elemencts and update the heap
as needed; finally extract the m elements from the
heap

A few common solutions

o ldea 42 On-line selection
o Build a heap with the m first elemerts; then scan
the remaining n — m elemencts and update the heap
as needed; finally extract the m elements from the
heap
¢ The worst-case cost is ©(nlogm)

A few common solutions

o ldea 4E2: On-line selection

o Build a heap with the m first elemerts; then scan
the remaining n — m elements and update the heap
as needed; finally extract the m elements from the
heap

¢ The worst-case cost is ©(nlogm)

@ Not very attractive unless m is very small or if used
in on-line settinas

A few common solutions

o ldea 4£3: "Quickselsort”

s Find the mth smallest element with Quickselect,
then Quicksort the preceding m — 1 elements

A few common solutions

o ldea #4k3: "Quickselsort”
s Find the mth smallest element with Quickselect,
then Quicksort the preceding m — 1 elements
s The averace cost is B(n + mlogm)

A few common solutions

o ldea #4k3: "Quickselsort”
s Find the mth smallest element with Quickselect,
then Quicksort the preceding m — 1 elements
s The averace cost is B(n + mlogm)
@ Uses two rasic alaorithms widely availagle (and hiahly
tuned for performance in standard lieraries)

Partial Quicksort

void partial_quicksort(vector<Elem>& A,
int i, int j, int m) {
if (i <) 1

int p = get_pivot (A, i, j);
swap(A[pl, A[11);
int k;
partition (A, i, j, k);
partial_quicksort(A, i, k - 1, m);
if (k < m - 1)

partial_quicksort(A, k + 1, j, m);

The analysis

o Proeaerility that the selected pivot is the k—th of n
elemvents: m,

The analysis

o Proeaerility that the selected pivot is the k—th of n
elemvents: m,

o Averace numper of comparisons P, ,, tO sort the
m smallest elements out of n:

n
Pn,m:n_1+ Z Wn,k'Pkfl,m
k=m-+1

m
+ > T (Pe—1k—1+ Pokym—t)
k=1

The analysis

o For m = n, partial Quicksort = Quicksort; let g,
denote the average Nnumpaer Of comparisons used
BY QuUicksOort

The analysis

o For m = n, partial Quicksort = Quicksort; let g,
denote the average Nnumpaer Of comparisons used
BY QuUicksOort

o Hence,

Pn,m:n*]-‘i‘ Z Tn,k+1 " 4k
0<k<m

Z Tk - Pk 1m+z7rnk P km—k (1)
k=m+1 =

The analysis

o The recurrence £or P, ., is the same as for
Quickselect rut the toll function is

tn,m =n-1+ Z Tn,k+1 " Gk
0<k<m

The analysis

o The recurrence £or P, ., is the same as for
Quickselect rut the toll function is

tn,m =n-1+ Z Tn,k+1 " Gk
0<k<m

o Up to now, everythina holds No matter which pivot
selection scheme do we use; for the standard
variant we must take m, =1/n, foral 1 <k <n

The analysis: Generating functions

o Define the two BGFs
P(z,u) = Z Z Py mz"u™

n>01<m<n

T(2,u) = Z Z tn,mz"u™

n>01<m<n

The analysis: Generating functions

o Detine the two BGFs

P(z,u) = Z Z Py mz"u™

n>01<m<n

T(2,u) = Z Z tn,mz"u™

n>01<m<n
o Then the recurrence () translates to

OP P(z,u) wuP(z,u) 0T

8z 1-z + 1—uz +§ (2)

The analysis: Generating functions

o Let P(z,u) = F(z,u) + S(z,u), where F(z,u)
corresponds to the selection part of the toll
function (n — 1) and S(z,u) to the sortina part

>k qe/m

The analysis: Generating functions

o Let P(z,u) = F(z,u) + S(z,u), where F(z,u)
corresponds to the selection part of the toll
function (n — 1) and S(z,u) to the sortina part
>k qe/m

° Let

Tr(z,u) = Z Z (n—1)z"u™

n>01<m<n

Ts(z,u) = Z Z %(Z qk) 2"u™

n>01<m<n 0<k<m

The analysis: Generating functions

o Then, each of F(z,u) and S(z,u) satisfies a
differential equation like (1) and

1
(1-2)(1— zu)

X {/(1 - 2)(1 zu)aa%dz—l-Kp}
(1 —z)(ll — 2u)
X {/(lz)(l zu)%dz—l—Kg}

F(z,u) =

S(z,u) =

The analysis: Generating functions

@ F(z,u) satisfies exactly the same differential
equation as standard Quickselect; it is well known
(Knuth, 977D that for 1 <m < n,

From=[2"u"]F(2,u) = 2(n +3+(n+1)H,

—(m+2)Hpy — (n+3— m)HnH,m)

The analysis: Generating functions

o To compute S(z,u), we Nneed first to determine
Ts(z,u)
0Ts v Q(uz)
8z 1-2z1-uz

where Q(z) = 32,50 qn2™

The analysis: Generating functions

o To compute S(z,u), we Nneed first to determine
Ts(z,u)
0Ts v Q(uz)
8z 1—z1-—uz
where Q(z) = >on>0dn2™.
o With the toll function n — 1, we solve the
recurrence £Or Quicksort to get

@z) = (122)2 (lnllzz>

The analysis: Generating functions

o Hence,
1
S(z,u) = 121 —u2) {/uQ(uz)dz +KS}
B 2 1
(1 —u2)?(1-2) Tz
2 In 1
(1-2)(1—uz) 1-uz
uz

- 4(1 —uz)?(1 - 2)

The analysis: Generating functions

e Extractina coefticients S, ., = [z"u™]|S(z,u)

Spm = 2(m + 1)Hp, — 6m + 2H,,

The analysis: Generating functions

e Extractina coefticients S, ., = [z"u™]|S(z,u)
Snm = 2(m + 1)H,, — 6m + 2H,,
o And finally

Pom=2n+2(n+1)H, —2(n+3—-m)Hpi1-m
—6m+6

Partial Quicksort vs. Quickselsort

o The average Nnumper Of cOMPparisons made Ry
Quickselsort is

Qn,m - Fn,m +am-1

Partial Quicksort vs. Quickselsort

o The average Nnumper Of cOMPparisons made Ry
Quickselsort is

Qn,m - Fn,m +am-1
o Using partial Quicksort we save
Qn,m — Pam =2m — 4Hp, + 2

COMParisons on the average

Final remarks on par-tial Quicksort

@ Partial Quicksort avoids some of the redundant
comparisons, exchanaes, ... made By Quickselsort

Final remarks on par-tial Quicksort

o Partial Quicksort avoids some of the redundant
comparisons, exchanaes, ... made By Quickselsort

o H is easily implemented

Final remarks on par-tial Quicksort

@ Partial Quicksort avoids some of the redundant
comparisons, exchanaes, ... made By Quickselsort

o H is easily implemented

o K renefits from standard optimization techniques:
samPpling, recursion removal, recursion cutoff on
small surfiles, improved partitionina schems, ete

Final remarks on par-tial Quicksort

@ Partial Quicksort avoids some of the redundant
comparisons, exchanaes, ... made By Quickselsort

o H is easily implemented

o K renefits from standard optimization techniques:
sampling, recursion removal, recursion cutoff on
small surfiles, improved partitionina schems, ete

@ The same idea can Be applied tO similar alaorithms
like radix sortinag and Quicksort for strinas

© Conduding remarks

Concluding remarks

| hope | have convinced you agout the usefulness of
proeagilistic analysis

@ Provides useful information agout typical rehavior

Concluding remarks

| hope | have convinced you agout the usefulness of
proeagilistic analysis

@ Provides useful information agout typical rehavior
o Necessary when analyzina randomized algorithms

Concluding remarks

| hope | have convinced you agout the usefulness of
proeagilistic analysis

@ Provides useful information agout typical rehavior
o Necessary when analyzina randomized algorithms

o Allows meaninaful comparisons retween
competitors of equivalent performance

Concluding remarks

| hope | have convinced you agout the usefulness of
proeagilistic analysis

@ Provides useful information agout typical rehavior

o Necessary when analyzina randomized algorithms

@ Allows meaninaful comparisons eetween
competitors of equivalent performance

@ A source of Beautiful and challenaina mathematical
proslems!

Credits

o Alois Panholzer and Helwmut Prodineser:
Generating random deranaements

o Amalia Duch: Updatina K-d trees

THANKS!

	Introduction
	Example #1: Generating random derangements
	Example #2: Updating K-d trees
	Example #3: Partial sorting
	Concluding remarks

