Data Stream Analysis: a (new) triumph for Analytic Combinatorics

Dedicated to the memory of Philippe Flajolet (1948-2011)

Conrado Martínez
Universitat Politècnica de Catalunya

ALEA in Europe Workshop, Vienna (Austria) October 2017

Outline of the Course

Part 1: An Overview of Data Stream Analysis Part 2: Intermezzo: A Crash Course on Analytic
Combinatorics
Part 3: Case Study: Analysis of Recordinality

Part I

An Overview of Data Stream Analysis

Introduction

- A data stream is a (very long) sequence

$$
\mathcal{S}=s_{1}, s_{2}, s_{3}, \ldots, s_{N}
$$

of elements drawn from a (very large) domain $\mathcal{U}\left(s_{i} \in \mathcal{U}\right)$

- The goal: to find $y=y(\delta)$, but

Introduction

- A data stream is a (very long) sequence

$$
\mathcal{S}=s_{1}, s_{2}, s_{3}, \ldots, s_{N}
$$

of elements drawn from a (very large) domain $\mathcal{U}\left(s_{i} \in \mathcal{U}\right)$

- The goal: to find $y=y(\mathcal{S})$, but \ldots

Introduction

... under rather stringent constraints (data stream model)

- a single pass over the data stream
- extremely short time spent on each single data item
- a limited amount M of auxiliary memory, $M \ll N$; ideally $M=\Theta(1)$ or $M=\Theta(\log N)$

Introduction

... under rather stringent constraints (data stream model)

- a single pass over the data stream
- extremely short time spent on each single data item
- a limited amount M of auxiliary memory, $M \ll N$; ideally $M=\Theta(1)$ or $M=\Theta(\log N)$
- no statistical hynothesis about the data

Introduction

... under rather stringent constraints (data stream model)

- a single pass over the data stream
- extremely short time spent on each single data item
- a limited amount M of auxiliary memory, $M \ll N$; ideally $M=\Theta(1)$ or $M=\Theta(\log N)$
- no statistical hypothesis about the data

Introduction

... under rather stringent constraints (data stream model)

- a single pass over the data stream
- extremely short time spent on each single data item
- a limited amount M of auxiliary memory, $M \ll N$; ideally $M=\Theta(1)$ or $M=\Theta(\log N)$
- no statistical hypothesis about the data

Introduction

There are a wide range of applications for the data stream model

- Network traffic analysis \Rightarrow DoS/DDoS attacks, worms, ...
- Database query optimization
- Information retrieval \Rightarrow similarity index

Introduction

There are a wide range of applications for the data stream model

- Network traffic analysis \Rightarrow DoS/DDoS attacks, worms, ...
- Database query optimization
- Information retrieval \Rightarrow similarity index
- Data mining

Introduction

There are a wide range of applications for the data stream model

- Network traffic analysis \Rightarrow DoS/DDoS attacks, worms, ...
- Database query optimization
- Information retrieval \Rightarrow similarity index
- Data mining
- Recommedation systems

Introduction

There are a wide range of applications for the data stream model

- Network traffic analysis \Rightarrow DoS/DDoS attacks, worms, ...
- Database query optimization
- Information retrieval \Rightarrow similarity index
- Data mining
- Recommedation systems - and many more

Introduction

There are a wide range of applications for the data stream model

- Network traffic analysis \Rightarrow DoS/DDoS attacks, worms, ...
- Database query optimization
- Information retrieval \Rightarrow similarity index
- Data mining
- Recommedation systems
- and many more

Introduction

There are a wide range of applications for the data stream model

- Network traffic analysis \Rightarrow DoS/DDoS attacks, worms, ...
- Database query optimization
- Information retrieval \Rightarrow similarity index
- Data mining
- Recommedation systems
- and many more...

Introduction

We'll look at \mathcal{S} as a multiset $\left\{z_{1} \circ f_{1}, \ldots, z_{n} \circ f_{n}\right\}$, where
$f_{i}=$ frequency of the i-th distinct element z_{i}
Some problems in data stream analysis:

- Number of distinct elements: $\operatorname{card}(\mathcal{S})=\mathrm{n} \leqslant \mathrm{N}$
- Frequency moments $F_{p}=\sum_{1}$ (N.B. $n=F_{0}, N=F_{1}$) - (Number of) Elements z_{i} such that $f_{i} \geqslant k$ (k-elephants)

Introduction

We'll look at \mathcal{S} as a multiset $\left\{z_{1} \circ f_{1}, \ldots, z_{n} \circ f_{n}\right\}$, where

$$
\mathrm{f}_{\mathfrak{i}}=\text { frequency of the } \mathfrak{i} \text {-th distinct element } z_{i}
$$

Some problems in data stream analysis:

- Number of distinct elements: $\operatorname{card}(\mathcal{S})=\mathrm{n} \leqslant \mathrm{N}$
- Frequency moments $F_{p}=\sum_{1 \leqslant i \leqslant n} f_{i}^{P}$
(N.B. $\mathrm{n}=\mathrm{F}_{0}, \mathrm{~N}=\mathrm{F}_{1}$)
- (Number of) Elements z_{i} such that $f_{i} \geqslant k$ (k-elephants)
- (Number of) Elements z_{i} such that $f_{i}<k$ (k-mice)

Introduction

We'll look at \mathcal{S} as a multiset $\left\{z_{1} \circ f_{1}, \ldots, z_{n} \circ f_{n}\right\}$, where
$f_{i}=$ frequency of the i-th distinct element z_{i}
Some problems in data stream analysis:

- Number of distinct elements: $\operatorname{card}(\mathcal{S})=\mathrm{n} \leqslant \mathrm{N}$
- Frequency moments $F_{p}=\sum_{1 \leqslant i \leqslant n} f_{i}^{P}$
(N.B. $n=F_{0}, N=F_{1}$)
- (Number of) Elements z_{i} such that $f_{i} \geqslant k$ (k-elephants)
- (Number of) Elements z_{i} such that $f_{i}<k$ (k-mice)

Introduction

We'll look at \mathcal{S} as a multiset $\left\{z_{1} \circ \mathrm{f}_{1}, \ldots, z_{\mathrm{n}} \circ \mathrm{f}_{\mathrm{n}}\right\}$, where
$f_{i}=$ frequency of the i-th distinct element z_{i}
Some problems in data stream analysis:

- Number of distinct elements: $\operatorname{card}(\mathcal{S})=\mathrm{n} \leqslant \mathrm{N}$
- Frequency moments $F_{p}=\sum_{1 \leqslant i \leqslant n} f_{i}^{P}$
(N.B. $n=F_{0}, N=F_{1}$)
- (Number of) Elements z_{i} such that $f_{i} \geqslant k$ (k-elephants)
- (Number of) Elements z_{i} such that $f_{i}<k$ (k-mice)
- (Number of) Elements z_{i} such that $f_{i} \geqslant c N, 0<c<1$ (c-icebergs)
- The k most frequent elements (top-k elements)

Introduction

We'll look at \mathcal{S} as a multiset $\left\{z_{1} \circ \mathrm{f}_{1}, \ldots, z_{\mathrm{n}} \circ \mathrm{f}_{\mathrm{n}}\right\}$, where
$f_{i}=$ frequency of the i-th distinct element z_{i}
Some problems in data stream analysis:

- Number of distinct elements: $\operatorname{card}(\mathcal{S})=\mathrm{n} \leqslant \mathrm{N}$
- Frequency moments $F_{p}=\sum_{1 \leqslant i \leqslant n} f_{i}^{P}$
(N.B. $n=F_{0}, N=F_{1}$)
- (Number of) Elements z_{i} such that $f_{i} \geqslant k$ (k-elephants)
- (Number of) Elements z_{i} such that $f_{i}<k$ (k-mice)
- (Number of) Elements z_{i} such that $f_{i} \geqslant c N, 0<c<1$ (c-icebergs)
- The k most frequent elements (top-k elements)

Introduction

We'll look at \mathcal{S} as a multiset $\left\{z_{1} \circ \mathrm{f}_{1}, \ldots, z_{\mathrm{n}} \circ \mathrm{f}_{\mathrm{n}}\right\}$, where
$f_{i}=$ frequency of the i-th distinct element z_{i}
Some problems in data stream analysis:

- Number of distinct elements: $\operatorname{card}(\mathcal{S})=\mathrm{n} \leqslant \mathrm{N}$
- Frequency moments $F_{p}=\sum_{1 \leqslant i \leqslant n} f_{i}^{P}$
(N.B. $n=F_{0}, N=F_{1}$)
- (Number of) Elements z_{i} such that $f_{i} \geqslant k$ (k-elephants)
- (Number of) Elements z_{i} such that $f_{i}<k$ (k-mice)
- (Number of) Elements z_{i} such that $f_{i} \geqslant c N, 0<c<1$ (c-icebergs)
- The k most frequent elements (top-k elements)

Introduction

We'll look at \mathcal{S} as a multiset $\left\{z_{1} \circ \mathrm{f}_{1}, \ldots, z_{\mathrm{n}} \circ \mathrm{f}_{\mathrm{n}}\right\}$, where
$f_{i}=$ frequency of the i-th distinct element z_{i}
Some problems in data stream analysis:

- Number of distinct elements: $\operatorname{card}(\mathcal{S})=\mathrm{n} \leqslant \mathrm{N}$
- Frequency moments $F_{p}=\sum_{1 \leqslant i \leqslant n} f_{i}^{P}$
(N.B. $n=F_{0}, N=F_{1}$)
- (Number of) Elements z_{i} such that $f_{i} \geqslant k$ (k-elephants)
- (Number of) Elements z_{i} such that $f_{i}<k$ (k-mice)
- (Number of) Elements z_{i} such that $f_{i} \geqslant c N, 0<c<1$ (c-icebergs)
- The k most frequent elements (top-k elements)
- ...

Introduction

Very limited available memory \Rightarrow exact solution too costly or unfeasible
\Rightarrow Randomized algorithms \Rightarrow estimation \hat{y} of the quantity of interest y

- \hat{y} must be an unbiased estimator
$E[\hat{y}]=y$
- The estimator must have a small standard error

e.g., $\epsilon=0.01$ (1\%)

Introduction

Very limited available memory \Rightarrow exact solution too costly or unfeasible
\Rightarrow Randomized algorithms \Rightarrow estimation \hat{y} of the quantity of interest y

- \hat{y} must be an unbiased estimator

$$
E[\hat{y}]=y
$$

- The estimator must have a small standard error

$$
\operatorname{SE}[\hat{y}]:=\frac{\sqrt{\operatorname{Var}[\hat{y}]}}{\mathrm{E}[\hat{y}]}<\epsilon,
$$

e.g., $\epsilon=0.01$ (1\%)

Probabilistic Counting

G.N. Martin

In late 70s G. Nigel N. Martin invents probabilistic counting to optimize database query performance

To correct the bias that he systematically found in his experiments, he introduced a "fudge" factor in the estimator

Probabilistic Counting

When Flajolet learnt about the algorithm, he put it on a solid scientific ground, with a detailed mathematical analysis which delivered the exact value of the correction factor and a tight upper bound on the standard error

As I said over the phone, I stared waking on you algoithm when Kyu-Young whang considered implementing I and wanted explanatioin/stimations. I fins it inmple, alec and amazingly powerful.

Probabilistic Counting

- First idea: every element is hashed to a real value in $(0,1)$
\Rightarrow reproductible randomness
- The multiset δ is mapped by the hash function* $h: U \rightarrow(0,1)$ to a multiset
with $x_{i}=\operatorname{hash}\left(z_{i}\right), f_{i}=\# d e z_{i}$'s
- The set of distinct elements $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of n random numbers, independent and uniformly drawn from

Probabilistic Counting

- First idea: every element is hashed to a real value in $(0,1)$ \Rightarrow reproductible randomness
- The multiset δ is mapped by the hash function* $h: U \rightarrow(0,1)$ to a multiset

$$
S^{\prime}=h(S)=\left\{x_{1} \circ f_{1}, \ldots, x_{n} \circ f_{n}\right\},
$$

with $x_{i}=\operatorname{hash}\left(z_{i}\right), f_{i}=\#$ de z_{i} 's

- The set of distinct elements $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of n random numbers, independent and uniformly drawn from
*We'll neglect the probability of collisions, i.e., $h\left(x_{i}\right)=h\left(x_{j}\right)$ for some $x_{i} \neq x_{j}$; this is reasonable if $h(x)$ has enough bits

Probabilistic Counting

- First idea: every element is hashed to a real value in $(0,1)$ \Rightarrow reproductible randomness
- The multiset \mathcal{S} is mapped by the hash function* $h: U \rightarrow(0,1)$ to a multiset

$$
\mathcal{S}^{\prime}=h(\mathcal{S})=\left\{x_{1} \circ f_{1}, \ldots, x_{n} \circ f_{n}\right\},
$$

with $x_{i}=\operatorname{hash}\left(z_{i}\right), f_{i}=\#$ de z_{i} 's

- The set of distinct elements $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of n random numbers, independent and uniformly drawn from $(0,1)$
*We'll neglect the probability of collisions, i.e., $h\left(x_{i}\right)=h\left(x_{j}\right)$ for some $x_{i} \neq x_{j}$; this is reasonable if $h(x)$ has enough bits

Probabilistic Counting

Flajolet \& Martin (JCSS, 1985) proposed to find, among the set of hash values, the length of the largest prefix (in binary) $0.0^{\mathrm{R}-1} 1 \ldots$ such that all shorter prefixes with the same pattern $0.0^{p-1} 1 \ldots, p \leqslant R$, also appear

The value R is an observable which can be easily be computed using a small auxiliary memory and it is insensitive to repetitions \leftarrow the observable is a function of X, not of the f_{i} 's

Probabilistic Counting

- For a set of n random numbers in $(0,1) \rightarrow$

$$
\mathrm{E}[\mathrm{R}] \approx \log _{2} n
$$

- However $\mathrm{E}\left[2^{R}\right] \nsucc n$, there is a significant bias

Probabilistic Counting

- For a set of n random numbers in $(0,1) \rightarrow$

$$
\mathrm{E}[\mathrm{R}] \approx \log _{2} n
$$

- However $\mathrm{E}\left[2^{R}\right] \nsucc \mathrm{n}$, there is a significant bias

Probabilistic Counting

procedure ProbabilisticCounting(S)
bmap $\leftarrow\langle 0,0, \ldots, 0\rangle$
for $s \in \mathcal{S}$ do

$y \leftarrow \operatorname{hash}(s)$

$p \leftarrow$ lenght of the largest prefix $0.0^{p-1} 1 \ldots$ in y
$\operatorname{bmap}[\mathrm{p}] \leftarrow 1$
end for
$R \leftarrow$ largest p such that bmap $[i]=1$ for all $0 \leqslant i \leqslant p$
$\triangleright \phi$ is the correction factor
return $Z:=\phi \cdot 2^{R}$
end procedure

A very precise mathemtical analysis gives:

$$
\begin{aligned}
\phi^{-1} & =\frac{e^{\gamma} \sqrt{2}}{3} \prod_{k \geqslant 1}\left(\frac{(4 k+1)(2 k+1)}{2 k(4 k+3)}\right)^{(-1)^{v(k)}} \approx 0.77351 \ldots \\
& \Rightarrow E\left[\phi \cdot 2^{R}\right]=n
\end{aligned}
$$

Stochastic averaging

- The standard error of $Z:=\phi \cdot 2^{R}$, despite constant, is too large: $S E[Z]>1$
- Second idea: repeat several times to reduce variance and improve precision
- Problem: usina m hash functions to generate mo streams is too costly and it's very difficult to guarantee independence between the hash values

Stochastic averaging

- The standard error of $Z:=\phi \cdot 2^{R}$, despite constant, is too large: SE [Z] > 1
- Second idea: repeat several times to reduce variance and improve precision
- Problem: using m hash functions to generate m streams is too costly and it's very difficult to guarantee independence between the hash values

Stochastic averaging

- The standard error of $Z:=\phi \cdot 2^{R}$, despite constant, is too large: $\mathrm{SE}[\mathrm{Z}]>1$
- Second idea: repeat several times to reduce variance and improve precision
- Problem: using m hash functions to generate m streams is too costly and it's very difficult to guarantee independence between the hash values

Stochastic averaging

- Use the first $\log _{2} m$ bits of each hash value to "redirect" it (the remaining bits) to one of the m substreams \rightarrow stochastic averaging
- Obtain m observables $\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{\mathrm{m}}$, one from each substream, and compute a mean value \bar{R}
- Each R_{i} gives an estimation for the cardinality of the $i-t h$ substream, namely, R_{i} estimates n / m

Stochastic averaging

- Use the first $\log _{2} m$ bits of each hash value to "redirect" it (the remaining bits) to one of the m substreams \rightarrow stochastic averaging
- Obtain m observables $R_{1}, R_{2}, \ldots, R_{m}$, one from each substream, and compute a mean value \bar{R}
- Each R_{i} gives an estimation for the cardinality of the $i-t h$ substream, namely, R_{i} estimates n / m

Stochastic averaging

- Use the first $\log _{2} m$ bits of each hash value to "redirect" it (the remaining bits) to one of the m substreams \rightarrow stochastic averaging
- Obtain m observables $R_{1}, R_{2}, \ldots, R_{m}$, one from each substream, and compute a mean value \bar{R}
- Each R_{i} gives an estimation for the cardinality of the i-th substream, namely, R_{i} estimates n / m

Stochastic averaging

There are many different options to compute an estimator from the m observables

- Sum of estimators:

$$
Z_{1}:=\phi_{1}\left(2^{R_{1}}+\ldots+2^{R_{m}}\right)
$$

- Arithmetic mean of observables (as proposed by Flajolet \& Martin):

$$
Z_{2}:=m \cdot \phi_{2} \cdot 2^{\frac{1}{m}} \sum_{1 \leqslant i \leqslant m} R_{i}
$$

Stochastic averaging

- Harmonic mean (keep tuned):

$$
Z_{3}:=\phi_{3} \cdot \frac{m^{2}}{2^{-R_{1}}+2^{-R_{2}}+\ldots+2^{-R_{m}}}
$$

Since $2^{-R_{i}} \approx m / n$, the second factor gives $\approx m^{2} /\left(m^{2} / n\right)=n$

Stochastic averaging

- All the strategies above yield a standard error of the form

$$
\frac{c}{\sqrt{m}}+\text { l.o.t. }
$$

Larger memory \Rightarrow improved precision!

- In probabilistic counting the authors used the arithmetic mean of observables

$$
\mathrm{SE}\left[Z_{\text {ProbCount }}\right] \approx \frac{0.78}{\sqrt{m}}
$$

Stochastic averaging

- All the strategies above yield a standard error of the form

$$
\frac{c}{\sqrt{\mathrm{~m}}}+\text { l.o.t. }
$$

Larger memory \Rightarrow improved precision!

- In probabilistic counting the authors used the arithmetic mean of observables

$$
\mathrm{SE}\left[\mathrm{Z}_{\text {ProbCount }}\right] \approx \frac{0.78}{\sqrt{\mathrm{~m}}}
$$

LogLog \& HyperLogLog

M. Durand

- Durand \& Flajolet (2003) realized that the bitmaps (Θ (logn) bits) used by Probabilistic Counting can be avoided and propose as observable the largest R such that the pattern $0.0^{\mathrm{R}-1} 1$ appears
- The new observable is similar to that of Probabilistic Counting but not equal: $\mathrm{R}($ LogLog $) \geqslant \mathrm{R}$ (ProbCount)

LogLog \& HyperLogLog

M. Durand

- Durand \& Flajolet (2003) realized that the bitmaps (Θ (logn) bits) used by Probabilistic Counting can be avoided and propose as observable the largest R such that the pattern $0.0^{\mathrm{R}-1} 1$ appears
- The new observable is similar to that of Probabilistic Counting but not equal: R (LogLog) $\geqslant \mathrm{R}$ (ProbCount)

Observed patterns: 0.1101

LogLog \& HyperLogLog

M. Durand

- Durand \& Flajolet (2003) realized that the bitmaps (Θ (logn) bits) used by Probabilistic Counting can be avoided and propose as observable the largest R such that the pattern $0.0^{\mathrm{R}-1} 1$ appears
- The new observable is similar to that of Probabilistic Counting but not equal: R (LogLog) $\geqslant \mathrm{R}$ (ProbCount)

Example

Observed patterns: 0.1101..., 0.010..., 0.0011 ..., 0.00001...
$R($ LogLog $)=5, \quad R($ ProbCount $)=3$

LogLog \& HyperLogLog

- The new observable is simpler to obtain: keep updated the largest R seen so far: $R:=\max \{R, p\} \Rightarrow$ only $\Theta(\log \log n)$ bits needed, since $E[R]=\Theta(\log n)$!
- We have $E[R] \sim \log _{2} n$, but $E\left[2^{R}\right]=+\infty$, stochastic averaging comes to rescue!
- For Logl og Durand \& Flaiolet propose

LogLog \& HyperLogLog

- The new observable is simpler to obtain: keep updated the largest R seen so far: $R:=\max \{R, p\} \Rightarrow$ only $\Theta(\log \log n)$ bits needed, since $E[R]=\Theta(\log n)$!
- We have $E[R] \sim \log _{2} n$, but $E\left[2^{R}\right]=+\infty$, stochastic averaging comes to rescue!
- For LogLog, Durand \& Flajolet propose

LogLog \& HyperLogLog

- The new observable is simpler to obtain: keep updated the largest R seen so far: $R:=\max \{R, p\} \Rightarrow$ only $\Theta(\log \log n)$ bits needed, since $E[R]=\Theta(\log n)$!
- We have $E[R] \sim \log _{2} n$, but $E\left[2^{R}\right]=+\infty$, stochastic averaging comes to rescue!
- For LogLog, Durand \& Flajolet propose

$$
Z_{\text {LogLog }}:=\alpha_{m} \cdot m \cdot 2^{\frac{1}{m} \sum_{1 \leqslant i \leqslant m} R_{i}}
$$

LogLog \& HyperLogLog

- The mathematical analysis gives for the correcting factor

$$
\alpha_{m}=\left(\Gamma(-1 / m) \frac{1-2^{1 / m}}{\ln 2}\right)^{-m}
$$

that guarantees that $\mathrm{E}[\mathrm{Z}]=\mathrm{n}+$ l.o.t. (asymptotically unbiased) and the standard error is

$$
\mathrm{SE}\left[\mathrm{Z}_{\mathrm{LogLog}}\right] \approx \frac{1.30}{\sqrt{\mathrm{~m}}}
$$

- Only m counters of size $\log _{2} \log _{2}(\mathrm{n} / \mathrm{m})$ bits needed: Ex.: $m=2048=2^{11}$ counters, 5 bits each (about 1 Kbyte in total), are enough to give precise cardinality estimations for n up to $2^{27} \approx 10^{8}$, with an standard error less than 4%

LogLog \& HyperLogLog

- The mathematical analysis gives for the correcting factor

$$
\alpha_{m}=\left(\Gamma(-1 / m) \frac{1-2^{1 / m}}{\ln 2}\right)^{-m}
$$

that guarantees that $\mathrm{E}[\mathrm{Z}]=\mathrm{n}+$ l.o.t. (asymptotically unbiased) and the standard error is

$$
\mathrm{SE}\left[\mathrm{Z}_{\mathrm{Log} \log }\right] \approx \frac{1.30}{\sqrt{m}}
$$

- Only m counters of size $\log _{2} \log _{2}(\mathrm{n} / \mathrm{m})$ bits needed:

Ex.: $m=2048=2^{11}$ counters, 5 bits each (about 1 Kbyte in total), are enough to give precise cardinality estimations for n up to $2^{27} \approx 10^{8}$, with an standard error less than 4%

LogLog \& HyperLogLog

É. Fusy O. Gandouet F. Meunier

- Flajolet, Fusy, Gandouet \& Meunier conceived in 2007 the best algorithm known (cif. PF's keynote speech in ITC Paris 2009)
- Briefly: HyperLogLog combine the LogLog observables R_{i} using the harmonic mean instead of the arithmetic mean

LogLog \& HyperLogLog

É. Fusy O. Gandouet F. Meunier

- Flajolet, Fusy, Gandouet \& Meunier conceived in 2007 the best algorithm known (cif. PF's keynote speech in ITC Paris 2009)
- Briefly: HyperLogLog combine the LogLog observables R_{i} using the harmonic mean instead of the arithmetic mean

$$
\mathrm{SE}\left[\mathrm{Z}_{\mathrm{HyperLLogLog}}\right] \approx \frac{1.03}{\sqrt{m}}
$$

LogLog \& HyperLogLog

P. Chassaing

L. Gérin

- The idea of HyperLogLog stems from the analytical study of Chassaing \& Gérin (2006) to show the optimal way to combine observables, but in their study the observables were the k-th order statistics of each substream
- They proved that the optimal way to combine them is to use the harmonic mean

LogLog \& HyperLogLog

P. Chassaing

L. Gérin

- The idea of HyperLogLog stems from the analytical study of Chassaing \& Gérin (2006) to show the optimal way to combine observables, but in their study the observables were the k-th order statistics of each substream
- They proved that the optimal way to combine them is to use the harmonic mean

Order Statistics

- Bar-Yossef, Kumar \& Sivakumar (2002); Bar-Yossef, Jayram, Kumar, Sivakumar \& Trevisan (2002) have proposed to use the k-th order statistic $X_{(k)}$ to estimate cardinality (KMV algorithm); for a set of n random numbers, independent and uniformly distributed in $(0,1)$

$$
E\left[X_{k}\right]=\frac{k}{n+1}
$$

- Giroire $(2005,2009)$ also proposes several estimators combining order statistics via stochastic averaging

Order Statistics

- Bar-Yossef, Kumar \& Sivakumar (2002); Bar-Yossef, Jayram, Kumar, Sivakumar \& Trevisan (2002) have proposed to use the k-th order statistic $X_{(k)}$ to estimate cardinality (KMV algorithm); for a set of n random numbers, independent and uniformly distributed in $(0,1)$

$$
E\left[X_{k}\right]=\frac{k}{n+1}
$$

- Giroire $(2005,2009)$ also proposes several estimators combining order statistics via stochastic averaging

Order Statistics

a $=-1$ $=-2$
 J. Lumbroso

- The minimum of the set $(k=1)$ does not allow a feasible estimator, but again stochastic averaging comes to rescue
- Lumbroso uses the mean of m minima, one for each substream

where M_{i} is the minimum of the i-th substream

Order Statistics

J. Lumbroso

- The minimum of the set $(k=1)$ does not allow a feasible estimator, but again stochastic averaging comes to rescue
- Lumbroso uses the mean of m minima, one for each substream

$$
Z_{\text {MinCount }}:=\frac{m(m-1)}{M_{1}+\ldots+M_{m}}
$$

where M_{i} is the minimum of the i-th substream

Order Statistics

- MinCount is an unbiased estimator with standard error $1 / \sqrt{m-2}$
- Lumbroso also succeeds to compute the probability distribution of $Z_{\text {MinCount }}$ and the small corrections needed to estimate small cardinalities (to few elements hashing to one particular substream)

Order Statistics

- MinCount is an unbiased estimator with standard error $1 / \sqrt{m-2}$
- Lumbroso also succeeds to compute the probability distribution of $Z_{\text {MinCount }}$ and the small corrections needed to estimate small cardinalities (to few elements hashing to one particular substream)

Recordinality

A. Helmi

J. Lumbroso

A. Viola

- Recordinality (Helmi, Lumbroso, M., Viola, 2012) is a relatively novel estimator, vaguely related to order statistics, but based in completely different principles and it exhibits several unique features
- A more detailed study of Recordinality will be the subject of the second part of this course

Recordinality

A. Helmi

J. Lumbroso

A. Viola

- Recordinality (Helmi, Lumbroso, M., Viola, 2012) is a relatively novel estimator, vaguely related to order statistics, but based in completely different principles and it exhibits several unique features
- A more detailed study of Recordinality will be the subject of the second part of this course

How-to in Twelve Steps

(1) Define some observable R that depends only on the set of distinct elements (hash values) X or the subsequence of their first occurrences in the data stream
(2) The observable must be:

How-to in Twelve Steps

(1) Define some observable R that depends only on the set of distinct elements (hash values) X or the subsequence of their first occurrences in the data stream
(2) The observable must be:

- insensitive to repetitions
- very fast to compute, using a small amount of memory

How-to in Twelve Steps

(1) Define some observable R that depends only on the set of distinct elements (hash values) X or the subsequence of their first occurrences in the data stream
(2) The observable must be:

- insensitive to repetitions
- very fast to compute, using a small amount of memory

How-to in Twelve Steps

(1) Define some observable R that depends only on the set of distinct elements (hash values) X or the subsequence of their first occurrences in the data stream
(2) The observable must be:

- insensitive to repetitions
- very fast to compute, using a small amount of memory

How-to in Twelve Steps

(3) Compute the probability distribution $\operatorname{Prob}\{R=k\}$ or the density $f(x) d x=\operatorname{Prob}\{x \leqslant R \leqslant x+d x\}$
(4) Compute the expected value for a set of $|X|=n$ random
i.i.d. uniform values in $(0,1)$ or a random permutation of n such values

$$
E[R]=\sum_{k} k \operatorname{Prob}\{R=k\}=f(n)
$$

(5) Under reasonable conditions, $\mathrm{E}\left[\mathrm{f}^{(-1)}(\mathrm{R})\right]$ should be similar to n, but a correcting factor will be necessary to obtain the estimator Z

How-to in Twelve Steps

(3) Compute the probability distribution $\operatorname{Prob}\{R=k\}$ or the density $f(x) d x=\operatorname{Prob}\{x \leqslant R \leqslant x+d x\}$
(4) Compute the expected value for a set of $|\mathrm{X}|=\mathrm{n}$ random i.i.d. uniform values in $(0,1)$ or a random permutation of n such values

$$
E[R]=\sum_{k} k \operatorname{Prob}\{R=k\}=f(n)
$$

© Under reasonable conditions, $\mathrm{E}\left[\mathrm{f}^{(-1)}(\mathrm{R})\right]$ should be similar to n, but a correcting factor will be necessary to obtain the estimator Z

$$
Z:=\phi \cdot f^{(-1)}(R) \Rightarrow E[Z]
$$

How-to in Twelve Steps

(3) Compute the probability distribution $\operatorname{Prob}\{R=k\}$ or the density $f(x) d x=\operatorname{Prob}\{x \leqslant R \leqslant x+d x\}$
(4) Compute the expected value for a set of $|\mathrm{X}|=\mathrm{n}$ random i.i.d. uniform values in $(0,1)$ or a random permutation of n such values

$$
E[R]=\sum_{k} k \operatorname{Prob}\{R=k\}=f(n)
$$

(6) Under reasonable conditions, $\mathrm{E}\left[\mathrm{f}^{(-1)}(\mathrm{R})\right]$ should be similar to n, but a correcting factor will be necessary to obtain the estimator Z

$$
Z:=\phi \cdot f^{(-1)}(R) \Rightarrow E[Z] \sim n
$$

How-to in Twelve Steps

(6) Sometimes $\mathrm{E}[\mathrm{Z}]=+\infty$ or $\operatorname{Var}[\mathrm{Z}]=+\infty$ and stochastic averaging helps avoid this pitfall; in any case, it can be useful to use stochastic averaging

$$
Z_{m}:=F\left(R_{1}, \ldots, R_{m}\right)
$$

(2) Let N_{i} denote the r.v. number of distinct elements going to the i th substream. Compute $\mathrm{E}[\mathrm{Z}]$:

How-to in Twelve Steps

(6) Sometimes $\mathrm{E}[\mathrm{Z}]=+\infty$ or $\operatorname{Var}[\mathrm{Z}]=+\infty$ and stochastic averaging helps avoid this pitfall; in any case, it can be useful to use stochastic averaging

$$
Z_{m}:=F\left(R_{1}, \ldots, R_{m}\right)
$$

(7) Let N_{i} denote the r.v. number of distinct elements going to the ith substream. Compute $\mathrm{E}[\mathrm{Z}]$:

$$
\begin{gathered}
E\left[Z_{m}\right]=\sum_{\left(n_{1}, \ldots, n_{m}\right): n_{1}+\ldots+n_{m}=n} \frac{\binom{n}{n_{1}, \ldots, n_{m}}}{m^{n}} \sum_{j_{1}, \ldots, j_{m}} F\left(j_{1}, \ldots, j_{m}\right) \\
\cdot \prod_{1 \leqslant i \leqslant m} \operatorname{Prob}\left\{R_{i}=\mathfrak{j}_{i} \mid N_{i}=n_{i}\right\}
\end{gathered}
$$

How-to in Twelve Steps

(8) The computation of $E\left[Z_{m}\right]$ should yield the correcting factor $\phi=\phi_{\mathrm{m}}$ to compensate the bias; a similar computation should allow us to compute $\operatorname{SE}\left[Z_{m}\right]$
(? Under quite general hypothesis $\operatorname{Var}\left[Z_{m}\right]=\Theta\left(n^{2} / m\right)$ and $\operatorname{SE}\left[Z_{m}\right] \approx c / \sqrt{m}$

How-to in Twelve Steps

(8) The computation of $\mathrm{E}\left[\mathrm{Z}_{\mathrm{m}}\right]$ should yield the correcting factor $\phi=\phi_{\mathfrak{m}}$ to compensate the bias; a similar computation should allow us to compute $\mathrm{SE}\left[\mathrm{Z}_{\mathrm{m}}\right]$
(9) Under quite general hypothesis $\operatorname{Var}\left[Z_{m}\right]=\Theta\left(n^{2} / m\right)$ and $\mathrm{SE}\left[Z_{m}\right] \approx c / \sqrt{m}$
(1) A finer analysis should provide the lower order terms o(1) of the bias $E\left[Z_{m}\right] / n=1+o(1)$

How-to in Twelve Steps

(8) The computation of $\mathrm{E}\left[\mathrm{Z}_{\mathrm{m}}\right]$ should yield the correcting factor $\phi=\phi_{\mathrm{m}}$ to compensate the bias; a similar computation should allow us to compute $\mathrm{SE}\left[Z_{m}\right]$
(9) Under quite general hypothesis $\operatorname{Var}\left[Z_{m}\right]=\Theta\left(n^{2} / m\right)$ and $\mathrm{SE}\left[\mathrm{Z}_{\mathrm{m}}\right] \approx \mathrm{c} / \sqrt{\mathrm{m}}$
(10) A finer analysis should provide the lower order terms o(1) of the bias $E\left[Z_{m}\right] / n=1+o(1)$

How-to in Twelve Steps

(1) Careful characterization of the probability distribution of Z_{m} is also important and useful \Rightarrow additional corrections or alternative ways to estimate the cardinality when it is small or medium \rightarrow very few distinct elements on each substream
(12) Experiment! Without experimentation your results will not
draw attention from the practitioners; show them your estimator is practical in a real-life setting, support your theoretical analysis with experiments

How-to in Twelve Steps

(11) Careful characterization of the probability distribution of Z_{m} is also important and useful \Rightarrow additional corrections or alternative ways to estimate the cardinality when it is small or medium \rightarrow very few distinct elements on each substream
(12) Experiment! Without experimentation your results will not draw attention from the practitioners; show them your estimator is practical in a real-life setting, support your theoretical analysis with experiments

Other problems

- To estimate the number of k-elephants or k-mice in the stream we can draw a random sample of T distinct elements, together with their frequency counts
- Let T_{k} be the number of k-mice (k-elephants) in the sample, and n_{k} the number of k-mice in the data stream. Then

Other problems

- To estimate the number of k-elephants or k-mice in the stream we can draw a random sample of T distinct elements, together with their frequency counts
- Let T_{k} be the number of k-mice (k-elephants) in the sample, and n_{k} the number of k-mice in the data stream. Then

$$
E\left[\frac{T_{k}}{T}\right]=\frac{n_{k}}{n}
$$

with a decreasing standard error as T grows.

Other problems

- The distinct sampling problem is to draw a random sample of distinct elements and it has many applications in data stream analysis
- In a random sample from the data stream (e.g., using the reservoir method) each distinct element z_{j} appears with relative frequency in the sample equal to its relative frequency f_{j} / N in the data stream \Rightarrow needle-on-a-haystack

Other problems

- The distinct sampling problem is to draw a random sample of distinct elements and it has many applications in data stream analysis
- In a random sample from the data stream (e.g., using the reservoir method) each distinct element z_{j} appears with relative frequency in the sample equal to its relative frequency f_{j} / N in the data stream \Rightarrow needle-on-a-haystack

Adaptive Sampling

- We need samples of distinct elements \Rightarrow distinct sampling
- Adaptive sampling (Wegman, 1980; Flajolet, 1990; Louchard, 1997) is just such an algorithm (which also gives an estimation of the cardinality, as the size of the returned sample is itself a random variable)

Adaptive Sampling

- We need samples of distinct elements \Rightarrow distinct sampling
- Adaptive sampling (Wegman, 1980; Flajolet, 1990; Louchard, 1997) is just such an algorithm (which also gives an estimation of the cardinality, as the size of the returned sample is itself a random variable)

Adaptive Sampling

```
procedure AdAPTIVESAMPLING(S, maxC)
    \(C \leftarrow \emptyset ; p \leftarrow 0\)
    for \(x \in \mathcal{S}\) do
    if hash \((x)=0^{p} \ldots\) then
        \(C \leftarrow C \cup\{x\}\)
        if \(|C|>\max C\) then
        \(p \leftarrow p+1\); filter \(C\)
        end if
    end if
    end for
    return C
end procedure
```

At the end of the algorithm, $|\mathrm{C}|$ is the number of distinct elemnts with hash value starting $.0^{p} 1 \equiv$ the number of strings in the subtree rooted at 0^{p} in a binary trie for n random binary string.

Adaptive Sampling

There are 2^{p} subtrees rooted at depth p

$$
|\mathrm{C}| \approx \mathrm{n} / 2^{\mathrm{p}} \Rightarrow \mathrm{E}\left[2^{\mathrm{p}} \cdot|\mathrm{C}|\right] \approx \mathrm{n}
$$

Distinct Sampling in Recordinality and Order Statistics

- Recordinality and KMV collect the elements with the k largest (smallest) hash values (often only the hash values)
- Such k elements constitute a random sample of k distinct elements.
- Recordinality can be easily adapted to collect random samples of expected size $\Theta(\log n)$ or $\Theta\left(n^{\alpha}\right)$, with variable-size distinct sampling \Rightarrow better precision in inferences about the full data stream

Distinct Sampling in Recordinality and Order Statistics

- Recordinality and KMV collect the elements with the k largest (smallest) hash values (often only the hash values)
- Such k elements constitute a random sample of k distinct elements.
- Recordinality can be easily adapted to collect random samples of expected size $\Theta(\log n)$ or $\Theta\left(n^{\alpha}\right)$, with $0<\alpha<1$ and without prior knowledge of $n!\Rightarrow$ variable-size distinct sampling \Rightarrow better precision in inferences about the full data stream

Distinct Sampling in Recordinality and Order Statistics

- Recordinality and KMV collect the elements with the k largest (smallest) hash values (often only the hash values)
- Such k elements constitute a random sample of k distinct elements.
- Recordinality can be easily adapted to collect random samples of expected size $\Theta(\log n)$ or $\Theta\left(n^{\alpha}\right)$, with $0<\alpha<1$ and without prior knowledge of $n!\Rightarrow$ variable-size distinct sampling \Rightarrow better precision in inferences about the full data stream

Part II

Intermezzo: A Crash Course on Analytic Combinatorics

Two basic counting principles

Let \mathcal{A} and \mathcal{B} be two finite sets.
The Addition Principle
If \mathcal{A} and \mathcal{B} are disjoint then

$$
|\mathcal{A} \cup \mathcal{B}|=|\mathcal{A}|+|\mathcal{B}|
$$

The Multiplication Principle

$$
|\mathcal{A} \times \mathcal{B}|=|\mathcal{A}| \times|\mathcal{B}|
$$

Combinatorial classes

Definition
A combinatorial class is a pair $(\mathcal{A},|\cdot|)$, where \mathcal{A} is a finite or denumerable set of values (combinatorial objects, combinatorial structures), $|\cdot|: \mathcal{A} \rightarrow \mathbb{N}$ is the size function and for all $n \geqslant 0$

$$
\mathcal{A}_{n}=\{x \in \mathcal{A}| | x \mid=\mathfrak{n}\} \quad \text { is finite }
$$

Combinatorial classes

Example

- $\mathcal{A}=$ all finite strings from a binary alphabet;
$|s|=$ the length of string s
- $\mathcal{B}=$ the set of all permutations;
$|\sigma|=$ the order of the permutation σ
- $\mathcal{C}_{n}=$ the partitions of the integer $n ;|p|=n$ if $p \in \mathcal{C}_{n}$

Labelled and unlabelled classes

- In unlabelled classes, objects are made up of indistinguisable atoms; an atom is an object of size 1
- In labelled classes, objects are made up of distinguishable atoms; in an object of size n, each of its n atoms bears a distinct label from $\{1, \ldots, n\}$

Counting generating functions

Definition

Let $a_{n}=\# \mathcal{A}_{n}=$ the number of objects of size n in \mathcal{A}. Then the formal power series

$$
A(z)=\sum_{n \geqslant 0} a_{n} z^{n}=\sum_{\alpha \in \mathcal{A}} z^{|\alpha|}
$$

is the (ordinary) generating function of the class \mathcal{A}.
The coefficient of z^{n} in $\mathcal{A}(z)$ is denoted $\left[z^{n}\right] \mathcal{A}(z)$:

$$
\left[z^{n}\right] A(z)=\left[z^{n}\right] \sum_{n \geqslant 0} a_{n} z^{n}=a_{n}
$$

Counting generating functions

Ordinary generating functions (OGFs) are mostly used to enumerate unlabelled classes.

Example

$$
\begin{aligned}
\mathcal{L} & =\left\{w \in(0+1)^{*} \mid w \text { does not contain two consecutive } 0 ’ \mathrm{~s}\right\} \\
& =\{\epsilon, 0,1,01,10,11,010,011,101,110,111, \ldots\} \\
\mathrm{L}(z) & =z^{|\epsilon|}+z^{|0|}+z^{|1|}+z^{|01|}+z^{|10|}+z^{|11|}+\cdots \\
& =1+2 z+3 z^{2}+5 z^{3}+8 z^{4}+\cdots
\end{aligned}
$$

Exercise: Can you guess the value of $\mathrm{L}_{\mathrm{n}}=\left[z^{\mathrm{n}}\right] \mathrm{L}(z)$?

Counting generating functions

Definition

Let $a_{n}=\# \mathcal{A}_{n}=$ the number of objects of size n in \mathcal{A}. Then the formal power series

$$
\hat{A}(z)=\sum_{n \geqslant 0} a_{n} \frac{z^{n}}{n!}=\sum_{\alpha \in \mathcal{A}} \frac{z^{|\alpha|}}{|\alpha|!}
$$

is the exponential generating function of the class \mathcal{A}.

Counting generating functions

Exponential generating functions (EGFs) are used to enumerate labelled classes.

Example

$$
\begin{aligned}
\mathcal{C} & =\text { circular permutations } \\
& =\{\epsilon, 1,12,123,132,1234,1243,1324,1342, \\
& 1423,1432,12345, \ldots\} \\
\hat{\mathrm{C}}(z) & =\frac{1}{0!}+\frac{z}{1!}+\frac{z^{2}}{2!}+2 \frac{z^{3}}{3!}+6 \frac{z^{4}}{4!}+\cdots \\
c_{n} & =n!\cdot\left[z^{n}\right] \hat{C}(z)=(n-1)!, \quad n>0
\end{aligned}
$$

Disjoint union

Let $\mathcal{C}=\mathcal{A}+\mathcal{B}$, the disjoint union of the unlabelled classes \mathcal{A} and $\mathcal{B}(\mathcal{A} \cap \mathcal{B}=\emptyset)$. Then

$$
C(z)=A(z)+B(z)
$$

And

$$
c_{n}=\left[z^{n}\right] C(z)=\left[z^{n}\right] A(z)+\left[z^{n}\right] B(z)=a_{n}+b_{n}
$$

Cartesian product

Let $\mathcal{C}=\mathcal{A} \times \mathcal{B}$, the Cartesian product of the unlabelled classes \mathcal{A} and \mathcal{B}. The size of $(\alpha, \beta) \in \mathcal{C}$, where $a \in \mathcal{A}$ and $\beta \in \mathcal{B}$, is the sum of sizes: $|(\alpha, \beta)|=|\alpha|+|\beta|$.
Then

$$
C(z)=A(z) \cdot B(z)
$$

Proof.

$$
\begin{aligned}
C(z) & =\sum_{\gamma \in \mathcal{C}} z^{|\gamma|}=\sum_{(\alpha, \beta) \in \mathcal{A} \times \mathcal{B}} z^{|\alpha|+|\beta|}=\sum_{\alpha \in \mathcal{A}} \sum_{\beta \in \mathcal{B}} z^{|\alpha|} \cdot z^{|\beta|} \\
& =\left(\sum_{\alpha \in \mathcal{A}} z^{|\alpha|}\right) \cdot\left(\sum_{\beta \in \mathcal{B}} z^{|\beta|}\right)=A(z) \cdot B(z)
\end{aligned}
$$

Cartesian product

The nth coefficient of the OGF for a Cartesian product is the convolution of the coefficients $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$:

$$
\begin{aligned}
c_{n} & =\left[z^{n}\right] C(z)=\left[z^{n}\right] A(z) \cdot B(z) \\
& =\sum_{k=0}^{n} a_{k} b_{n-k}
\end{aligned}
$$

Sequences

Let \mathcal{A} be a class without any empty object $\left(\mathcal{A}_{0}=\emptyset\right)$. The class $\mathcal{C}=\operatorname{SEQ}(\mathcal{A})$ denotes the class of sequences of \mathcal{A} 's.

$$
\begin{aligned}
\mathcal{C} & =\left\{\left(\alpha_{1}, \ldots, \alpha_{k}\right) \mid k \geqslant 0, \alpha_{i} \in \mathcal{A}\right\} \\
& =\{\epsilon\}+\mathcal{A}+(\mathcal{A} \times \mathcal{A})+(\mathcal{A} \times \mathcal{A} \times \mathcal{A})+\cdots=\{\epsilon\}+\mathcal{A} \times \mathcal{C}
\end{aligned}
$$

Then

$$
C(z)=\frac{1}{1-A(z)}
$$

Proof.

$$
C(z)=1+A(z)+A^{2}(z)+A^{3}(z)+\cdots=1+A(z) \cdot C(z)
$$

Labelled objects

Disjoint unions of labelled classes are defined as for unlabelled classes and $\hat{C}(z)=\hat{A}(z)+\hat{B}(z)$, for $\mathcal{C}=\mathcal{A}+\mathcal{B}$. Also, $c_{n}=a_{n}+b_{n}$.

To define labelled products, we must take into account that for each pair (α, β) where $|\alpha|=k$ and $|\alpha|+|\beta|=n$, we construct $\binom{n}{k}$ distinct pairs by consistently relabelling the atoms of α and β :

$$
\begin{aligned}
\alpha= & (2,1,4,3), \quad \beta=(1,3,2) \\
\alpha \times \beta= & \{(2,1,4,3,5,7,6),(2,1,5,3,4,7,6), \ldots, \\
& (5,4,7,6,1,3,2)\} \\
\#(\alpha \times \beta)= & \binom{7}{4}=35
\end{aligned}
$$

The size of an element in $\alpha \times \beta$ is $|\alpha|+|\beta|$.

Labelled products

For a class \mathcal{C} that is labelled product of two labelled classes \mathcal{A} and \mathcal{B}

$$
\mathcal{C}=\mathcal{A} \times \mathcal{B}=\bigcup_{\substack{\alpha \in \mathcal{A} \\ \beta \in \mathcal{B}}} \alpha \times \beta
$$

the following relation holds for the corresponding EGFs

$$
\begin{aligned}
\hat{\mathrm{C}}(z) & =\sum_{\gamma \in \mathrm{C}} \frac{z^{|\gamma|!}}{|\gamma|!}=\sum_{\alpha \in \mathcal{A}} \sum_{\beta \in \mathcal{B}}\binom{|\alpha|+|\beta|}{|\alpha|} \frac{z^{|\alpha|+|\beta|}}{(|\alpha|+|\beta|)!} \\
& =\sum_{\alpha \in \mathcal{A}} \sum_{\beta \in \mathcal{B}} \frac{1}{|\alpha|!|\beta|!} z^{|\alpha|+|\beta|}=\left(\sum_{\alpha \in \mathcal{A}} \frac{z^{|\alpha|}}{|\alpha|!}\right) \cdot\left(\sum_{\beta \in \mathcal{B}} \frac{z^{|\beta|}}{|\beta|!}\right) \\
& =\hat{A}(z) \cdot \hat{\mathrm{B}}(z)
\end{aligned}
$$

Labelled products

The nth coefficient of $\hat{C}(z)=\hat{A}(z) \cdot \hat{B}(z)$ is also a convolution

$$
c_{n}=\left[z^{n}\right] \hat{C}(z)=\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}
$$

Sequences

Sequences of labelled object are defined as in the case of unlabelled objects. The construction $\mathcal{C}=\operatorname{SEQ}(\mathcal{A})$ is well defined if $\mathcal{A}_{0}=\emptyset$.
If $\mathcal{C}=\operatorname{SeQ}(\mathcal{A})=\{\epsilon\}+\mathcal{A} \times \mathcal{C}$ then

$$
\hat{\mathrm{C}}(z)=\frac{1}{1-\hat{\AA}(z)}
$$

Example

Permutations are labelled sequences of atoms, $\mathcal{P}=\operatorname{SEQ}(Z)$. Hence,

$$
\hat{\mathrm{P}}(z)=\frac{1}{1-z}=\sum_{n \geqslant 0} z^{n}
$$

$$
n!\cdot\left[z^{n}\right] \hat{P}(z)=n!
$$

A dictionary of admissible unlabelled operators

Class	OGF	Name
ϵ	1	Epsilon
Z	z	Atomic
$\mathcal{A}+\mathcal{B}$	$A(z)+\mathrm{B}(z)$	Disjoint union
$\mathcal{A} \times \mathcal{B}$	$\mathrm{A}(z) \cdot \mathrm{B}(z)$	Product
$\operatorname{SEQ}(\mathcal{A})$	$\frac{1}{1-A(z)}$	Sequence
$\Theta \mathcal{A}$	$\Theta A(z)=z A^{\prime}(z)$	Marking
$\operatorname{MSET}(\mathcal{A})$	$\exp \left(\sum_{k>0} A\left(z^{k}\right) / k\right)$	Multiset
$\operatorname{PSET}(\mathcal{A})$	$\exp \left(\sum_{k>0}(-1)^{\mathrm{k}} \mathcal{A}\left(z^{\mathrm{k}}\right) / \mathrm{k}\right)$	Powerset
$\operatorname{CYCLE}(\mathcal{A})$	$\sum_{k>0} \frac{\phi(k)}{\mathrm{k}} \ln \frac{1}{1-A\left(z^{k}\right)}$	Cycle

A dictionary of admissible labelled operators

Class	EGF	Name
ϵ	1	Epsilon
Z	z	Atomic
$\mathcal{A}+\mathcal{B}$	$\hat{A}(z)+\hat{B}(z)$	Disjoint union
$\mathcal{A} \times \mathcal{B}$	$\hat{A}(z) \cdot \hat{\mathrm{B}}(z)$	Product
$\operatorname{SEQ}(\mathcal{A})$	$\frac{1}{1-\hat{A}(z)}$	Sequence
$\Theta \mathcal{A}$	$\Theta \hat{A}(z)=z \hat{A}^{\prime}(z)$	Marking
$\operatorname{SET}(\mathcal{A})$	$\exp (\hat{A}(z))$	Set
$\operatorname{Cycle}(\mathcal{A})$	$\ln \left(\frac{1}{1-\hat{A}(z)}\right)$	Cycle

Bivariate generating functions

We need often to study some characteristic of combinatorial structures, e. g., the number of left-to-right maxima in a permutation, the height of a rooted tree, the number of complex components in a graph, etc.
Suppose $\mathrm{X}: \mathcal{A}_{n} \rightarrow \mathbb{N}$ is a characteristic under study. Let

$$
a_{n, k}=\#\{\alpha \in \mathcal{A}| | \alpha \mid=n, X(\alpha)=k\}
$$

We can view the restriction $X_{n}: \mathcal{A}_{n} \rightarrow \mathbb{N}$ as a random variable. Then under the usual uniform model

$$
\operatorname{Prob}\left\{X_{n}=k\right\}=\frac{a_{n, k}}{a_{n}}
$$

Bivariate generating functions

Define

$$
\begin{aligned}
A(z, u) & =\sum_{n, k \geqslant 0} a_{n, k} z^{n} u^{k} \\
& =\sum_{\alpha \in \mathcal{A}} z^{|\alpha|} u^{X(\alpha)}
\end{aligned}
$$

Then $a_{n, k}=\left[z^{n} u^{k}\right] \mathcal{A}(z, u)$ and

$$
\operatorname{Prob}\left\{X_{n}=k\right\}=\frac{\left[z^{n} u^{k}\right] A(z, u)}{\left[z^{\mathfrak{n}}\right] A(z, 1)}
$$

Bivariate generating functions

We can also define

$$
\begin{aligned}
B(z, u) & =\sum_{n, k \geqslant 0} \operatorname{Prob}\left\{X_{n}=k\right\} z^{n} u^{k} \\
& =\sum_{\alpha \in \mathcal{A}} \operatorname{Prob}\{\alpha\} z^{|\alpha|} u^{X(\alpha)}
\end{aligned}
$$

and thus $\mathrm{B}(z, u)$ is a generating function whose coefficient of z^{n} is the probability generating function of the r.v. X_{n}

$$
\begin{aligned}
B(z, u) & =\sum_{n \geqslant 0} P_{n}(u) z^{n} \\
P_{n}(u) & =\left[z^{n}\right] B(z, u)=E\left[u^{X_{n}}\right]=\sum_{k \geqslant 0} \operatorname{Prob}\left\{X_{n}=k\right\} u^{k}
\end{aligned}
$$

Bivariate generating functions

Proposition

If $\mathrm{P}(\mathrm{u})$ is the probability generating function of a random variable X then

$$
\begin{aligned}
\mathrm{P}(1) & =1, \\
\mathrm{P}^{\prime}(1) & =E[\mathrm{X}], \\
\mathrm{P}^{\prime \prime}(1) & =E\left[\mathrm{X}^{2}\right]=E[\mathrm{X}(\mathrm{X}-1)], \\
\operatorname{Var}[\mathrm{X}] & =\mathrm{P}^{\prime \prime}(1)+\mathrm{P}^{\prime}(1)-\left(\mathrm{P}^{\prime}(1)\right)^{2}
\end{aligned}
$$

Bivariate generating functions

We can study the moments of X_{n} by successive differentiation of $B(z, u)$ (or $A(z, u)$). For instance,

$$
\overline{\mathrm{B}}(z)=\sum_{n \geqslant 0} \mathrm{E}\left[X_{n}\right] z^{n}=\left.\frac{\partial \mathrm{B}}{\partial u}\right|_{u=1}
$$

For the rth factorial moments of X_{n}

$$
\begin{gathered}
B^{(r)}(z)=\sum_{n \geqslant 0} E\left[X_{n} \underline{r}\right] z^{n}=\left.\frac{\partial^{r} B}{\partial u^{r}}\right|_{u=1} \\
x_{n}{ }^{r}=x_{n}\left(x_{n}-1\right) \cdots\left(x_{n}-r+1\right)
\end{gathered}
$$

Hwang's Quasi-Powers Theorem

Let $B(z, u)$ be the $B G F$ for a sequence X_{n} of random variables such that

$$
\mathrm{P}_{\mathrm{n}}(\mathrm{u})=\mathrm{E}\left[\mathrm{u}^{\mathrm{X}_{\mathrm{n}}}\right]=\left[z^{\mathrm{n}}\right] \mathrm{B}(z, \mathfrak{u})=\mathrm{a}(\mathrm{u}) \cdot \mathrm{b}(\mathrm{u})^{\lambda_{n}} \cdot(1+\mathrm{o}(1))
$$

in a complex neighborhood of $\mathfrak{u}=1$, with $\lambda_{n} \rightarrow \infty$, and $\mathfrak{a}(u)$ and $b(u)$ analytic functions in a neighborhood of $u=1$ with $a(1)=b(1)=1$. Then a proper normalization of X_{n} satisfies a CLT:

$$
\frac{X_{n}-E\left[X_{n}\right]}{\sqrt{\operatorname{Var}\left[X_{n}\right]}} \xrightarrow{(d)} \mathbb{N}(0,1),
$$

provided that $\operatorname{Var}\left[X_{n}\right] \rightarrow \infty$.

The number of left-to-right maxima in a permutation

Consider the following specification for permutations

$$
\mathcal{P}=\{\emptyset\}+\mathcal{P} \times \mathbf{Z}
$$

The BGF for the probability that a random permutation of size n has k left-to-right maxima is

$$
M(z, u)=\sum_{\sigma \in \mathcal{P}} \frac{z^{|\sigma|}}{|\sigma|!} \mathrm{u}^{\mathrm{X}(\sigma)}
$$

where $X(\sigma)=$ \# of left-to-right maxima in σ

The number of left-to-right maxima in a permutation

With the recursive descomposition of permutations and since the last element of a permutation of size n is a left-to-right maxima iff its label is n

$$
M(z, u)=\sum_{\sigma \in \mathcal{P}} \sum_{1 \leqslant j \leqslant|\sigma|+1} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} \mathrm{u}^{\mathrm{X}(\sigma)+\llbracket \mathfrak{j}=|\sigma|+1 \rrbracket}
$$

$\llbracket \mathrm{P} \rrbracket=1$ if P is true, $\llbracket \mathrm{P} \rrbracket=0$ otherwise.

The number of left-to-right maxima in a permutation

$$
\begin{aligned}
M(z, u) & =\sum_{\sigma \in \mathcal{P}} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} u^{\mathrm{X}(\sigma)} \sum_{1 \leqslant j \leqslant|\sigma|+1} u^{\llbracket j=|\sigma|+1 \rrbracket} \\
& =\sum_{\sigma \in \mathcal{P}} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} u^{\mathrm{X} \sigma)}(|\sigma|+u)
\end{aligned}
$$

Taking derivatives w.r.t. z

$$
\frac{\partial}{\partial z} M=\sum_{\sigma \in \mathcal{P}} \frac{z^{|\sigma|}}{|\sigma|!} u^{X \sigma)}(|\sigma|+u)=z \frac{\partial}{\partial z} M+u M
$$

Hence,

$$
(1-z) \frac{\partial}{\partial z} M(z, u)-u M(z, u)=0
$$

The number of left-to-right maxima in a permutation

Solving, since $M(0, u)=1$

$$
M(z, u)=\left(\frac{1}{1-z}\right)^{u}=\sum_{n, k \geqslant 0}\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{z^{n}}{n!} u^{k}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]$ denote the (signless) Stirling numbers of the first kind, also called Stirling cycle numbers.
Hence

$$
\operatorname{Prob}\left\{X_{n}=k\right\}=\frac{\left[\begin{array}{l}
n \\
k
\end{array}\right]}{n!}
$$

The number of left-to-right maxima in a permutation

Taking the derivative w.r.t. u and setting $u=1$

$$
\mathfrak{m}(z)=\left.\frac{\partial}{\partial z} M(z, u)\right|_{u=1}=\frac{1}{1-z} \ln \frac{1}{1-z}
$$

Thus the average number of left-to-right maxima in a random permutation of size n is

$$
\begin{gathered}
{\left[z^{n}\right] m(z)=E\left[X_{n}\right]=H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\ln n+\gamma+O(1 / n)} \\
\frac{1}{1-z} \ln \frac{1}{1-z}=\sum_{\ell} z^{\ell} \sum_{m>0} \frac{z^{m}}{m}=\sum_{n \geqslant 0} z^{n} \sum_{k=1}^{n} \frac{1}{k}
\end{gathered}
$$

The number of left-to-right maxima in a permutation

Similarly, taking the second derivative w.r.t. u of $M(z, u)$ and setting $u=1$ we get the GF of the second factorial moment

$$
m_{2}(z)=\left.\frac{\partial^{2}}{\partial z^{2}} M(z, u)\right|_{u=1}=\frac{1}{1-z} \ln ^{2} \frac{1}{1-z}
$$

Then

$$
\begin{aligned}
& {\left[z^{n}\right] m_{2}(z)=E\left[X_{n}{ }^{2}\right]=2 \sum_{0<j \leqslant n} \frac{H_{j-1}}{j}=H_{n}^{2}-H_{n}^{(2)} } \\
& H_{n}^{(2)}=\sum_{1 \leqslant j \leqslant n} 1 / j^{2}
\end{aligned}
$$

$\operatorname{Var}\left[X_{n}\right]=\left[z^{n}\right] m_{2}(z)+\left[z^{n}\right] m(z)-\left(\left[z^{n}\right] m(z)\right)^{2}$

$$
=\mathrm{H}_{\mathrm{n}}^{2}-\mathrm{H}_{\mathrm{n}}^{(2)}+\mathrm{H}_{\mathrm{n}}-\mathrm{H}_{\mathrm{n}}^{2}=\mathrm{H}_{\mathrm{n}}-\mathrm{H}_{\mathrm{n}}^{(2)}=\ln n+\mathrm{O}(1)
$$

The number of left-to-right maxima in a permutation

Since $M(z, u)=(1-z)^{-u}$ we have

$$
\left[z^{n}\right] M(z, u)=\left[z^{n}\right]\left(\frac{1}{1-z}\right)^{u}=n!\binom{n+u-1}{n}\left(\equiv \frac{\Gamma(n+u)}{\Gamma(u)}\right.
$$

Thus in a neighborhood of $u=1$,

$$
\mathrm{E}\left[\mathrm{u}^{\mathrm{x}_{\mathrm{n}}}\right]=\left[z^{\mathrm{n}}\right] M(z, u)=\mathrm{n}^{\mathrm{u}-1}(1+\mathrm{o}(1))
$$

and applying Hwang's quasi-powers theorem with $a(u)=1$, $b(u)=\exp (u-1)$ and $\lambda_{n}=\ln n$ it follows that

$$
\frac{X_{n}-\ln n}{\sqrt{\ln n}} \xrightarrow{(d)} \mathbb{N}(0,1)
$$

Part III

Case Study: Analysis of Recordinality

Introduction

Given the data stream $\mathcal{S}=s_{1}, \ldots, s_{\mathrm{N}}$, consider the substream

$$
\mathcal{S}_{\mathfrak{u}}=z_{1}, \ldots, z_{\mathfrak{n}}
$$

with z_{i} the i -th distinct element in \mathcal{S} in order of appearence

Example

$$
\begin{aligned}
\mathcal{S} & =3,14,1,593,26,53,5,8979,3,23,8,46,26,433,8,3,2,8 \\
\mathcal{S}_{\mathfrak{u}} & =3,14,1,593,26,53,5,8979,23,8,46,433,2
\end{aligned}
$$

Introduction

Applying a hash function h on $\mathcal{S}_{\mathfrak{u}}$ allows us to see the data stream as a permutation \mathcal{P}_{u} :

Example

$$
\begin{aligned}
& \mathcal{S}_{\mathfrak{u}}=3,14,1,593,26,53,5,8979,23,8,46,433,2 \\
& \mathcal{P}_{\mathfrak{u}}=3,6,1,12,8,10,4,13,7,5,9,11,2
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{S}=3,14,1,593,26,53,5,8979,3,23,8,46,26,433,8,3,2,8 \\
& \mathcal{P}=3,6,1,12,8,10,4,13,3,7,5,9,8,11,5,3,2,5
\end{aligned}
$$

Recordinality

- RECORDINALITY counts the number of records (more generally, k-records) in the sequence
- It depends in the underlying permutation of the first occurrences of distinct values, very different from the other estimators
- If we assume that the first occurrences of distinct values form a random permutation then no need for hash values!

Recordinality

- RECORDINALITY counts the number of records (more generally, k-records) in the sequence
- It depends in the underlying permutation of the first occurrences of distinct values, very different from the other estimators
- If we assume that the first occurrences of distinct values form a random permutation then no need for hash values!

Recordinality

- Recordinality counts the number of records (more generally, k-records) in the sequence
- It depends in the underlying permutation of the first occurrences of distinct values, very different from the other estimators
- If we assume that the first occurrences of distinct values form a random permutation then no need for hash values!

Recordinality

- $\sigma(\mathfrak{i})$ is a record of the permutation σ if $\sigma(\mathfrak{i})>\sigma(\mathfrak{j})$ for all j $<$ i
- This notion is generalized to k-records: $\sigma(i)$ is a k-record if there are at most $k-1$ elements $\sigma(j)$ larger than $\sigma(i)$ for $j<i$; in other words, $\sigma(i)$ is among the k largest elements in $\sigma(1), \ldots, \sigma(i)$

Recordinality

- $\sigma(i)$ is a record of the permutation σ if $\sigma(i)>\sigma(j)$ for all $j<i$
- This notion is generalized to k-records: $\sigma(i)$ is a k-record if there are at most $k-1$ elements $\sigma(j)$ larger than $\sigma(i)$ for $j<i$; in other words, $\sigma(i)$ is among the k largest elements in $\sigma(1), \ldots, \sigma(i)$

Recordinality

procedure REcordinality(S)
fill T with the first k distinct elements (hash values)
of the stream \mathcal{S}
$\mathrm{R} \leftarrow \mathrm{k}$
for all $s \in S$ do

$$
x \leftarrow h(s)
$$

if $x>\min (T) \wedge x \notin T$ then
$R \leftarrow R+1 ; T \leftarrow T \cup\{x\} \backslash \min (T)$
end if
end for
return $Z=\varphi(R)$
end procedure

Memory: k hash values ($k \log n$ bits) +1 counter ($\log \log n$ bits)

Estimating Cardinality from Records

To find the estimator Z, we need to fully understand the probabilistic behavior of R, the number of k-records in a random permutation of size n.
The recursive decomposition of permutations

$$
\mathcal{P}=\epsilon+\mathcal{P} \times Z
$$

is the natural choice for the analysis of k-records, with \times denoting the labelled product.

Analysis of k-Records

- For each σ in $\mathcal{P},\{\sigma\} \times Z$ is the set of $|\sigma|+1$ permutations

$$
\{\sigma \star 1, \sigma \star 2, \ldots, \sigma \star(n+1)\}, \quad n=|\sigma|
$$

$\sigma \star j$ denotes the permutation one gets after relabelling \mathfrak{j}, $j+1, \ldots, n=|\sigma|$ in σ to $j+1, j+2, \ldots, n+1$ and appending j at the end

Example

Analysis of k-Records

- For each σ in $\mathcal{P},\{\sigma\} \times Z$ is the set of $|\sigma|+1$ permutations

$$
\{\sigma \star 1, \sigma \star 2, \ldots, \sigma \star(n+1)\}, \quad n=|\sigma|
$$

$\sigma \star j$ denotes the permutation one gets after relabelling \mathfrak{j}, $j+1, \ldots, n=|\sigma|$ in σ to $j+1, j+2, \ldots, n+1$ and appending j at the end

Example
$32451 \star 3=425613$
$32451 \star 2=435612$

Analysis of k-Records

- $\mathcal{R}(\sigma)=$ the set of k-records in permutation σ
- $\mathrm{r}(\sigma)=\# \mathcal{R}(\sigma)$

Analysis of k-Records

- $\mathcal{R}(\sigma)=$ the set of k-records in permutation σ
- $\mathrm{r}(\sigma)=\# \mathcal{R}(\sigma)$

Analysis of k-Records

- $\mathcal{R}(\sigma)=$ the set of k-records in permutation σ
- $\mathrm{r}(\sigma)=\# \mathcal{R}(\sigma)$
- Let $X_{j}(\sigma)=1$ if $n-k+1<j \leqslant n+1, n=|\sigma| ; X_{j}(\sigma)=0$ otherwise.

Analysis of k-Records

- $\mathcal{R}(\sigma)=$ the set of k-records in permutation σ
- $r(\sigma)=\# \mathcal{R}(\sigma)$
- Let $X_{j}(\sigma)=1$ if $n-k+1<j \leqslant n+1, n=|\sigma| ; X_{j}(\sigma)=0$ otherwise.
- $r(\sigma \star \mathfrak{j})=r(\sigma)+X_{j}(\sigma)$

Analysis of k-Records

Theorem
Let $\mathrm{R}(z, \mathfrak{u})=\sum_{\sigma \in \mathcal{P}:|\sigma| \geqslant k \frac{z^{|\sigma|}}{|\sigma|!}} \mathfrak{u}^{\mathrm{r}(\sigma)}$.
Then

$$
\frac{\partial}{\partial z}((1-z) R(z, u))=k(u-1) R(z, u)+k \frac{u^{k} z^{k-1}}{k!} .
$$

Analysis of k-Records

$$
\begin{aligned}
R(z, u) & =\sum_{\sigma \in \mathcal{P}:|\sigma| \geqslant k} \frac{z^{|\sigma|}}{|\sigma|!} u^{r(\sigma)}=\frac{z^{k} u^{k}}{k!}+\sum_{n>k} \sum_{\sigma \in \mathcal{P}_{n}} \frac{z^{|\sigma|}}{|\sigma|!} u^{r(\sigma)} \\
& =\frac{z^{k} u^{k}}{k!}+\sum_{n>k} \sum_{1 \leqslant j \leqslant n} \sum_{\sigma \in \mathcal{P}_{n-1}} \frac{z^{|\sigma \star j|}}{|\sigma \star j|!} u^{r(\sigma \star j)} \\
& =\frac{z^{k} u^{k}}{k!}+\sum_{n>k} \sum_{1 \leqslant j \leqslant n} \sum_{\sigma \in \mathcal{P}_{n-1}} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} u^{r(\sigma)+x_{j}(\sigma)} \\
& =\frac{z^{k} u^{k}}{k!}+\sum_{n>k} \sum_{\sigma \in \mathcal{P}_{n-1}} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} u^{r(\sigma)} \sum_{1 \leqslant j \leqslant n} u^{x_{j}(\sigma)}
\end{aligned}
$$

Analysis of k-Records

Since $X_{j}(\sigma)$ is 1 if and only if $j>|\sigma|+1-k$ and 0 otherwise

$$
\sum_{1 \leqslant j \leqslant n} u^{X_{j}(\sigma)}=(|\sigma|+1-k)+k u
$$

$$
\mathrm{R}(z, u)=\frac{z^{k} u^{k}}{k!}+\sum_{n>k} \sum_{\sigma \in \mathcal{P}_{n-1}} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} u^{r(\sigma)}((|\sigma|+1-k)+k u) .
$$

The theorem follows after differentiation w.r.t. z and a few additional algebraic manipulations.

Analysis of k-Records

To solve the PDE for $\mathrm{R}(, z u)$ we introduce

$$
\Phi(z, u):=\frac{z^{k}}{k!} \frac{\partial^{\mathrm{k}} \mathrm{R}(z, u)}{\partial z^{k}}
$$

so that

$$
\left[z^{\mathfrak{n}}\right] \Phi(z, u)=\binom{n}{k}\left[z^{\mathfrak{n}}\right] R(z, \mathfrak{u})
$$

and

$$
(1-z) \frac{\partial \Phi}{\partial z}-(k+1) \Phi=k(u-1) \Phi
$$

Analysis of k-Records

The explicit solution for $\Phi(z, \mathfrak{u})$ is easir, once we plug in the initial conditions, we get

$$
\Phi(z, u)=\frac{(z u)^{k}}{1-z}\left(\frac{1}{1-z}\right)^{k u}
$$

We can get easily average and variance for the number R_{n} of k-records:

$$
\begin{aligned}
E\left[R_{n}\right] & =\left.\frac{1}{\binom{n}{k}}\left[z^{n}\right] \frac{\partial \Phi}{\partial u}\right|_{u=1} \\
& =k\left(H_{n}-H_{k}+1\right)=k \ln (n / k)+O(1)
\end{aligned}
$$

Likewise

$$
\operatorname{Var}\left[R_{n}\right]=k\left(H_{n}-H_{k}\right)-k^{2}\left(H_{n}^{(2)}-H_{k}^{(2)}\right)=k \ln (n / k)+O(1)
$$

Analysis of k-Records

From the explict form of $\Phi(z, u)$
Theorem (Helmi, M., Panholzer, 2012)

$$
\operatorname{Prob}\left\{R_{n}=j\right\}= \begin{cases}\llbracket n=j \rrbracket, & \text { if } n<k, \\
{\left[\begin{array}{l}
n-k+1 \\
j-k+1
\end{array}\right] \frac{k^{j-k} \cdot k!}{n!},} & \text { if } k \leqslant j \leqslant n .\end{cases}
$$

The Estimator for Recordinality

Let us assume for the moment that $k \leqslant R \leqslant n$. If $R<k$ then we are sure that $n=R$.
Since $E\left[R_{n}\right]=k \ln (n / k)+O(1)$ let us take

$$
W=\exp (\phi \cdot R)
$$

for some correcting factor ϕ to be determined and such that $E[W]$ is close (proportional?) to n.

The Estimator for Recordinality

$$
\begin{aligned}
E[\exp \phi \cdot R] & =\sum_{j \geqslant k} \exp (\phi \cdot j) \operatorname{Prob}\{R=j\} \\
& =\sum_{j \geqslant k} \exp (\phi \cdot j)\left[\begin{array}{c}
n-k+1 \\
j-k+1
\end{array}\right] \frac{k^{j-k} \cdot k!}{n!} \\
& =\frac{k!}{n!k} \exp (\phi \cdot(k-1)) \sum_{j \geqslant 1}\left[\begin{array}{c}
n-k+1 \\
j
\end{array}\right](k \exp (\phi))^{j}
\end{aligned}
$$

Since

$$
\sum_{1 \leqslant j \leqslant m}\left[\begin{array}{c}
m \\
j
\end{array}\right] z^{j}=z(z+1) \cdots(z+m-1)=: z^{\bar{m}}
$$

$E[\exp (\phi \cdot R)]=\frac{k!}{n!k} \exp (\phi \cdot(k-1))\left(k \exp (\phi)^{\overline{n-k+1}}\right.$

The Estimator for Recordinality

If $k \exp (\phi)=k+1$ then

$$
\begin{gathered}
(k \exp (\phi))^{\overline{n-k+1}}=(k+1)^{\overline{n-k+1}}=\frac{(n+1)!}{k!} \\
\exp (\phi)=\left(1+\frac{1}{k}\right)
\end{gathered}
$$

Hence

$$
\begin{aligned}
E[\exp (\phi \cdot R)] & =\frac{k!}{n!k} \exp (\phi \cdot(k-1))(k \exp (\phi))^{\overline{n-k+1}} \\
& =\frac{n+1}{k}\left(1+\frac{1}{k}\right)^{k-1}
\end{aligned}
$$

The Estimator for Recordinality

Therefore if we set

$$
\begin{aligned}
Z & =k\left(1+\frac{1}{k}\right)^{-k+1} \exp (\phi \cdot R)-1 \\
& =k\left(1+\frac{1}{k}\right)^{-k+1}\left(1+\frac{1}{k}\right)^{R}-1 \\
& =k\left(1+\frac{1}{k}\right)^{R-k+1}-1
\end{aligned}
$$

$\mathrm{E}[\mathrm{Z}]=\mathrm{n}$, exactly!!

Recordinality in Practice

Two plots showing the accuracy of 500 estimates of the number of distinct elements contained in Shakespeare's A Midsummer Night's Dream. Left: $k=64$. Right: $k=256$. Above the top and below the bottom line: 5% of the estimates. Area within centermost lines: 70\% estimates. Gray rectangle: area within one standard deviation from the mean.

Recordinality in Practice

k	Recordinality		Adaptive Sampling		k-th Order Statistic	
	Avg.	Error	Avg.	Error	Avg.	Error
4	2737	1.04	3047	0.70	4050	0.89
8	2811	0.73	3014	0.41	3495	0.44
16	3040	0.54	3012	0.31	3219	0.28
32	3010	0.34	3078	0.20	3159	0.18
64	3020	0.22	3020	0.15	3071	0.12
128	3042	0.14	3032	0.11	3070	0.10
256	3044	0.08	3027	0.07	3037	0.06
512	3043	0.04	3043	0.05	3046	0.04

Table: Estimating the number of distinct elements in Shakespeare's A Midsummer Night's Dream ($\mathrm{n}=3031$). Normalized average and the empirical standard deviation divided by $n .10000$ simulations.

Recordinality in Practice

k	RECORDINALITY		Adaptive Sampling		k-th Order Statistic	
	Avg.	Error	Avg.	Error	Avg.	Error
4	43658	1.19	59474	0.94	81724	1.30
8	35230	0.52	47432	0.38	57028	0.41
16	57723	0.98	49889	0.29	52990	0.23
32	48686	0.45	49480	0.23	50556	0.18
64	47617	0.34	50524	0.14	51146	0.13
128	50097	0.17	50452	0.09	50947	0.08
256	51742	0.11	50857	0.06	50348	0.06
512	49496	0.09	49920	0.06	50084	0.04

Table: Experiments for a random stream containg $n=50000$ distinct elements-here 25000 simulations were run.

To Know More: General References

R Philippe Flajolet and Robert Sedgewick.
Analytic Combinatorics.
Cambridge University Press, 2009.
Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics.
Addison Wesley, Reading, Massachussetts, 2nd edition, 1994.

國 S. Muthu Muthukrishnan.
Data streams: Algorithms and applications.
Foundations and Trends in Theoretical Computer Science, 1(2):117-236, 2005.

To Know More：Research Papers

圕 Ziv Bar－Yossef，T．S．Jayram，Ravi Kumar，D．Sivakumar， and Luca Trevisan．
Counting Distinct Elements in a Data Stream．
Randomization and Approximation Techniques（RANDOM）， pages 1－10． 2002.

囦 Marianne Durand and Philippe Flajolet．
LogLog Counting of Large Cardinalities．
Proc．European Symposium on Algorithms（ESA），volume
2832 of Lecture Notes in Computer Science，pages
605－617， 2003.
围 Philippe Flajolet．
On adaptive sampling．
Computing，34：391－400， 1990.

To Know More: Research Papers

速 Philippe Chassaing and Lucas Gerin.
Efficient Estimation of the Cardinality of Large Data Sets.
Proc. Int. Col. Mathematics and Computer Science (MathInfo), pages 419-422, 2007.
囯 Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier.
HyperLoglog: the analysis of a near-optimal cardinality estimation algorithm.
Proceedings of Int. Conf. Analysis of Algorithms (AofA), pages 127-146, 2007.

- Philippe Flajolet and G. Nigel N. Martin.

Probabilistic Counting Algorithms for Data Base
Applications.
Journal of Computer and System Sciences, 31(2):182-209, 1985.

To Know More: Research Papers

圊 A. Helmi, J. Lumbroso, C. Martínez, and A. Viola.
Counting distinct elements in data streams: the random permutation viewpoint.
Proc. of Int. Conf. Analysis of Algorithms (AofA), pages 323-338, 2012.

圊 Jérémie Lumbroso.
An optimal cardinality estimation algorithm based on order statistics and its full analysis.
In Proc. Analysis of Algorithms (AofA), pages 489-504, 2010.

