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Problem: Given an array A of n items and a rank m,1 � m � n, find the mth smallest element in A.
The algorithm should work in (expected) linear time �(n),
irrespective of m.
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Hoare (1962) invents quickselect: pick some element p from
the array, called the pivot, rearrange the contents of A so that
all elements in A smaller that p are to its left, and all elements
larger than p are to its right; if p is at position j = m it is the
sought element; if j > m proceed recursively in A[1::j � 1],
otherwise in A[j + 1::n].
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Elem quickselect(vector<Elem>& A, int m) {
int l = 0; int u = A.size() - 1;
int k, p;
while (l <= u) {

p = select_pivot (A, l, u, m);
swap(A[p], A[l]);
partition(A, l, u, j);
if (m < j) u = j-1;
else if (m > j) l = j+1;
else return A[j];

} }
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Knuth (1971) shows that

E[Cn;m] = 2 (n+ 3 + (n+ 1)Hn�(m+ 2)Hm � (n+ 3�m)Hn+1�m) ;
with Hn =P1�i�n(1=i) = logn+O(1) the nth harmonic
number.
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The expectation characteristic function:

f(�) = limn!1m=n!�
E[Cn;m]n

The second factorial moment characteristic function:

g(�) = limn!1m=n!�
E
hCn;m2i
n2

For the variance we have

v(�) = limn!1m=n!�
V[Cn;m]n2 = g(�)� f2(�)
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Example
Standard quickselect:

f(�) = m0(�) = 2�2(� ln�+(1��) ln(1��)) = 2+2�H(�)
Median-of-three:

f(�) = m1(�) = 2 + 3�(1� �)
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Example
Standard quickselect:

m0(0) = m0(1) = 2m0(1=2) = 2 + 2 ln 2 � 3:386
Median-of-three:

m1(0) = m1(1) = 2m1(1=2) = 11=4 = 2:75
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A plot of the standard quickselect characteristic function versus
median-of-three characteristic function
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Adaptive sampling uses a sample of s elements to choose
a pivot for each recursive stage of quickselect.

If the current relative rank is � = m=n, we select the
element of rank r(�) from the sample

Example
Standard quickselect: s = 1; r(�) = 1
Median-of-(2t+ 1): s = 2t+ 1; r(�) = t+ 1
Proportion-from-s: r(�) � � � s
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Example
We are looking the fourth element (m = 4) out of n = 15
elements

9 5 10 12 3 1 11 15 7 2 8 13 6 4 14

� = 4=15 < 1=3
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Example
We are looking the fourth element (m = 4) out of n = 15
elements

7 5 4 6 3 1 8 2 9 15 11 13 12 10 14
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Example
We are looking the fourth element (m = 4) out of n = 15
elements

7 5 4 6 3 1 8 2 9 15 11 13 12 10 14

1=3 < � = 4=8 = 1=2 < 2=3
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Example
We are looking the fourth element (m = 4) out of n = 15
elements

7 5 4 6 3 1 8 2 9 15 11 13 12 10 14

1=3 < � = 4=8 = 1=2 < 2=3
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Example
We are looking the fourth element (m = 4) out of n = 15
elements

1 5 4 2 3 6 8 7 9 15 11 13 12 10 14
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Example
We are looking the fourth element (m = 4) out of n = 15
elements

1 5 4 2 3 6 8 7 9 15 11 13 12 10 14

� = 4=5 > 2=3
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Example
We are looking the fourth element (m = 4) out of n = 15
elements

1 5 4 2 3 6 8 7 9 15 11 13 12 10 14

� = 4=5 > 2=3
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Example
We are looking the fourth element (m = 4) out of n = 15
elements

2 3 1 4 5 6 8 7 9 15 11 13 12 10 14
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An adaptive sampling strategy can be characterized by the
value of r(�) for a finite set of ` intervals that partition [0; 1], i.e.,rk = r(�) if � 2 Ik, 1 � k � `.

0 = a0 < a1 < a2 < � � � < a`�1 < a` = 1;I1 = [0; a1]; I` = [a`�1; 1];Ik = (ak�1; ak] if k > 1 and ak � 1=2,Ik = [ak�1; ak) if k < ` and ak�1 > 1=2, andIk = (ak�1; ak) if ak�1 � 1=2 < ak and 1 < k < `.
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Example
Standard quickselect: s = 1; ` = 1; r1 = 1
Median-of-(2t+ 1): s = 2t+ 1; ` = 1; r1 = t+ 1
Proportion-from-s: ` = s; rk = k
“Pure” proportion-from-s: proportion-from-s + ak = k=s
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A plot of median-of-three characteristic function versus
proportion-from-three f(�)
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Theorem (Martı́nez, Panario, Viola (2004))
The expectation characteristic function f(�) of any adaptive
sampling strategy satisfies

f(�) = 1 + s!(r(�)� 1)!(s� r(�))!�"Z 1
� f(�=x)xr(�)(1� x)s�r(�) dx
+ Z �

0 f ��� x1� x
�xr(�)�1(1� x)s+1�r(�) dx#:
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Lemma (Martı́nez, Panario, Viola (2004))
Let fk be the restriction of f(�) to the kth interval Ik, andrk = r(�) when � 2 Ik. For any adaptive sampling strategy

ds+2
d�s+2 fk(�) = (�1)s+1�rk � s!�s+1�rk(rk � 1)! drk+1

d�rk+1 fk(�)
+ s!(1� �)rk(s� rk)! ds+2�rkd�s+2�rk fk(�):
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Theorem (Martı́nez, Panario, Viola (2004))
Proportion-from-s sampling with s!1 achieves optimal
expected performance:

f(�) = 1 +min(�; 1� �)
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Theorem
The second factorial moment characteristic function g(�) of any
adaptive sampling strategy satisfies

g(�) = 2f(�)� 1
+ s!(r(�)� 1)!(s� r(�))!

"Z 1
� g(�=x)xr(�)+1(1� x)s�r(�) dx

+ Z �
0 g ��� x1� x

�xr(�)�1(1� x)s+2�r(�) dx#:
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Theorem
The second factorial moment characteristic function g(�) of any
adaptive sampling strategy satisfies

g(�) = 2f(�)� 1
+ s!(r(�)� 1)!(s� r(�))!

"Z 1
� g(�=x)xr(�)+1(1� x)s�r(�) dx

+ Z �
0 g ��� x1� x

�xr(�)�1(1� x)s+2�r(�) dx#:
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Lemma
Let gk be the restriction of g(�) to the kth interval Ik, andrk = r(�) when � 2 Ik. For any adaptive sampling strategy

ds+3
d�s+3 gk(�) = 2 ds+3

d�s+3 fk(�) + (�1)s+1�rk � s!�s+1�rk(rk � 1)! drk+2
d�rk+2 gk(�)

+ s!(1� �)rk(s� rk)! ds+3�rkd�s+3�rk gk(�):
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Lemma
For any adaptive sampling strategy

lim�!0 v(�) = r0(s+ 1)(s+ 1� r0)((s+ 2)(s+ 1)� r0(r0 + 1)) ;
where r0 = lim�!0 r(�).
Example

Median-of-(2t+ 1): v(0) = v(1) = 23t+4
Proportion-from-s: v(0) = v(1) = s+1s2(s+3) � 1s2 +O(s�3)
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The differential equation to find the expectation characteristic
function is d2�d�2 = 6� 1�2 + 1(1� �)2

��(�)
with �(�) = f 000(�)
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For the second moment characteristic function g(�) we have

d2�d�2 = 6� 1�2 + 1(1� �)2
��(�)

with �(�) = g(iv)(�)
The independent term in the ODE for g(�) vanishes, sincef(�) = 2 + 3�(1� �) and f (vi)(�) = 0.
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For the second moment characteristic function g(�) we have

d2�d�2 = 6� 1�2 + 1(1� �)2
��(�)

That’s exactly the same ODE as for f(�)!!
with �(�) = g(iv)(�)
The independent term in the ODE for g(�) vanishes, sincef(�) = 2 + 3�(1� �) and f (vi)(�) = 0.
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We integrate four times the solution found

We plug the general form back into the integral equation to
determine the value of the arbitrary constants; we also use
the symmetry of g(�)
The final solution is

g(�) = �28835 �2(ln(�) + ln(1� �))� 28835 ln(1� �)
+ 57635 � ln(1� �) + 307 � 24245�8 + 96245�7
� 48175�6 � 96175�5 � 4835�4 + 14435 �3
� 73321225�2 + 13235 �;
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A plot of v(�) for standard quickselect (Kirschenhofer,
Prodinger (1998)) and for median-of-three
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We’ve got the general form of g(�) for standard quickselect and
proportion-from-2, but the process of determining the arbitrary
constants is still not finished ...

It’s much harder than we though!!
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Intuition: Using very large sample and proportion-from-s
helps, because we get a very good pivot, very close to the
sought element

We should make sure that our pivot is very close BUT at
the right side of the sought element! (i.e., slightly to the
right if � < 1=2, slightly to the left if � > 1=2)
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Definition
A family of sampling strategies is biased if, for � < 1=2,

r(�) > s � �+ 1� �
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The proof of Martı́nez, Panario, Viola (2004) for adaptive
optimal sampling works also for s = s(n), as long as s!1ands=n! 0 if n!1.

E[Cn;m] = n+min(m;n�m) + ��max�s; ns
��
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Theorem
Biased proportion-from-s sampling with s!1 has
subquadratic variance:

v(�) = limn!1m=n!�
V[Cn;m]n2 = 0
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Theorem
Biased proportion-from-s sampling with s!1 has
subquadratic variance:

v(�) = limn!1m=n!�
V[Cn;m]n2 = 0

The same holds true for median-of-(2t+ 1), when t!1
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Theorem
For biased proportion-from-s sampling with increasing
variable-sized samples (i.e., s = s(n)!1; s=n! 0), we have

V[Cn;m] = � max n2
s ; n � s!!

Theorem
The variance and the expected value of proportion-from-s, with
variable-sized samples, is minimized when

s = �(pn)
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Floyd and Rivest (1970) proposed an algorithm which uses
sampling to obtain two pivots at each stage and achieves
optimal expected performance.

However, the algorithm is more complicated and uses samples
of size �(n2=3 logn) (why!?)
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Current work:

Exact solutions for particular strategies (e.g.,
proportion-from-2)

Precise asymptotic estimates of the optimal sample size
when s!1
We need better estimates of the behavior when s!1,
e.g., we know that f(�) = 1 +min(�; 1� �) +O(s�1), but
a precise estimate of the s�1 term would allow us to
compute the factor for the optimal sample size
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