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Introduction

R. Karp N. C. Metropolis M. O. Rabin

The usefulnees of randomization in the design of algorithms has been
known for a long time:

Metropolis’ algorithms
Rabin’s primality test
Rabin-Karp’s string search
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Introduction

M.N. Wegman

Hashing is another early success of randomization for the design of
data structures.
Selecting the hash function from a universal class (Carter and
Wegman, 1977) guarantees expected performance
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Introduction

Randomization yields algorithms:
Simple and elegant
Practical
With guaranteed expected performance
Without assumptions on the probabilistic distribution of the input
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Introduction

The usual worst-case analysis is not useful for randomized
algorithms
The probabilistic model to use in the analysis is under control; it is
not a working hypothesis, but built-in
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Introduction

In this talk:
Skip lists
Randomized binary search trees
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Skip lists

W. Pugh

Skip lists were invented by William Pugh (C. ACM, 1990) as a
simple alternative to balanced trees
The algorithms to search, insert, delete, etc. are very simple to
understand and to implement, and they have very good expected
performance—independent of any assumption on the input
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Skip lists

A skip list S for a set X consists of:
1 A sorted linked list L1, called level 1, contains all elements of X
2 A collection of non-empty sorted lists L2, L3, . . . , called level 2,

level 3, . . . such that for all i ≥ 1, if an element x belongs to Li

then x belongs to Li+1 with probability q, for some 0 < q < 1,
p := 1− q
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Skip lists

12 4240 53 663721

Header

−OO

NIL

OO+

To implement this, we store the items of X in a collection of nodes
each holding an item and a variable-size array of pointers to the item’s
successor at each level; an additional dummy node gives access to the
first item of each level
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Implementing skip lists

template <typename Key , typename Value >
class Dictionary {
public:

...
private:

struct node_skip_list {
Key k;
Value v;
vector <node_skip_list*> next;

node_skip_list(const Key& the_key , const Value& the_value , int h) :
k(the_key), v(the_value), next(h, nullptr) {

}
};
node_skip_list* header;
int height;
double p; // e.g., p = 0.5
...

};
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Skip lists

The level or height of a node x, height(x), is the number of lists it
belongs to.
It is given by a geometric r.v. of parameter p:

Pr{height(x) = k} = pqk−1, q = 1− p

The height of the skip list S is the number of non-empty lists,

height(S) = max
x∈S
{height(x)}
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Searching in a skip list

Searching for an item x, 42 < x ≤ 53
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Implementing skip lists

// search for an item with key k
// return pointer to item with key k or nullptr if not
// such item exists
node_skip_list* lookup_skip_list(const Key& k) const {

node_skip_list* p = header;
int l = height - 1;
while (l >= 0)

if (p -> next[l] == nullptr or k <= p -> next[l] -> k)
--l;

else
p = p -> next[l];

if (p -> next [0] == nullptr or p -> next [0] -> k != k)
// k is not present
return nullptr;

else // k is present , return pointer to the node
return p -> next [0];

}
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Insertion in a skip list

Inserting an item x = 48
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Implementing skip lists

To insert a new item we go through four phases:
1) Search the given key. The search loop is slightly different

from before, since we need to keep track of the last node
seen at each level before descending from that level to
the one immediately below.

2) If the given key is already present we only update the
associated value and finish.
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Implementing skip lists

void insert_skip_list(const Key& k, const Value& v) {
// search for insertion point for the new item with key k
// (or detect it is duplicate)
node_skip_list* p = header;
int l = height - 1;
vector <node_skip_list*> pred(height , header );
while (l >= 0)

if (p -> next[l] == nullptr or k <= p -> next[l] -> k) {
pred[l] = p; // <====== keep track of predecessor at level l
--l;

} else {
p = p -> next[l];

}

if (p -> next [0] == nullptr or p -> next [0] -> _k != k) {
// k is not present , add new node here
...

}
else // k is present , update associated value

p -> next [0] -> v = v;
}
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Implementing skip lists

3) When k is not present, create a new node with k and v,
and assign a random level r to the new node, using
geometric distribution

4) Link the new node in the first r lists, adding empty lists
if r is larger than the maximum level of the skip list
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Implementing skip lists

void insert_skip_list (...) {
...
// adding new node
// generate random height
// each call to rng() produces a (pseudo)random
// number uniformly distr. in (0,1)
int h = 1; while (rng() > p) ++h;

// create new node
node_skip_list* nn = new node_skip_list(k, v, h);
if (h > height) {

// add new levels to the header and to pred , if necessary
// make pred[i] = _header for all i = _height .. h-1
(header -> next). resize(h, nullptr );
pred.resize(h, header );

}

// link the new node to h linked lists
for (int i = h - 1; i >= 0; --i) {

nn -> next[i] = pred[i] -> next[i];
pred[i] -> next[i] = nn;

}
...

}
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Other Operations

Deletions are also very easy to implement
Ordered iterators are trivially implemented
Skip list can also support many other operations, e.g., merging,
search and deletion by rank, finger search, . . .
They can also support concurrency and massive parallelism without
too much effort
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Performance of skip lists

A preliminary rough analysis considers the search path backwards.
Imagine we are at some node x and level i:

The height of x is > i and we come from level i+ 1 since the
sought key k is smaller than the key of the successor of x at level
i+ 1

The height of x is i and we come from x’s predecessor at level i
since k is larger or equal to the key at x
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Performance of skip lists

Figure from W. Pugh’s Skip Lists: A Probabilistic Alternative to Balanced Trees
(C. ACM, 1990)—the meaning of p is the opposite of what we have used!
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Performance of skip lists

The expected number C(k) of steps to “climb” k levels in an infinite
list

C(k) = p(1 + C(k)) + (1− p)(1 + C(k − 1))

= 1 + pC(k) + qC(k − 1) =
1

q
(1 + qC(k − 1))

=
1

q
+ C(k − 1) = k/q

since C(0) = 0.
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Performance of skip lists

The analysis above is pessimistic since the list is not infinite and we
might “bump” into the header. Then all remaining backward steps to
climb up to a level k are vertical—no more horizontal steps. Thus the
expected number of steps to climb up to level Ln is

≤ (Ln − 1)/q
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Performance of skip lists
Ln = the largest level L for which

E[# of nodes with height ≥ L] ≤ 1/q

Probability that a node has height ≥ k is

Pr{height(x) ≥ k} =
∑
i≥k

pqi−1 = pqk−1
∑
i≥0

qi = qk−1

Number of nodes with height ≥ k is a binomial r.v. with
parameters n and qk−1, hence

E[# of nodes with height ≥ k] = nqk−1

Then

nqLn−1 = 1/q =⇒ Ln = logq(1/n) = log1/q n
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Performance of skip lists

Then the steps remaining to reach Hn (=the height of a random skip
list of size n) can analyzed this way:

we need not more horizontal steps than nodes with height ≥ Ln,
the expected number is ≤ 1/q, by definition
the probability that Hn > k is

1−
(
1− qk

)n
≤ nqk

It follows that
E[Hn] ≤ Ln + 1/p

and the expected additional vertical steps need to reach Hn from
Ln is ≤ 1/p
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Performance of skip lists

Summing up, the expected path length of a search is

≤ (Ln − 1)/q + 1/q + 1/p =
1

q
log1/q n+ 1/p

On the other hand, the average number of pointers per node is 1/p so
there is a trade-off between space and time:
p→ 0, q → 1 =⇒ very tall “nodes”, short horizontal cost
p→ 1, q → 0 =⇒ flat skip lists
Pugh suggests p = 3/4, optimal choice minimizes factor
(q ln(1/q))−1 is q = e−1 = 0.36 . . . , p = 1− e−1 ≈ 0.632 . . .
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Analysis of the height

W. Szpankowski V. Rego

Theorem (Szpankowski and Rego,1990)

E[Hn] = logQ n+
γ

L
− 1

2
+ χ(logQ n) +O(1/n)

with Q := 1/q, L := lnQ, χ(t) a fluctuation of period 1, mean 0 and
small amplitude.
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Analysis of the forward cost

The number of forward steps Fn,k is the number of weak left-to-right
maxima in ak, ak−1, . . . , a1, with ai = height(xi)

12 4240 53 663721

Header

−OO

NIL

OO+
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Analysis of the forward cost

Total unsuccessful search cost

Cn =
∑

0≤k≤n
Cn,k = nHn + Fn

Total forward cost
Fn =

∑
0≤k≤n

Fn,k
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Analysis of the forward cost

P. Kirschenhofer H. Prodinger

Theorem (Kirschehofer, Prodinger, 1994)
The expected forward cost in a random skip list of size n is

E[Fn] = (Q− 1)n

(
logQ n+

γ − 1

L
− 1

2
+

1

L
χ(logQ n)

)
+O(log n),

with Q := 1/q, L = lnQ and χ a periodic fluctuation of period 1,
mean 0 and small amplitude.
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Skip Lists in Real Life

Source: Wikipedia
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To learn more

L. Devroye.
A limit theory for random skip lists.
The Annals of Applied Probability, 2(3):597–609, 1992.

P. Kirschenhofer and H. Prodinger.
The path length of random skip lists.
Acta Informatica, 31(8):775–792, 1994.

P. Kirschenhofer, C. Martnez and H. Prodinger.
Analysis of an Optimized Search Algorithm for Skip Lists.
Theoretical Computer Science, 144:199–220, 1995.
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To learn more (2)
T. Papadakis, J. I. Munro, and P. V. Poblete.
Average search and update costs in skip lists.
BIT, 32:316–332, 1992.

H. Prodinger.
Combinatorics of geometrically distributed random variables:
Left-to-right maxima.
Discrete Mathematics, 153:253–270, 1996.

W. Pugh.
Skip lists: a probabilistic alternative to balanced trees.
Comm. ACM, 33(6):668–676, 1990.

W. Pugh.
A Skip List Cookbook.
Technical Report UMIACS–TR–89–72.1. U. Maryland, College
Park, 1989.
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Randomized binary search trees

C. Aragon R. Seidel

Two incarnations
Randomized treaps (tree+heap) invented by Aragon and Seidel
(FOCS 1989, Algorithmica 1996) use random priorities and
bottom-up balancing
Randomized binary search trees (RBSTs) invented by M. and Roura
(ESA 1996, JACM 1998) use subtree sizes and top-down balancing
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Randomized binary search trees

In a random binary search tree (built using random insertions) any
of its n elements is the root with probability 1/n

Idea: to insert a new item, insert it at the root with probability
1/(n+ 1), otherwise proceed recursively
The random priorities of treaps “simulate” random timestamps (cif.
Vuillemin’s Cartesian trees 1980); rotations are used to maintain
the BST invariant w.r.t. keys and the heap invariant w.r.t. priorities
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Insertion in a RBST

Inserting an item x = 48
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Insertion in a RBST

int size(node* p) {
return (T == nullptr) ? 0 : T -> size;

}

void update_size(node* p) {
if (p != nullptr)

p -> size = size(p -> left) + size(p -> right) + 1;
}

// we assume here that k is not present in T
node* insert(node* T, const Key& k, const Value& v) {

int n = size(T); // size of the subtree
if (Uniform(0,n) == 0) // with probability 1/(n+1)

return insert_at_root(T, k, v);
else { // with probability n/(n+1)

if (k < T -> k)
T -> left = insert(T -> left , k, v);

else
T -> right = insert(T -> right , k, v);

update_size(T);
return T;

}
}
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Insertion in a RBST

To insert a new item x at the root of T , we use the algorithm Split
that returns two RBSTs T− and T+ with element smaller and
larger than x, resp.

〈T−, T+〉 = Split(T, x)
T− = BST for {y ∈ T | y < x}
T+ = BST for {y ∈ T |x < y}

Split is like partition in Quicksort
Insertion at root was invented by Stephenson in 1976
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Splitting a RBST

To split a RBST T around x, we need just to follow the path from the
root of T to the leaf where x falls

z

T =

x < z

L R
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Splitting a RBST

To split a RBST T around x, we need just to follow the path from the
root of T to the leaf where x falls

L+

z

x < z

−

+T = <L , z , R>+

R

−T = L
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Splitting a RBST & Insertion at Root

// splits the RBST T (destructively) into two trees , one with
// keys smaller than k, the other with keys larger than k
pair <node*, node*> split(node* T, const Key& k) {

if (T == nullptr) return make_pair(nullptr , nullptr );
if (k < T -> k) {

pair <node*, node*> result = split(T -> left , k);
T -> left = result.second;
update_size(T);
result.second = T;
return result;

} else { // idem , change left <-> right
// first <-> second

...
}

}

node* insert_at_root(node* T, const Key& k, const Value& v) {
pair <node*, node*> LR = split(T, k); // $LR = \langle T^-, T^+\ rangle$
node* nn = new node(k, v);
nn -> left = LR.first;
nn -> right = LR.second;
update_size(nn);
return nn;

}
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Splitting a RBST

Lemma

Let T− and T+ be the BSTs produced by Split(T, x). If T is a
random BST containing the set of keys K, then T− and T+ are
independent random BSTs containing the sets of keys
K− = {y ∈ T | y < x} and K+ = {y ∈ T | y > x}, respectively.
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Insertion in RBSTs

Theorem

If T is a random BST that contains the set of keys K and x is any key
not in K, then Insert(T, x) produces a random BST containing the set
of keys K ∪ {x}.
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The Cost of Insertions

The cost of the insertion at root (measured # of visited nodes) is
exactly the same as the cost of the standard insertion
For a random(ized) BST the cost of insertion is the depth of a
random leaf in a random binary searh tree:

E[In] = 2 log n+O(1)

We need to produce O(log n) random numbers on average to insert
an item
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RBST resulting from the insertion of 500 keys in ascending order
Source: R. Sedgewick, Algorithms in C (3rd edition), 1997
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Deletions in RBSTs

The fundamental problem is how to remove the root node of a
BST, in particular, when both subtrees are not empty
The original deletion algorithm by Hibbard was assumed to preserve
randomness
In 1975, G. Knott discovered that Hibbard’s deletion preserves
randomness of shape, but an insertion following a deletion would
destroy randomness (Knott’s paradox)
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Deletions in RBSTs

J. Culberson J.L. Eppinger D.E. Knuth

Several theoretical and experimental work aimed at understanding
what was the effect of deletions, e.g.,

Jonassen & Knuth’s An Algorithm whose Analysis Isn’t (JCSS, 1978)
Knuth’s Deletions that Preserve Randomness (IEEE Trans. Soft.
Eng., 1977)
Eppinger’s experiments (CACM, 1983)
Culberson’s paper on deletions of the left spine (STOC, 1985)
. . .

These studies showed that deletions degraded performance in the
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Deletions in RBSTs

node* remove(node* T, const Key& k) {
if (T == nullptr) return nullptr;
if (T -> k == k) { // to delete the root of the subtree , join the subtrees

node* result = join(T -> left , T -> right );
T -> left = T -> right = nullptr;
free(T); // release node
return result;

}
if (k < T -> k)

T -> left = remove(T -> left , k);
else

T -> right = remove(T -> right , k);
update_size(T);
return T;

}
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Deletions in RBSTs

We delete the root using a procedure Join(T1, T2). Given two BSTs
such that for all x ∈ T1 and all y ∈ T2, x ≤ y, it returns a new BST
that contains all the keys in T1 and T2.

Join(�,�) = �

Join(T,�) = Join(�, T ) = T

Join(T1, T2) = ?, T1 6= �, T2 6= �
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Joining two BSTs

L
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Joining two BSTs

If we systematically choose the root of T1 as the root of
Join(T1, T2), or the other way around, we will introduce an
undesirable bias
Suppose both T1 and T2 are random. Let m and n denote their
sizes. Then x is the root of T1 with probability 1/m and y is the
root of T2 with probability 1/n

Choose x as the common root with probability m/(m+ n), choose
y with probability n/(m+ n)

1

m
× m

m+ n
=

1

m+ n
1

n
× n

m+ n
=

1

m+ n
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Joining two RBSTs

Lemma

Let L and R be two independent random BSTs, such that the keys in
L are strictly smaller than the keys in R. Let KL and KR denote the
sets of keys in L and R, respectively. Then T = Join(L,R) is a
random BST that contains the set of keys K = KL ∪KR.
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Joining two RBSTs
The recursion for Join(T1, T2) traverses the rightmost branch (right
spine) of T1 and the leftmost branch (left spine) of T2
The trees to be joined are the left and right subtrees L and R of
the ith item in a RBST of size n; then

length of left spine of L = path length to ith leaf
length of right spine of R = path length to (i+ 1)th leaf

The cost of the joining phase is the sum of the path lengths to the
leaves minus twice the depth of the ith item; the expected cost
follows from well-known results(

2− 1

i
− 1

n+ 1− i

)
= O(1)
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Deletions in RBSTs

Theorem

If T is a random BST that contains the set of keys K, then
Delete(T, x) produces a random BST containing the set of keys
K \ {x}.
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Deletions in RBSTs

Theorem

If T is a random BST that contains the set of keys K, then
Delete(T, x) produces a random BST containing the set of keys
K \ {x}.

Corollary
The result of any arbitary sequence of insertions and deletions,
starting from an initially empty tree is always a random BST.
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Additional remarks

Arbitrary insertions and deletions yield always random BSTs
A deletion algorithm for BSTs that preserved randomness was a
long standing open problem (10-15 yr)
Properties of random BSTs have been investigated in depth and for
a long time
Treaps only need to generate a single random number per node
(with O(log n) bits)
RBSTs need O(log n) calls to the random generator per insertion,
and O(1) calls per deletion (on average)
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Additional remarks

Storing subtree sizes for balancing is more useful: they can be used
to implement search and deletion by rank, e.g., find the ith smallest
element in the tree
Other operations, e.g., union and intersection are also efficiently
supported by RBSTs
Similar ideas have been used to randomize other search trees,
namely, K-dimensional binary search trees (Duch and M., 1998)
and quadtrees (Duch, 1999)
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