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Introduction

Problem: Given an array A of n items and a rank m, 1 � m � n,
�nd the mth smallest element in A.
The algorithm should work in (expected) linear time �(n),
irrespective of m.



Introduction

Hoare (1962) invents quickselect: pick some element p from the
array, called the pivot, rearrange the contents of A so that all
elements in A smaller that p are to its left, and all elements larger
than p are to its right; if p is at position j = m it is the sought
element; if j > m proceed recursively in A[1::j � 1], otherwise in
A[j + 1::n].



The Quickselect Algorithm

Elem quickselect(vector<Elem>& A, int m) f
int l = 0; int u = A.size() - 1;

int k, p;

while (l <= u) f
p = select_pivot(A, l, u, m);

swap(A[p], A[l]);

partition(A, l, u, j);

if (m < j) u = j-1;

else if (m > j) l = j+1;

else return A[j];

g g



Analysis of Quickselect

Knuth (1971) shows that

E[Cn;m] = 2 (n + 3 + (n + 1)Hn

�(m + 2)Hm � (n + 3�m)Hn+1�m) ;

with Hn =
P

1�i�n(1=i) = log n +O(1) the nth harmonic number.



Analysis of Quickselect

The expectation characteristic function:

f1(�) = lim
n!1
m=n!�

E[Cn;m]

n

The pth moment characteristic function:

fp(�) = lim
n!1
m=n!�

E

�
C

p
n;m

�
np

For the variance we have

v(�) = lim
n!1
m=n!�

V[Cn;m]

n2
= f2(�)� f 21 (�)



Analysis of Quickselect

Example

Standard quickselect:

f1(�) = 2� 2 � (� log�+ (1� �) log(1� �)

Median-of-three:

f1(�) = 2 + 3�(1� �)



Analysis of Quickselect

Example

Standard quickselect:

f1(0) = f1(1) = 2

f1(1=2) = 2 + 2 log 2 � 3:386

Median-of-three:

f1(0) = f1(1) = 2

f1(1=2) = 11=4 = 2:75



Analysis of Quickselect

A plot of the standard quickselect characteristic function versus
median-of-three characteristic function
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Adaptive Sampling

Adaptive sampling uses a sample of s elements to choose a
pivot for each recursive stage of quickselect.

If the current relative rank is � = m=n, we select the element
of rank r(�) from the sample

Example

Standard quickselect: s = 1; r(�) = 1

Median-of-(2t + 1): s = 2t + 1; r(�) = t + 1

Proportion-from-s: r(�) � � � s



Adaptive Sampling

Example

We are looking the fourth element (m = 4) out of n = 15 elements

9 5 10 12 3 1 11 15 7 2 8 13 6 4 14

� = 4=15 < 1=3



Adaptive Sampling

Example

We are looking the fourth element (m = 4) out of n = 15 elements

9 5 10 12 3 1 11 15 7 2 8 13 6 4 14

� = 4=15 < 1=3



Adaptive Sampling

Example

We are looking the fourth element (m = 4) out of n = 15 elements

9 5 10 12 3 1 11 15 7 2 8 13 6 4 14

� = 4=15 < 1=3



Adaptive Sampling

Example

We are looking the fourth element (m = 4) out of n = 15 elements

7 5 4 6 3 1 8 2 9 15 11 13 12 10 14



Adaptive Sampling

Example

We are looking the fourth element (m = 4) out of n = 15 elements

7 5 4 6 3 1 8 2 9 15 11 13 12 10 14

1=3 < � = 4=8 = 1=2 < 2=3



Adaptive Sampling

Example

We are looking the fourth element (m = 4) out of n = 15 elements

7 5 4 6 3 1 8 2 9 15 11 13 12 10 14

1=3 < � = 4=8 = 1=2 < 2=3



Adaptive Sampling

Example

We are looking the fourth element (m = 4) out of n = 15 elements

1 5 4 2 3 6 8 7 9 15 11 13 12 10 14



Adaptive Sampling

Example

We are looking the fourth element (m = 4) out of n = 15 elements

1 5 4 2 3 6 8 7 9 15 11 13 12 10 14

� = 4=5 > 2=3



Adaptive Sampling

Example

We are looking the fourth element (m = 4) out of n = 15 elements

1 5 4 2 3 6 8 7 9 15 11 13 12 10 14

� = 4=5 > 2=3



Adaptive Sampling

Example

We are looking the fourth element (m = 4) out of n = 15 elements

2 3 1 4 5 6 8 7 9 15 11 13 12 10 14



Adaptive Sampling

An adaptive sampling strategy can be characterized by the value of
r(�) for a �nite set of ` intervals that partition [0; 1], i.e.,
rk = r(�) if � 2 Ik , 1 � k � `.

The formal de�nition of adaptive sampling

0 = a0 < a1 < a2 < � � � < a`�1 < a` = 1;

I1 = [0; a1]; I` = [a`�1; 1];

Ik = (ak�1; ak ] if k > 1 and ak � 1=2,

Ik = [ak�1; ak) if k < ` and ak�1 > 1=2, and

Ik = (ak�1; ak) if ak�1 � 1=2 < ak and 1 < k < `.



Adaptive Sampling

Example

Standard quickselect: s = 1; ` = 1; r1 = 1

Median-of-(2t + 1): s = 2t + 1; ` = 1; r1 = t + 1

Proportion-from-s: ` = s; rk = k

\Pure" proportion-from-s: proportion-from-s + ak = k=s



Adaptive Sampling

A plot of median-of-three characteristic function versus
proportion-from-three f1(�)
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Adaptive Sampling

Theorem (Mart��nez, Panario, Viola (2004))

The expectation characteristic function f (�) � f1(�) of any

adaptive sampling strategy satis�es

f (�) = 1 +
s!

(r(�)� 1)!(s � r(�))!
�"Z 1

�
f (�=x)x r(�)(1� x)s�r(�) dx

+

Z �

0
f

�
�� x

1� x

�
x r(�)�1(1� x)s+1�r(�) dx

#
:



Adaptive Sampling

Theorem

The pth moment characteristic function fp(�) of any adaptive

sampling strategy satis�es

fp(�) =  p(�) +
s!

(r(�)� 1)!(s � r(�))!

�
"Z 1

�
fp(�=x)x

r(�)+p�1(1� x)s�r(�) dx

+

Z �

0
fp

�
�� x

1� x

�
x r(�)�1(1� x)s+p�r(�) dx

#
;

where

 p(�) = �(�1)p
X

0�i<p

�
p

i
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Adaptive Sampling

Theorem

The pth moment characteristic function fp(�) of any adaptive

sampling strategy satis�es

fp(�) =  p(�) +
s!

(r(�)� 1)!(s � r(�))!

�
"Z 1

�
fp(�=x)x

r(�)+p�1(1� x)s�r(�) dx

+

Z �

0
fp

�
�� x

1� x

�
x r(�)�1(1� x)s+p�r(�) dx

#
;

where

 p(�) = �(�1)p
X

0�i<p

�
p

i

�
(�1)i fi (�); f0(�) = 1



Optimal Selection

Floyd and Rivest (1970) proposed an algorithm which uses
sampling to obtain two pivots at each stage and achieves optimal
expected performance.

E[Cn;m] = n +min(m; n �m) + l.o.t.

However, the algorithm is more complicated and uses samples of
size �(n2=3 log n); such a size seems to have been choosen for the
proof to work



Quickselect with Large Samples

Theorem (Mart��nez, Panario, Viola (2004))

Biased proportion-from-s sampling with s !1 achieves optimal

expected performance:

f1(�) = 1 + min(�; 1� �)



Quickselect with Large Samples

Intuition: Using very large sample and proportion-from-s
helps, because we get a very good pivot, very close to the
sought element; we can take s = s(n) as long as s(n) = o(n)

We should make sure that our pivot is very close BUT at the
right side of the sought element! (i.e., slightly to the right if
� < 1=2, slightly to the left if � > 1=2). That's what biased
stands for in the previous theorem



Biased Sampling

De�nition

A family of sampling strategies is biased if, for � < 1=2,

r(�) > s � �+ 1� �



Quickselect with Large Samples

Theorem

For any biased proportion-from-s sampling with s !1

fp(�) = (1 + min(�; 1� �))p

In fact,
Cn;m

n

d�! 1 + min(�; 1� �);

as n!1 and m=n! � 2 [0; 1]



Quickselect with Large Samples

Theorem

For median-of-(2t + 1) sampling with t !1

fp(�) = 2p

Also,
Cn;m

n

d�! 2;

as n!1 and m=n! � 2 [0; 1]



Sketch of the Proof

Some important facts to take into account for the analysis of
quickselect with large samples

We will consider only symmetric strategies:

r(�) = s + 1� r(1� �)

For any symmetric strategy, fp(�) = fp(1� �)

The solution fp of the integral equation is unique; the equation
is of the form fp = T (fp) and the operator T is a contraction

For median-of-(2t + 1), fp(0) = fp(1) = 2p +O(1=t)

For proportion-from-s, if r(�) = 1 for �! 0 then
fp(0) = fp(1) = 1 + p=s +O(1=s2)



Sketch of the Proof

Our goal is to investigate the properties of the solution fp(�) as
s !1,

fp(�) =  p(�) +
s!

(r(�)� 1)!(s � r(�))!

�
"Z 1

�
fp(�=x)x

r(�)�1+p(1� x)s�r(�) dx

+

Z �

0
fp

�
�� x

1� x

�
x r(�)�1(1� x)s�r(�)+p dx

#
;

where

 p(�) = �(�1)p
X

0�i<p

�
p

i

�
(�1)i fi (�); f0(�) = 1



Sketch of the Proof

In the right hand side, we have two integrals of the form

Z b

a

g(x)x r(�)�1(1� x)s�r(�)dx

Recall:

For median-of-(2t + 1), s = 2t + 1 and r = t + 1

For biased proportion-from-s, r(�) � �s



Sketch of the Proof

When r ; s !1
x r(�)�1(1� x)s�r(�)

is highly concentrated around x� = (r � 1)=(s � 1)
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Sketch of the Proof

We can expect thus

Z b

a

g(x)x r(�)�1(1� x)s�r(�)dx ! 0

if x� 62 [a; b], and

Z b

a

g(x)x r(�)�1(1� x)s�r(�)dx

�
Z 1

0
g(x)x r(�)�1(1� x)s�r(�)dx ;

if x� 2 (a; b).
The case were x� = a or x� = b is slightly di�erent.



Sketch of the Proof

Using Laplace's method we can show that

I (r ; s) =
s!

(r(�)� 1)!(s � r(�))!

Z b

a

g(x)x r(�)�1(1� x)s�r(�)dx

=

8><
>:
g(x�) +O(1=s); if a < x� < b,

O(1=s); if x� 62 [a; b]

g(x�)=2 +O(1=s); if x� = a or x� = b

provided g is in C 2 near x�



Sketch of the Proof

We then show that fp(�) = 2p and fp(�) = (1 + min(�; 1� �))p

are the (unique) �xed points for the integral equations
corresponding to median-of-(2t + 1) and biased proportion-from-s,
respectively.

To do that we substitute our \guess" into the right hand side of
the integral equation and use the asymptotic equivalents we've
found before to show that indeed these are the solutions we sought.

The last part of the theorems follows after we check that the
moments characterize the corresponding (deterministic!) limit
distributions



Sketch of the Proof

For instance, for biased proportion-from-s if � < 2, we have
x� = (r � 1)=(s � 1)! �, but x� > �,

s!

(r(�)� 1)!(s � r(�))!
�
"Z 1

�
fp(�=x)x

r(�)�1+p(1� x)s�r(�) dx

+

Z �

0
fp

�
�� x

1� x

�
x r(�)�1(1� x)s�r(�)+p dx

#

= fp(�=x
�)(x�)p +O(1=s) = �p +O(1=s)

Since  p(�) = (1 + �)p � �p for � < 1=2, we prove
fp(�) = (1 + �)p when � < 1=2.



Final Remarks

The error terms in our asymptotic analysis allow us to prove that
for proportion-from-s sampling with s = s(n)

E[Cn;m] = n +min(m; n �m) +O(s) +O(n=s)

+ lower order terms independent of s

V[Cn;m] = �

�
max

�
n � s; n

2

s

��

Therefore the optimal sample size is s(n) = �(
p
n) as this

simultaneously minimizes the lower order terms of the average cost
and the order of magnitude of the variance



Thanks for your attention!


