On Partial Sorting

Conrado Martinez

Univ. Politecnica de Catalunya, Spain

10th Seminar on the Analysis of Algorithms
MSRI, Berkeley, U.S.A.
June 2004

Conrado Martinez On Partial Sorting

Introduction

o Introduction

Conrado Martinez On Partial Sorting

Introduction

Introduction

o Partial sorting: Given an array A of n elements and a value
1 < m < n, rearrange A so that its first m positions contain
the m smallest elements in ascending order

Conrado Martinez On Partial Sorting

Introduction

Introduction

o Partial sorting: Given an array A of n elements and a value
1 < m < n, rearrange A so that its first m positions contain
the m smallest elements in ascending order

e For m = ©(n) it might be OK to sort the array; otherwise, we
are doing too much work

Conrado Martinez On Partial Sorting

Introduction

A Few Common Solutions

o Idea #1: Partial heapsort

e Build a heap with the n elements and perform m extractions of
the heap's minimum

Conrado Martinez On Partial Sorting

Introduction

A Few Common Solutions

o Idea #1: Partial heapsort

e Build a heap with the n elements and perform m extractions of
the heap's minimum
o The worst-case cost is ©(n + mlog n)

Conrado Martinez On Partial Sorting

Introduction

A Few Common Solutions

@ |dea #1: Partial heapsort
e Build a heap with the n elements and perform m extractions of

the heap's minimum
o The worst-case cost is ©(n + mlog n)
e This the “traditonal” implementation of C++ STL's

partial_sort

Conrado Martinez On Partial Sorting

Introduction

A Few Common Solutions

o Idea #2: On-line selection

e Build a heap with the m first elements; then scan the
remaining n — m elements and update the heap as needed;
finally extract the m elements from the heap

Conrado Martinez On Partial Sorting

Introduction

A Few Common Solutions

o Idea #2: On-line selection
o Build a heap with the m first elements; then scan the
remaining n — m elements and update the heap as needed;
finally extract the m elements from the heap
o The worst-case cost is ©(nlog m)

Conrado Martinez On Partial Sorting

Introduction

A Few Common Solutions

o Idea #2: On-line selection
o Build a heap with the m first elements; then scan the
remaining n — m elements and update the heap as needed;
finally extract the m elements from the heap
o The worst-case cost is ©(nlog m)
o Not very attractive unless m is very small or if used in on-line
settings

Conrado Martinez On Partial Sorting

Introduction

A Few Common Solutions

o ldea #3: Quickselsort

e Find the mth smallest element with quickselect, then quicksort
the preceding m — 1 elements

Conrado Martinez On Partial Sorting

Introduction

A Few Common Solutions

o ldea #3: Quickselsort

e Find the mth smallest element with quickselect, then quicksort
the preceding m — 1 elements
o The average cost is ©(n + mlog m)

Conrado Martinez On Partial Sorting

Introduction

A Few Common Solutions

o ldea #3: Quickselsort
e Find the mth smallest element with quickselect, then quicksort
the preceding m — 1 elements
o The average cost is ©(n + mlog m)
o Uses two basic algorithms widely available (and highly tuned
for performance in standard libraries)

Conrado Martinez On Partial Sorting

Partial Quicksort

@ Partial Quicksort

Conrado Martinez On Partial Sorting

Partial Quicksort

Partial Quicksort

void partial_quicksort(vector<Elem>& A,
int i, int j, int m) {
if (1 < 3§) {

int p = get_pivot(4, i, j);
swap(A[p]l, A[11);
int k;
partition(A, i, j, k);
partial quicksort(A, i, k - 1, m);
if (k <m - 1)

partial_quicksort(A, k + 1, j, m);

b}

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis

@ Probability that the selected pivot is the k-th of n elements:
Tn,k

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis

@ Probability that the selected pivot is the k-th of n elements:
Tn,k

@ Average number of comparisons P, p, to sort the m smallest
elements out of n:

n
Pn,m:n_1+ Z 7"'n,k"Dk—l,m
k=m+1

m
+ Zﬁn,k il it A5 gt
k=1

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis

@ For m = n, partial quicksort = quicksort; let g, denote the
average number of comparisons used by quicksort

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis

@ For m = n, partial quicksort = quicksort; let g, denote the
average number of comparisons used by quicksort

@ Hence,

Pn,m:”_1+ Z Tn,k+1 * 9k
0<k<m

n m
+ Z W e = 1P Zﬂ'n,k S — (1)
k=m+1 =il

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis

@ The recurrence for P, , is the same as for quickselect but the
toll function is

thm=n— 1+ g Tn,k+1 * Gk
0<k<m

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis

@ The recurrence for P, , is the same as for quickselect but the
toll function is

thm=n— 1+ g Tn,k+1 * Gk
0<k<m

@ Up to now, everything holds no matter which pivot selection
scheme do we use; for the standard variant we must take
Tk =1/n, forall1 <k <n

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis: Generating Functions

@ Define the two BGFs

P(z,u) = Z z P ? 'l

n>01<m<n

T(z,u) = Z Z i i

n>01<m<n

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis: Generating Functions

@ Define the two BGFs

P(z,u) = Z z P ? 'l

n>01<m<n

T(z,u) = Z Z i i

n>01<m<n

@ Then the recurrence (1) translates to

OP _ P(z,u) n uP(z,u) +8l
0z 1—=z 1—uz 0z

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis: Generating Functions

o Let P(z,u) = F(z,u) + S(z, u), where F(z, u) corresponds to
the selection part of the toll function (n — 1) and S(z, u) to
the sorting part (>, qi/n)

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis: Generating Functions

o Let P(z,u) = F(z,u) + S(z, u), where F(z, u) corresponds to
the selection part of the toll function (n — 1) and S(z, u) to
the sorting part (>, qi/n)

o Let

Te(z,u) = Z Z (n—1)z"u"

n>01<m<n
T . 1 n,m
=Y X L[3 a)e
n>01<m<n 0<k<m

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis: Generating Functions

@ Then, each of F(z,u) and S(z, u) satisfies a differential
equation like (2) and

1
Flz.u) = a5 a =2
X {/(1 —z)(1 —zu)% dz + K;:}
S(z,u) = !

(1—2)(1— zu)
. {/(1—2)(1—211)8;25 dz+K5}

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis: Generating Functions

o F(z,u) satisfies exactly the same differential equation as
standard quickselect; it is well known (Knuth, 1971) that for
1< m<n,

Fom = [2"u™F (2, u) = 2(n 434 (n+1)H,

— (M +2)Hp — (n+3— m)Hn+1_m>

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis: Generating Functions

@ To compute S(z, u), we need first to determine Ts(z, u)

0Ts u Q(uz)

0z 1—z1-—uz

where Q(z) = 3,50 qn2z".

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis: Generating Functions

@ To compute S(z, u), we need first to determine Ts(z, u)
0Ts u Q(uz)

0z 1—z1-—uz

where Q(z) = 3,50 qn2z".

@ With the toll function n — 1, we solve the recurrence for
quicksort to get

Q) = _22)2 <|n . e - —z>

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis: Generating Functions

@ Hence,
S(z,u) = (1- z)(ll — uz) {/ 4 Quz) dz + KS}
B 2 o1
(1—uz)?(1-2) "1z
2 1
(1-2z)(1—wuz) 1—uz

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis: Generating Functions

o Extracting coefficients S, , = [2"u™]|S(z, u)

Spm = 2(m+ 1}Hy, — 6m -+ 2H;

Conrado Martinez On Partial Sorting

Partial Quicksort

The Analysis: Generating Functions

o Extracting coefficients S, , = [2"u™]|S(z, u)

Spm = 2(m+ 1}Hy, — 6m -+ 2H;
@ And finally

Pn,m = 2n+2(n+ 1)Hn = 2(n+3 = m)HnJrl,m
—6m+6

Conrado Martinez On Partial Sorting

Partial Quicksort

Partial quicksort vs. quickselsort

@ The average number of comparisons made by quickselsort is

Qmm — Fn,m + dm-1

Conrado Martinez On Partial Sorting

Partial Quicksort

Partial quicksort vs. quickselsort

@ The average number of comparisons made by quickselsort is

Qmm — Fn,m + dm-1

@ Using partial quicksort we save
@nm — Pom =2m—4H,;, - 2

comparisons on the average

Conrado Martinez On Partial Sorting

Partial Quicksort

Other quantities

@ To analyze other quantites, e.g., the average number of
exchanges, we set up solve recurrence (1) with the toll
function

1 2 : /
t = . —
n,m a n*'b%'n 9k
0<k<m

and with g/, the solution of

2
q;:a‘n—i-b—i—; Z Tk
0<k<n

Conrado Martinez On Partial Sorting

Partial Quicksort

Partial quicksort vs. quickselsort

@ If we compare partial quicksort with quickselsort w.r.t. to the
generalized toll function we obtain that difference is

2am+ (b—3a)H, +a—b

Conrado Martinez On Partial Sorting

Partial Quicksort

Partial quicksort vs. quickselsort

@ If we compare partial quicksort with quickselsort w.r.t. to the
generalized toll function we obtain that difference is

2am+ (b—3a)H, +a—b

o If we consider exchanges then a =1/6 and b = —1/3; partial
quicksort saves on average

m 5 1
= IH, 4+
3 6 +2

Conrado Martinez On Partial Sorting

Partial Quicksort

Final remarks on partial quicksort

o Partial quicksort avoids some of the redundant comparisons,
exchanges, ... made by quickselsort

Conrado Martinez On Partial Sorting

Partial Quicksort

Final remarks on partial quicksort

o Partial quicksort avoids some of the redundant comparisons,
exchanges, ... made by quickselsort

@ It is easily implemented

Conrado Martinez On Partial Sorting

Partial Quicksort

Final remarks on partial quicksort

o Partial quicksort avoids some of the redundant comparisons,
exchanges, ... made by quickselsort

@ It is easily implemented

@ It benefits from standard optimization techniques: sampling,
recursion removal, recursion cutoff on small subfiles, improved
partitioning schems, etc.

Conrado Martinez On Partial Sorting

Partial Quicksort

Final remarks on partial quicksort

o Partial quicksort avoids some of the redundant comparisons,
exchanges, ... made by quickselsort

@ It is easily implemented

@ It benefits from standard optimization techniques: sampling,
recursion removal, recursion cutoff on small subfiles, improved
partitioning schems, etc.

@ The same idea can be applied to similar algorithms like radix
sorting and quicksort for strings

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

© Generalized Partial Sorting: Chunksort

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Generalized partial sorting

o Given J; = [l1,], Jo = [lo,], ..., Jp = [{p, up] the goal is
to rearrange the array A[l..n| so that

A[l..€1 —].] < A[€1..u1] < A[Ul +1..0p —].] <...
< Allp..up] < Alup + 1..n]

and each A[(;..uj], 1 < j < p, is sorted in ascending order

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Generalized partial sorting

o Given J; = [l1,], Jo = [lo,], ..., Jp = [{p, up] the goal is
to rearrange the array A[l..n| so that

A[l..€1 —].] < A[€1..u1] < A[Ul +1..0p —].] <...
< Allp..up] < Alup + 1..n]

and each A[(;..uj], 1 < j < p, is sorted in ascending order

@ The same principles can be used to rearrange and “cluster”
the items in A given p key intervals [K1, K{], [K2, K3, ...,
[Kp: Kyl

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Chunksort

void chunksort(vector<T>& A, vector<int>& I,
int i, int j, int 1, int u) {
if (i >= j) return;
if (1 <=w {
int k;
partition(A, i, j, k);
int r = locate(I, 1, u, k);
// locate the value r such that /[r] < k < |/
if (r%2==0 {//r =2t = Ir] = u<
chunksort(A, I, i, k - 1, 1, r);
chunksort(A, I, k + 1, j, r + 1, u);
Yelse {//r =2t — 1 =] = 4 < k < u
// this can be optimized
chunksort(A, I, i, k - 1, 1, r)
chunksort(A, I, k + 1, j, r, u;

P

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Chunksort

e With p=1, ¢; =1 and u; = n, chunksort sorts the array; it is
equivalent to quicksort

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Chunksort

e With p=1, ¢; =1 and u; = n, chunksort sorts the array; it is

equivalent to quicksort
@ Setting p =1 and ¢; = u; = m; chunksort selects the mth

smallest element in A

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Chunksort

e With p=1, ¢; =1 and u; = n, chunksort sorts the array; it is
equivalent to quicksort

@ Setting p =1 and ¢; = u; = m; chunksort selects the mth
smallest element in A

e If p=1,/¢; =1 and u3 = m < n, chunksort partially sorts the
array

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Chunksort

e With p=1, ¢; =1 and u; = n, chunksort sorts the array; it is
equivalent to quicksort

@ Setting p =1 and ¢; = u; = m; chunksort selects the mth
smallest element in A

e If p=1,/¢; =1 and u3 = m < n, chunksort partially sorts the
array

@ We can also select multiple ranks by setting ¢; = u; for
1 < j < p; chunksort behaves like multiple quickselect then

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Chunksort

@ Let my = ugx — fx + 1 denote the size of the kth interval,
my = lx11 — ug — 1 the size of the kth gap, and
m=my+---+mp

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Chunksort

@ Let my = ugx — fx + 1 denote the size of the kth interval,
my = lx11 — ug — 1 the size of the kth gap, and
m=my+---+mp

@ Let C, denote the average number of key comparisons needed

by chunksort to sort the keys in the intervals Ji, J, ..., Jp.
Then

Ch=2n+u,— 4 +2(n+1)H, — 7Tm— 2+ 15p
p—1
— 20y + 2)Hp, — 2(n+ 3 — tp)Hns1-u, — 2> (M + 5)Hm,
k=1

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Chunksort: Further examples

o “Filtering out outliers”: p =1, {1 = an, u; = (n, with
O<a<pf<l—ax<l

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Chunksort: Further examples

o “Filtering out outliers”: p =1, {1 = an, u; = (n, with
O<a<pf<l—ax<l

o Let Qn(a, B) the number of comparisons needed to solve the
problem using quickselect (twice) plus quicksort

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Chunksort: Further examples

o “Filtering out outliers”: p =1, {1 = an, u; = (n, with

O<a<pf<l—ax<l
o Let Qn(a, B) the number of comparisons needed to solve the
problem using quickselect (twice) plus quicksort

@ Then
Qn(c, B) — Co = 2(1 — 2a + B)n + o(n)

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Chunksort: Further examples

o “Selecting an a-cluster”: p=1, {1 = an— f(n),
up = an+ f(n), for some f(n) = o(n/logn) and 0 < o < 1/2

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Chunksort: Further examples

o “Selecting an a-cluster”: p=1, {1 = an— f(n),
up = an+ f(n), for some f(n) = o(n/logn) and 0 < o < 1/2
@ Using chunksort instead of quickselect+quicksort saves

2(1 —a)n+6f(n)

comparisons

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Final remarks and open problems

@ Partial quicksort and chunksort are nice examples of the
simplicity and elegance of the divide-and-conquer principle

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Final remarks and open problems

@ Partial quicksort and chunksort are nice examples of the
simplicity and elegance of the divide-and-conquer principle

@ Their analysis poses the same type of mathematical challenges
as quicksort and quickselect do

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Final remarks and open problems

@ Partial quicksort and chunksort are nice examples of the
simplicity and elegance of the divide-and-conquer principle

@ Their analysis poses the same type of mathematical challenges
as quicksort and quickselect do

@ The analysis of partial quicksort is basically identical to that
of quickselect, but with a different toll function

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Final remarks and open problems

o Likewise, chunksort can be analyzed using the same
techniques as in the analysis of multiple quickselect (e.g.,
Prodinger, 1995)

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Final remarks and open problems

o Likewise, chunksort can be analyzed using the same
techniques as in the analysis of multiple quickselect (e.g.,
Prodinger, 1995)

@ Variants of these algorithms, like median-of-(2t 4 1) pivot
selection, should be used in practice; but their analysis is
probably difficult and cumbersome

Conrado Martinez On Partial Sorting

Generalized Partial Sorting: Chunksort

Final remarks and open problems

o Likewise, chunksort can be analyzed using the same
techniques as in the analysis of multiple quickselect (e.g.,
Prodinger, 1995)

@ Variants of these algorithms, like median-of-(2t 4 1) pivot
selection, should be used in practice; but their analysis is
probably difficult and cumbersome

@ More real applications for chunksort?

Conrado Martinez On Partial Sorting

	Introduction
	Partial Quicksort
	Generalized Partial Sorting: Chunksort

