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The hiring problem

Originally introduced by Broder et al. (SODA 2008)

A (potentially in�nite) sequence of i.i.d. random variables Qi

uniformly distributed in [0; 1]

At step i you either hire or discard candidate i with score Qi

Decisions are irrevocable

Goals: hire candidates at some reasonable rate, improve the

�mean� quality of the company's sta�
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The hiring problem

Here: a permutation � of length n, candidate i has score �(i);
the permutation is actually presented as a sequence of

unknown length S = s1; s2; s3; : : : with 1 � si � i + 1, si is the

rank of the ith candidate relative to the candidates seen so far

(i included)

Our model is equivalent after �normalization�, but is amenable

to techniques from analytic combinatorics

H(�) = the set of candidates hired in permutation �

h(�) = #H(�)
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Rank-based hiring

A hiring strategy is rank-based if and only if it only depends on the

relative rank of the current candidate compared to the candidates

seen so far.
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Rank-based strategies modelize actual restrictions to measure

qualities

Many natural strategies are rank-based, e.g.,

above the best

above the mth best

above the median

above the P% best

Other interesting strategies are not, e.g., above the average,

above a threshold.
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Rank-based hiring

The recursive decomposition of permutations

P = �+ P ? Z

is the natural choice for the analysis of rank-based strategies.



Rank-based hiring

Let � ? j denote the permutation one gets after relabelling j ,

j + 1, . . . , n = j�j to j + 1, j + 2, . . . , n + 1 and appending j

at the end.

Ex: 32451 ? 3 = 425613, 32451 ? 2 = 435612

Let Xj(�) = 1 if candidate with score j is hired after � and

Xj(�) = 0 otherwise.

h(� ? j) = h(�) + Xj(�)
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Rank-based hiring

Theorem

Let H(z ; u) =
P

�2P
z j�j

j�j!u
h(�).

Then

(1� z)
@

@z
H(z ; u)� H(z ; u) = (u � 1)

X
�2P

X (�)
z j�j

j�j!
uh(�);

where X (�) the number of j such that Xj(�) = 1.



Rank-based hiring

We can write h(�) = 0 if � is the empty permutation and

h(� ? j) = h(�) + Xj(�).

H(z ; u) =
X
�2P
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j�j!
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X
n>0
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Rank-based hiring

Since Xj(�) is either 0 or 1 for all j and all �, we have

X
1�j�n

uXj (�) = (j�j+ 1� X (�)) + uX (�);

where X (�) =
P

1�j�j�j+1 Xj(�).

H(z ; u) = 1+
X
n>0

X
�2Pn�1

z j�j+1

(j�j+ 1)!
uh(�)

�
(j�j+1�X (�))+uX (�)

�
:

The theorem follows after di�erentiation and a few additional

algebraic manipulations.



Pragmatic strategies

A hiring strategy is pragmatic if and only if

Whenever it would hire a candidate with score j , it would hire

a candidate with a larger score

Xj(�) = 1 =) Xj 0(�) = 1 for all j 0 � j

The number of scores it would potentially hire increases at

most by one if and only if the candidate in the previous step

was hired

X (� ? j) � X (�) + Xj(�)
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Pragmatic strategies

The �rst condition is very natural and reasonable; the second

one is technically necessary for several results we discuss later

Above the best, above the mth best, above the P% best,

. . . are all pragmatic
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Pragmatic strategies

Theorem

For any pragmatic hiring strategy and any permutation �, the X (�)
best candidates of � have been hired (and possibly others).



Pragmatic strategies

31 2 4 nn−1

X(sigma)

H(sigma)



Pragmatic strategies

Let rn denote the rank of the last hired candidate in a random

permutation, and

gn = 1�
rn
n

is called the gap.

Theorem

For any pragmatic hiring strategy,

E[gn] =
1

2n
(E[Xn]� 1);

where E[Xn] = [zn]
P

�2P X (�)z j�j=j�j!.



Hiring above the maximum

Candidate i is hired if and only if her score is above the score of the

best currently hired candidate.

X (�) = 1

H(�) = fi : i is a left-to-right maximumg

E[hn] = [zn] @H
@u

���
u=1

= ln n + O(1)

Variance of hn is also ln n + O(1) and after proper

normalization h�n converges to N (0; 1)
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Hiring above the mth best

Candidate i is hired if and only if her score is above the score of the

mth best currently hired candidate.

X (�) = j�j+ 1 if j�j < m; X (�) = m if j�j � m

E[hn] = [zn] @H
@u

���
u=1

= m ln n + O(1) for �xed m

Variance of hn is also m ln n + O(1) and after proper

normalization h�n converges to N (0; 1)

The case of arbitrary m can be studied by introducing

H(z ; u; v) =
P

m�1 v
mH(m)(z ; u), where H(m)(z ; u) is the GF

that corresponds to a given particular m.

We can show that

E[hn] = m(Hn � Hm + 1) � m ln(n=m) +m + O(1), with Hn

the nth harmonic number
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Hiring above the median

Candidate i is hired if and only if her score is above the score of the

median of the scores of currently hired candidates.

X (�) = d(h(�) + 1)=2eq
n
�
(1+ O(n�1)) � E[hn] � 3

q
n
�
(1+ O(n�1))

This result follows easily by using previous theorem with

XL(�) = (h(�) + 1)=2 and XU(�) = (h(�) + 3)=2 to lower

and upper bound
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Hiring above the median

n 2 f1000; : : : ; 10000g, M = 100 random permutations for each n

10 3

8
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4

175

125
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50

25

1062

In red: E[hn] with XL; in green: E[hn] with XU ; in yellow:

simulation



Final remarks

Other quantities, e.g. time of the last hiring, etc. can also be

analyzed using techniques from analytic combinatorics

We have also analyzed hiring above the P% best candidate

with the same machinery, actually we have explicit solutions

for H(z ; u)

We have extensions of these results to cope with randomized

hiring strategies

Many variants of the problem are interesting and natural; for

instance, include �ring policies
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Thanks for your attention!


