On Partial Sorting

Conrado Martínez

Univ. Politècnica de Catalunya, Spain

10th Seminar on the Analysis of Algorithms MSRI, Berkeley, U.S.A.

June 2004

- Introduction
- Partial Quicksort
- Generalized Partial Sorting: Chunksort

Introduction

- Partial sorting: Given an array A of n elements and a value $1 \le m \le n$, rearrange A so that its first m positions contain the m smallest elements in ascending order
- For $m = \Theta(n)$ it might be OK to sort the array; otherwise, we are doing too much work

Introduction

- Partial sorting: Given an array A of n elements and a value $1 \le m \le n$, rearrange A so that its first m positions contain the m smallest elements in ascending order
- For $m = \Theta(n)$ it might be OK to sort the array; otherwise, we are doing too much work

- Idea #1: Partial heapsort
 - Build a heap with the *n* elements and perform *m* extractions of the heap's minimum
 - The worst-case cost is $\Theta(n + m \log n)$
 - This the "traditional" implementation of C++ STL's partial_sort

- Idea #1: Partial heapsort
 - Build a heap with the n elements and perform m extractions of the heap's minimum
 - The worst-case cost is $\Theta(n + m \log n)$
 - This the "traditional" implementation of C++ STL's partial_sort

- Idea #1: Partial heapsort
 - Build a heap with the n elements and perform m extractions of the heap's minimum
 - The worst-case cost is $\Theta(n + m \log n)$
 - This the "traditonal" implementation of C++ STL's partial_sort

- Idea #2: On-line selection
 - Build a heap with the m first elements; then scan the remaining n - m elements and update the heap as needed; finally extract the m elements from the heap
 - The worst-case cost is $\Theta(n \log m)$
 - Not very attractive unless m is very small or if used in on-line settings

- Idea #2: On-line selection
 - Build a heap with the *m* first elements; then scan the remaining *n* – *m* elements and update the heap as needed; finally extract the *m* elements from the heap
 - The worst-case cost is $\Theta(n \log m)$
 - Not very attractive unless m is very small or if used in on-line settings

- Idea #2: On-line selection
 - Build a heap with the m first elements; then scan the remaining n - m elements and update the heap as needed; finally extract the m elements from the heap
 - The worst-case cost is $\Theta(n \log m)$
 - Not very attractive unless m is very small or if used in on-line settings

- Idea #3: Quickselsort
 - Find the mth smallest element with quickselect, then quicksort the preceding m-1 elements
 - The average cost is $\Theta(n + m \log m)$
 - Uses two basic algorithms widely available (and highly tuned for performance in standard libraries)

- Idea #3: Quickselsort
 - Find the mth smallest element with quickselect, then quicksort the preceding m-1 elements
 - The average cost is $\Theta(n + m \log m)$
 - Uses two basic algorithms widely available (and highly tuned for performance in standard libraries)

- Idea #3: Quickselsort
 - ullet Find the mth smallest element with quickselect, then quicksort the preceding m-1 elements
 - The average cost is $\Theta(n + m \log m)$
 - Uses two basic algorithms widely available (and highly tuned for performance in standard libraries)

- Introduction
- 2 Partial Quicksort
- Generalized Partial Sorting: Chunksort

Partial Quicksort

```
void partial_quicksort(vector<Elem>& A,
                      int i, int j, int m) {
    if (i < j) {
       int p = get_pivot(A, i, j);
       swap(A[p], A[1]);
       int k;
       partition(A, i, j, k);
       partial_quicksort(A, i, k - 1, m);
       if (k < m - 1)
          partial_quicksort(A, k + 1, j, m);
```

• Probability that the selected pivot is the k-th of n elements:

$$\pi_{n,k}$$

 Average number of comparisons P_{n,m} to sort the m smallest elements out of n:

$$P_{n,m} = n - 1 + \sum_{k=m+1}^{n} \pi_{n,k} \cdot P_{k-1,m} + \sum_{k=1}^{m} \pi_{n,k} \cdot (P_{k-1,k-1} + P_{n-k,m-k})$$

- Probability that the selected pivot is the k-th of n elements: $\pi_{n,k}$
- Average number of comparisons $P_{n,m}$ to sort the m smallest elements out of n:

$$P_{n,m} = n - 1 + \sum_{k=m+1}^{n} \pi_{n,k} \cdot P_{k-1,m} + \sum_{k=1}^{m} \pi_{n,k} \cdot (P_{k-1,k-1} + P_{n-k,m-k})$$

- For m = n, partial quicksort \equiv quicksort; let q_n denote the average number of comparisons used by quicksort
- Hence,

$$P_{n,m} = n - 1 + \sum_{0 \le k < m} \pi_{n,k+1} \cdot q_k$$

$$+ \sum_{k=m+1}^{n} \pi_{n,k} \cdot P_{k-1,m} + \sum_{k=1}^{m} \pi_{n,k} \cdot P_{n-k,m-k}$$
(1)

- For m = n, partial quicksort \equiv quicksort; let q_n denote the average number of comparisons used by quicksort
- Hence,

$$P_{n,m} = n - 1 + \sum_{0 \le k < m} \pi_{n,k+1} \cdot q_k$$

$$+ \sum_{k=m+1}^{n} \pi_{n,k} \cdot P_{k-1,m} + \sum_{k=1}^{m} \pi_{n,k} \cdot P_{n-k,m-k}$$
 (1)

• The recurrence for $P_{n,m}$ is the same as for quickselect but the toll function is

$$t_{n,m} = n - 1 + \sum_{0 \le k < m} \pi_{n,k+1} \cdot q_k$$

• Up to now, everything holds no matter which pivot selection scheme do we use; for the standard variant we must take $\pi_{n,k} = 1/n$, for all $1 \le k \le n$

• The recurrence for $P_{n,m}$ is the same as for quickselect but the toll function is

$$t_{n,m} = n - 1 + \sum_{0 \le k \le m} \pi_{n,k+1} \cdot q_k$$

• Up to now, everything holds no matter which pivot selection scheme do we use; for the standard variant we must take $\pi_{n,k} = 1/n$, for all $1 \le k \le n$

Define the two BGFs

$$P(z, u) = \sum_{n \ge 0} \sum_{1 \le m \le n} P_{n,m} z^n u^m$$
$$T(z, u) = \sum_{n \ge 0} \sum_{1 \le m \le n} t_{n,m} z^n u^m$$

Then the recurrence (1) translates to

$$\frac{\partial P}{\partial z} = \frac{P(z, u)}{1 - z} + \frac{u P(z, u)}{1 - uz} + \frac{\partial T}{\partial z}$$
(2)

Define the two BGFs

$$P(z, u) = \sum_{n \ge 0} \sum_{1 \le m \le n} P_{n,m} z^n u^m$$
$$T(z, u) = \sum_{n \ge 0} \sum_{1 \le m \le n} t_{n,m} z^n u^m$$

• Then the recurrence (1) translates to

$$\frac{\partial P}{\partial z} = \frac{P(z, u)}{1 - z} + \frac{u P(z, u)}{1 - uz} + \frac{\partial T}{\partial z}$$
 (2)

- Let P(z, u) = F(z, u) + S(z, u), where F(z, u) corresponds to the selection part of the toll function (n 1) and S(z, u) to the sorting part $(\sum_k q_k/n)$
- Let

$$T_{F}(z, u) = \sum_{n \ge 0} \sum_{1 \le m \le n} (n - 1) z^{n} u^{m}$$
$$T_{S}(z, u) = \sum_{n \ge 0} \sum_{1 \le m \le n} \frac{1}{n} \left(\sum_{0 \le k < m} q_{k} \right) z^{n} u^{m}$$

- Let P(z, u) = F(z, u) + S(z, u), where F(z, u) corresponds to the selection part of the toll function (n-1) and S(z, u) to the sorting part $(\sum_k q_k/n)$
- Let

$$T_F(z, u) = \sum_{n \ge 0} \sum_{1 \le m \le n} (n - 1) z^n u^m$$

$$T_S(z, u) = \sum_{n \ge 0} \sum_{1 \le m \le n} \frac{1}{n} \left(\sum_{0 \le k \le m} q_k \right) z^n u^m$$

• Then, each of F(z, u) and S(z, u) satisfies a differential equation like (2) and

$$F(z,u) = \frac{1}{(1-z)(1-zu)}$$

$$\times \left\{ \int (1-z)(1-zu) \frac{\partial T_F}{\partial z} dz + K_F \right\}$$

$$S(z,u) = \frac{1}{(1-z)(1-zu)}$$

$$\times \left\{ \int (1-z)(1-zu) \frac{\partial T_S}{\partial z} dz + K_S \right\}$$

• F(z, u) satisfies exactly the same differential equation as standard quickselect; it is well known (Knuth, 1971) that for $1 \le m \le n$,

$$F_{n,m} = [z^n u^m] F(z, u) = 2 \Big(n + 3 + (n+1) H_n - (m+2) H_m - (n+3-m) H_{n+1-m} \Big)$$

• To compute S(z, u), we need first to determine $T_S(z, u)$

$$\frac{\partial T_S}{\partial z} = \frac{u}{1-z} \frac{Q(uz)}{1-uz}$$

where
$$Q(z) = \sum_{n \geq 0} q_n z^n$$
.

• With the toll function n-1, we solve the recurrence for quicksort to get

$$Q(z) = \frac{2}{(1-z)^2} \left(\ln \frac{1}{1-z} - z \right)$$

• To compute S(z, u), we need first to determine $T_S(z, u)$

$$\frac{\partial T_S}{\partial z} = \frac{u}{1-z} \frac{Q(uz)}{1-uz}$$

where $Q(z) = \sum_{n \geq 0} q_n z^n$.

• With the toll function n-1, we solve the recurrence for quicksort to get

$$Q(z) = \frac{2}{(1-z)^2} \left(\ln \frac{1}{1-z} - z \right)$$

Hence,

$$S(z, u) = \frac{1}{(1-z)(1-uz)} \left\{ \int u \, Q(uz) \, dz + K_S \right\}$$

$$= \frac{2}{(1-uz)^2 (1-z)} \ln \frac{1}{1-uz}$$

$$+ \frac{2}{(1-z)(1-uz)} \ln \frac{1}{1-uz}$$

$$- 4 \frac{uz}{(1-uz)^2 (1-z)}$$

• Extracting coefficients $S_{n,m} = [z^n u^m] S(z, u)$

$$S_{n,m} = 2(m+1)H_m - 6m + 2H_m$$

And finally

$$P_{n,m} = 2n + 2(n+1)H_n - 2(n+3-m)H_{n+1-m} - 6m + 6$$

• Extracting coefficients $S_{n,m} = [z^n u^m] S(z, u)$

$$S_{n,m} = 2(m+1)H_m - 6m + 2H_m$$

And finally

$$P_{n,m} = 2n + 2(n+1)H_n - 2(n+3-m)H_{n+1-m} - 6m + 6$$

Partial quicksort vs. quickselsort

• The average number of comparisons made by quickselsort is

$$Q_{n,m} = F_{n,m} + q_{m-1}$$

Using partial quicksort we save

$$Q_{n,m} - P_{n,m} = 2m - 4H_m + 2$$

comparisons on the average

Partial quicksort vs. quickselsort

• The average number of comparisons made by quickselsort is

$$Q_{n,m} = F_{n,m} + q_{m-1}$$

Using partial quicksort we save

$$Q_{n,m} - P_{n,m} = 2m - 4H_m + 2$$

comparisons on the average

Other quantities

 To analyze other quantites, e.g., the average number of exchanges, we set up solve recurrence (1) with the toll function

$$t_{n,m} = a \cdot n + b + \frac{1}{n} \sum_{0 \le k < m} q'_k$$

and with q'_n the solution of

$$q'_n = a \cdot n + b + \frac{2}{n} \sum_{0 \le k \le n} q'_k$$

Partial quicksort vs. quickselsort

 If we compare partial quicksort with quickselsort w.r.t. to the generalized toll function we obtain that difference is

$$2am + (b-3a)H_m + a - b$$

• If we consider exchanges then a = 1/6 and b = -1/3; partial quicksort saves on average

$$\frac{m}{3} - \frac{5}{6}H_m + \frac{1}{2}$$

Partial quicksort vs. quickselsort

 If we compare partial quicksort with quickselsort w.r.t. to the generalized toll function we obtain that difference is

$$2am + (b - 3a)H_m + a - b$$

• If we consider exchanges then a=1/6 and b=-1/3; partial quicksort saves on average

$$\frac{m}{3} - \frac{5}{6}H_m + \frac{1}{2}$$

- Partial quicksort avoids some of the redundant comparisons, exchanges, ... made by quickselsort
- It is easily implemented
- It benefits from standard optimization techniques: sampling, recursion removal, recursion cutoff on small subfiles, improved partitioning schems, etc.
- The same idea can be applied to similar algorithms like radix sorting and quicksort for strings

- Partial quicksort avoids some of the redundant comparisons, exchanges, ... made by quickselsort
- It is easily implemented
- It benefits from standard optimization techniques: sampling, recursion removal, recursion cutoff on small subfiles, improved partitioning schems, etc.
- The same idea can be applied to similar algorithms like radix sorting and quicksort for strings

- Partial quicksort avoids some of the redundant comparisons, exchanges, ... made by quickselsort
- It is easily implemented
- It benefits from standard optimization techniques: sampling, recursion removal, recursion cutoff on small subfiles, improved partitioning schems, etc.
- The same idea can be applied to similar algorithms like radix sorting and quicksort for strings

- Partial quicksort avoids some of the redundant comparisons, exchanges, ... made by quickselsort
- It is easily implemented
- It benefits from standard optimization techniques: sampling, recursion removal, recursion cutoff on small subfiles, improved partitioning schems, etc.
- The same idea can be applied to similar algorithms like radix sorting and quicksort for strings

- Introduction
- Partial Quicksort
- 3 Generalized Partial Sorting: Chunksort

Generalized partial sorting

• Given $J_1=[\ell_1,u_1]$, $J_2=[\ell_2,u_2]$, ..., $J_p=[\ell_p,u_p]$ the goal is to rearrange the array A[1..n] so that

$$A[1..\ell_1 - 1] \le A[\ell_1..u_1] \le A[u_1 + 1..\ell_2 - 1] \le \cdots$$

 $\le A[\ell_p..u_p] \le A[u_p + 1..n]$

and each $A[\ell_j..u_j]$, $1 \le j \le p$, is sorted in ascending order

• The same principles can be used to rearrange and "cluster" the items in A given p key intervals $[K_1, K'_1], [K_2, K'_2], \ldots, [K_p, K'_p]$

Generalized partial sorting

• Given $J_1=[\ell_1,u_1],\ J_2=[\ell_2,u_2],\ \dots,\ J_p=[\ell_p,u_p]$ the goal is to rearrange the array A[1..n] so that

$$A[1..\ell_1 - 1] \le A[\ell_1..u_1] \le A[u_1 + 1..\ell_2 - 1] \le \cdots$$

 $\le A[\ell_p..u_p] \le A[u_p + 1..n]$

- and each $A[\ell_j..u_j]$, $1 \le j \le p$, is sorted in ascending order
- The same principles can be used to rearrange and "cluster" the items in A given p key intervals $[K_1, K'_1]$, $[K_2, K'_2]$, ..., $[K_p, K'_p]$

```
void chunksort(vector<T>& A, vector<int>& I,
                int i, int j, int l, int u) {
  if (i >= j) return;
  if (1 <= u) {
    int k:
    partition(A, i, j, k);
    int r = locate(I, l, u, k);
    // locate the value r such that I[r] < k < I[r+1]
    if (r \% 2 == 0) \{ // r = 2t \implies I[r] = u_t \le k < \ell_{t+1} \}
      chunksort(A, I, i, k-1, l, r):
      chunksort(A, I, k + 1, j, r + 1, u);
    \} else \{ // r = 2t - 1 \implies I[r] = \ell_t < k < u_t \}
      // this can be optimized
      chunksort(A, I, i, k - 1, l, r)
      chunksort(A, I, k + 1, j, r, u);
} } }
```

- With p=1, $\ell_1=1$ and $u_1=n$, chunksort sorts the array; it is equivalent to quicksort
- Setting p=1 and $\ell_1=u_1=m$; chunksort selects the mth smallest element in A
- If p=1, $\ell_1=1$ and $u_1=m\leq n$, chunksort partially sorts the array
- We can also select multiple ranks by setting $\ell_j = u_j$ for $1 \le j \le p$; chunksort behaves like multiple quickselect ther

- With p=1, $\ell_1=1$ and $u_1=n$, chunksort sorts the array; it is equivalent to quicksort
- Setting p=1 and $\ell_1=u_1=m$; chunksort selects the mth smallest element in A
- If p=1, $\ell_1=1$ and $u_1=m\leq n$, chunksort partially sorts the array
- We can also select multiple ranks by setting $\ell_j = u_j$ for $1 \le j \le p$; chunksort behaves like multiple quickselect ther

- With p=1, $\ell_1=1$ and $u_1=n$, chunksort sorts the array; it is equivalent to quicksort
- Setting p=1 and $\ell_1=u_1=m$; chunksort selects the mth smallest element in A
- If p=1, $\ell_1=1$ and $u_1=m\leq n$, chunksort partially sorts the array
- We can also select multiple ranks by setting $\ell_j = u_j$ for $1 \le j \le p$; chunksort behaves like multiple quickselect then

- With p = 1, $\ell_1 = 1$ and $u_1 = n$, chunksort sorts the array; it is equivalent to quicksort
- Setting p=1 and $\ell_1=u_1=m$; chunksort selects the mth smallest element in A
- If p=1, $\ell_1=1$ and $u_1=m\leq n$, chunksort partially sorts the array
- We can also select multiple ranks by setting $\ell_j = u_j$ for $1 \le j \le p$; chunksort behaves like multiple quickselect then

- Let $m_k = u_k \ell_k + 1$ denote the size of the kth interval, $\overline{m}_k = \ell_{k+1} u_k 1$ the size of the kth gap, and $m = m_1 + \cdots + m_p$
- Let C_n denote the average number of key comparisons needed by chunksort to sort the keys in the intervals J_1, J_2, \ldots, J_p . Then

$$C_n = 2n + u_p - \ell_1 + 2(n+1)H_n - 7m - 2 + 15p$$

$$-2(\ell_1 + 2)H_{\ell_1} - 2(n+3 - u_p)H_{n+1-u_p} - 2\sum_{k=1}^{p-1} (\overline{m}_k + 5)H_{\overline{m}_k}$$

- Let $m_k = u_k \ell_k + 1$ denote the size of the kth interval, $\overline{m}_k = \ell_{k+1} u_k 1$ the size of the kth gap, and $m = m_1 + \cdots + m_p$
- Let C_n denote the average number of key comparisons needed by chunksort to sort the keys in the intervals J_1, J_2, \ldots, J_p . Then

$$C_n = 2n + u_p - \ell_1 + 2(n+1)H_n - 7m - 2 + 15p$$
$$-2(\ell_1 + 2)H_{\ell_1} - 2(n+3 - u_p)H_{n+1-u_p} - 2\sum_{k=1}^{p-1} (\overline{m}_k + 5)H_{\overline{m}_k}$$

- "Filtering out outliers": ${\it p}=1$, $\ell_1=\alpha {\it n}$, ${\it u}_1=\beta {\it n}$, with $0<\alpha<\beta\leq 1-\alpha<1$
- Let $Q_n(\alpha, \beta)$ the number of comparisons needed to solve the problem using quickselect (twice) plus quicksort
- Then

$$Q_n(\alpha,\beta) - C_n = 2(1 - 2\alpha + \beta)n + o(n)$$

- "Filtering out outliers": ${\it p}=1$, $\ell_1=\alpha {\it n}$, ${\it u}_1=\beta {\it n}$, with $0<\alpha<\beta\leq 1-\alpha<1$
- Let $Q_n(\alpha, \beta)$ the number of comparisons needed to solve the problem using quickselect (twice) plus quicksort
- Then

$$Q_n(\alpha,\beta) - C_n = 2(1 - 2\alpha + \beta)n + o(n)$$

- "Filtering out outliers": p=1, $\ell_1=\alpha n$, $u_1=\beta n$, with $0<\alpha<\beta\leq 1-\alpha<1$
- Let $Q_n(\alpha, \beta)$ the number of comparisons needed to solve the problem using quickselect (twice) plus quicksort
- Then

$$Q_n(\alpha, \beta) - C_n = 2(1 - 2\alpha + \beta)n + o(n)$$

- "Selecting an α -cluster": p=1, $\ell_1=\alpha n-f(n)$, $u_1=\alpha n+f(n)$, for some $f(n)=o(n/\log n)$ and $0<\alpha\leq 1/2$
- Using chunksort instead of quickselect+quicksort saves

$$2(1-\alpha)n+6f(n)$$

comparisons

- "Selecting an α -cluster": p=1, $\ell_1=\alpha n-f(n)$, $u_1=\alpha n+f(n)$, for some $f(n)=o(n/\log n)$ and $0<\alpha\leq 1/2$
- Using chunksort instead of quickselect+quicksort saves

$$2(1-\alpha)n+6f(n)$$

comparisons

- Partial quicksort and chunksort are nice examples of the simplicity and elegance of the divide-and-conquer principle
- Their analysis poses the same type of mathematical challenges as quicksort and quickselect do
- The analysis of partial quicksort is basically identical to that of quickselect, but with a different toll function

- Partial quicksort and chunksort are nice examples of the simplicity and elegance of the divide-and-conquer principle
- Their analysis poses the same type of mathematical challenges as quicksort and quickselect do
- The analysis of partial quicksort is basically identical to that of quickselect, but with a different toll function

- Partial quicksort and chunksort are nice examples of the simplicity and elegance of the divide-and-conquer principle
- Their analysis poses the same type of mathematical challenges as quicksort and quickselect do
- The analysis of partial quicksort is basically identical to that of quickselect, but with a different toll function

- Likewise, chunksort can be analyzed using the same techniques as in the analysis of multiple quickselect (e.g., Prodinger, 1995)
- Variants of these algorithms, like median-of-(2t + 1) pivot selection, should be used in practice; but their analysis is probably difficult and cumbersome
- More real applications for chunksort?

- Likewise, chunksort can be analyzed using the same techniques as in the analysis of multiple quickselect (e.g., Prodinger, 1995)
- Variants of these algorithms, like median-of-(2t+1) pivot selection, should be used in practice; but their analysis is probably difficult and cumbersome
- More real applications for chunksort?

- Likewise, chunksort can be analyzed using the same techniques as in the analysis of multiple quickselect (e.g., Prodinger, 1995)
- Variants of these algorithms, like median-of-(2t+1) pivot selection, should be used in practice; but their analysis is probably difficult and cumbersome
- More real applications for chunksort?