
Randomized Algorithms (RA-MIRI):

Assignment #2

1 Statement

In this programming assignment you will have to study experimentally the per-
formance of a variant of quickselect called sesquickselect. Sesquickselect aims
at reducing cache misses and thus improve running time of the standard quick-
select algorithm. To this end, sesquickselect will randomly pick two pivots for
each recursive stage, use one of them or both to partition the current subarray
and continue recursively in the part that contains the sought element. Sesquick-
select uses a parameter ν ∈ [0, 1/2] as follows. Let α = i/n if we are looking
an element with current rank i in a subarray of size n (notice that i and n will
be changing as we make recursive calls). Then if α < ν we partition the array
around the smallest of the two pivots and if α > 1 − ν then we partition the
array around the largest of the two pivots. In these two cases we compare the
position of the pivot after partition with the position of the sought element and
proceed recursively to the left or the right, as necessary. If ν ≤ α ≤ 1− ν then
the subarray is partitioned around the two pivots using Yaroslavskiy-Bentley-
Bloch (YBB) dual-pivot partitioning, which will produce three parts, and we
continue recursively into the one that contains the sought element.

Check the references below to learn more about the algorithm and about
YBB partitioning (more specifically references [1] and [2]). To measure the
performance of sesquickselect we shall use scanned elements, which give a very
good approximation to the number of cache misses (after dividing by the cache
size) that the algorithm incurs. In the classical partitioning algorithm “scanned
elements = comparisons = n − 1”, but this is not the case with YBB parti-
tioning. In YBB partitioning the number of scanned elements equals “n − 2 +
size of the leftmost part”. A detailed explanation of YBB partitioning can be
found in Figure 1 of [1].

In your experiments you should produce a big number T of large arrays,
e.g., with n = 30000 elements, each one containing a random permutation.
Apply sesquickselect to the arrays with various ranks i ∈ [1..10000], e.g., for
i = 1, 100, 200, . . . , 29900, 30000 and obtain the average scanned elements
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Ŝ(i)
n (r),

1



where Ŝ
(i)
n (r) denotes the number of scanned elements to select the i-th element

in the r-th array of size n. Let ix = bx·nc; plot Ŝ
(ix)
n /n as a function of x ∈ (0, 1)

and compare with the theoretical prediction

f(x) = lim
n→∞

S
(bxnc)
n

n
, x ∈ [0, 1].

Here S
(i)
n is the theoretical value of the expected number of scanned elements

when selecting the i-th smallest elements out of n. The values Ŝ
(i)
n that you

obtain through experiment are estimates of the true values S
(i)
n . You should be

getting plots similar to those Figure 14 in [3] (experimental results), and Figures
2 and 3 of [3] or Figure 2 (right) of [2] (theoretical predictions).

Setting ν = 0 you get quickselect with pure dual-pivot partitioning (you use
two pivots and YBB partitioning at every stage), whereas setting ν = 1/2 you
will always partition using only one pivot—this variant is known as proportion-
from-2 as the pivot that is used comes from a sample of 2 elements on each
stage (see [3]). Besides the special values ν = 0 and ν = 1/2, you should do
experiments for other values of ν, and in particular, try to check experimentally
(very approximately) that the optimal value of ν is ν∗ ≈ 0.265 . . .. Reference
[2] gives precise formulas for the function f(x) for sesquickselect; the function
depends on ν albeit we don’t make this dependence explicit, and unless ν = 0
or ν = 1/2, the function has three pieces:

f(x) =


f1(x) if x < ν,

f2(x) if ν ≤ x ≤ 1− ν,
f1(1− x) if x > 1− ν.

The values of f1(x) and f2(x) are given in Section 7 of [2], and the necessary
constants in Appendix D. If you want to plot the theoretical curves f(x) (which
also depend on ν) prepare some small program (perhaps in Mathematica, Maple
or a similar computer algebra system) that generates the plots or to produce files
with (x, f(x)) pairs (one file for every ν) to be used later by your plotting system
or package. Plotting the theoretical curves and the estimation that you get from
the experiments alongside might be useful (but avoid plotting too many curves

in one single plot!). It can also be instructive to plot the errors |f(x)− Ŝ(ix)
n /n|,

and to estimate the variability of the measurements, i.e., compute the sample
variance
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which is an unbiased estimator of the variance of the number of scanned elements
to select the i-th out of n. The square root of V̂

(i)
n is not an unbiased estimator

of the standard deviation (because E
{√

X
}
6=

√
E {X}!), but is not far away,

especially if T is large. Plotting a bar of length

√
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n /n (which is a function
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of i) centered around the corresponding average value Ŝ
(i)
n /n gives a good idea

of the amount of variability in the measurements.
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N.B. These papers can be accessed from the UPC library website (https:
//bibliotecnica.upc.edu/ebib) identifying yourself as UPC student; if you
experience any problems to access them or you need access to some related
material contact me (DM in Slack or email to conrado@cs.upc.edu).

2 Instructions to deliver your work

Submit your work using the FIB-Racó. The deadline for submission is Novem-
ber 12th, 2023 at 23:59. It must consist of a zip or tar file containing all
your source code, auxiliary files and your report in PDF format. Include a
README file that briefly describes the contents of the zip/tar file and gives
instructions on how to produce the executable program(s) used and how to
reproduce the experiments. The PDF file with your report must be called
YourLastName YourFirstName-2.pdf,

N.B. I encourage you to use LATEX to prepare your report. For the plots you
can use any of the multiple packages that LATEX has (in particular, the bundle
TikZ+PGF) or use independent software such as matplotlib and then include
the images/PDF plots thus generated into your document.
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