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Introduction

@ What if the collection is organized in some
multidimensional index? (e.g., a K-d tree, a quadtree, . ..)

@ If K =1 and the collection of n records is stored in some
kind of binary search tree = (expected) time O(logn),
using some little extra space

@ We look for an algorithm that uses space ©(n),
independent of K

@ The data structure for the n records should efficiently
support usual spatial queries, e.g., orthogonal range
search

@ We assume w.l.o.g. the n records are points from [0, 1]¥
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Definition
A K-d tree for a set X c [0, 1]¥ is either the empty tree if X = ()
or a binary tree where:

@ the root contains y € X and some value j, 1 <j < K

@ the left subtree is a K-d tree for X~ = {x € X|x; < y;}

@ the right subtree is a K-d tree for X = {x € X|y; < x;}
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@ In a partial match query we are given a query
q=1(q1,...,qk) wWhere s coordinates are specified and
K — s are “don’t cares”

@ The goal is to find all records in a collection that satisfy the
query

@ Flajolet and Puech (1986) showed that a partial match in a
random standard K-d tree of size n has expected cost
Om*s/X)) ‘where a(x) =1 —x+ ¢p(x), 0 < d(x) < 0.07

@ Similar results have been proved for other variants of K-d
trees, quadtrees, etc.
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@ Orthogonal range queries ask for all records falling inside
an hyperrectangle (with sides parallel to the axis); their
expected cost has been analyzed by Chanzy, Devroye and
Zamora-Cura (2001) and Duch and Martinez (2002):

1/K

n - volume of query + n*"/®) . perimeter of query + l.o.t.



The algorithm

Our algorithm has three main steps

@ The main loop starts with a strip x; € [low, high] = [0, 1]
and explores the K-d tree, reducing the strip in such a way
that it always contains the i-th record along coordinate j

@ When the main loop finishes, it has found the sought
element (if it is stored in a node that discriminates w.r.t. j)
or the strip does only contain nodes discriminating w.r.t. a
coordinate # j; if needed, the second step performs an
orthogonal range search to locate all records within the
strip

@ A conventional selection algorithm is used to find the
sought element among the elements reported in the
previous step



The algorithm: main loop

both subtrees
must be explored

low high



The algorithm: main loop

only right subtree

C/ must be explored
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The algorithm: main loop

find the rank of the element
along coordinate j =

count how many

elements are below




The algorithm: main loop

update the strip [low, high] and

continue as in previous case exploring
one subtree

low high



Analysis

Hypothesis for the analysis: The n records are independently
drawn from a continuous distribution in [0, 1]¥ (standard
probability model for random K-d tree)
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Five key observations

@ The number of visited nodes in the main loop is at most the
number of nodes visited by an orthogonal range search
with the strip [low, high]
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Five key observations

@ The number of visited nodes in the main loop is at most the
number of nodes visited by an orthogonal range search
with the strip [low, high]

@ The cost of a call to BELOW is that of a partial match with a
single specified coordinate

© The expected number of calls to BELOW is ©(logn)

@ The main loop finds the sought point when the node
discriminates along j-th coordinate or the strip [low, high]
contains it and no point that discriminates with respect to j

© The strip contains ©(1) points on average



Analysis

Theorem

The expected cost T,, of KDSELECT to select the i-th smallest
element along the j-th coordinate in a random relaxed K-d tree
of size n, for random uniformly distributed i andj, i ~ Unif(1,n),
j~ Unif(0,K—1), is

T, =0O(n%*logn),
where o« = «(1/K) satisfies 1/K < a(K) < 1 forall K > 2.

a(x)zé(\/ﬁq)




Analysis

To achieve a good expected performance for a call to BELOw, it
is necessary that each node contains the size of the subtree
rooted at that tree

procedure BELOW(T, j, z)
if T =0 then return 0
if T.discr #j then
1 if T.key[j] < z,
0 otherwise.
return BELOW(z,j, T.left) + BELOW(z,j, T.right) + ¢
else
if z < T.keylj] then return BELOW(z,]j, T.left)
else return T.left.size + BELOW(z,j, T.right)

C —




Analysis: A Refinement

Let C,, ;1 denote the expected cost of a call BELOW(T,j,z) in a
random relaxed K-d tree T of size n when exactly i — 1 of its

elements satisfy x; < z.
Then,forn>0and1 <i<n+1
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Analysis: A Refinement




Analysis: A Refinement

What’s the prob. there are exactly k—1 elements here? (*)



Analysis: A Refinement
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Analysis: A Refinement

Hopes to solve the recurrence for C,, ; are dim ...
However we can prove

fix)=  lim  Cpi/n%

n—oo,i/n—x
for 0 < x < 1 exists and the recurrence leads to

f(x) = K—;(K_” U:f(?:i) (1 —u)"‘du—i—J1 f(%) u® du] .

o1 x




Analysis: A Refinement

The equation for f(x) can be solved yielding
f(x) =n-(x(1=x)*%,  0<x<H,

for some constant n. Determination of n follows from

r f(x)dx =p

0

where f3 is the constant factor of the main order term in the
expected cost of a random partial match:

CT2h+2)
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Analysis: A Refinement

From the analysis of f(x) it follows
X
Cri=1- ( i+ 1 —i)) .

For standard K-d trees a similar formula holds, now with « the
characteristic exponent in the expected cost of partial matches
in standard K-d trees and the constant 1 which depends also
on j, the specified coordinate.



Analysis: A Refinement

The refined analysis of BELOW is the building block for a refined
analysis of KDSELECT. We can show that the expected cost
Tn 1 to find the i-th record along some given coordinate in a
random relaxed K-d tree of size n is

Tni ~n®(f(i/n) In() +f(1 —i/n) In(n+1—-1) —f(i/n)) + o(n%),

with f(x) =1 - (x(1 —x))*/2.



Analysis: A Refinement
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A plot of experimental values of T,, xn/n* (thick line) as a
function of x = i/n, versus the theoretical predictions (thin line),
for relaxed 2-d trees.



Final remarks

@ A simple algorithm with sublinear expected cost

@ It can easily be extended to many other multidimensional
data structures

@ Very little overhead: storing the size of each subtree is not
very space consuming and it can also be sucessfully used
for balancing (e.g., randomized relaxed K-d trees)

@ Experiments show that it is competitive in practice
compared to alternative solutions, for reasonably low
dimensions (when K grows, «(K) — 1)



Thanks for your attention!



