Randomized Algorithms (RA-MIRI): Assignment \#1

In this programming assignment you will have to write programs to simulate the outcomes of two random experiments and make empirical estimations of the constant π from the outcomes. It is fine to use C++ or Python; if you would like to use a different programming language, please check with the instructor. It is fine to embed the two simulations in one single program, or to write a different program for each simulation.

1 Throwing darts

The experiment that we want to simulate is that of throwing darts. The landing position of each dart is a random point in the unit square $[0,1]^{2}$, each random point drawn uniformly and independently of the others.

The area of the circle inscribed inside the unit square is $\pi / 4 \approx 0.7854$, therefore the probability that a dart that is thrown at random in the unit square lands inside the circle is $\pi / 4$.

Your program will be given a number N of darts and it will simulate the throwing of the N darts by generating their landing positions uniformly and independently - for each dart generate two random numbers x and y uniformly in $[0,1]$ giving the coordinates of the position of the dart.

Count the number C of darts that fall inside the inscribed circle. Then C / N should be roughly $\pi / 4$. In the document describing your work it will be very good that you graphically plot the evolution of the ratio

$$
\frac{4 \times \text { darts-inside-circle }}{\text { darts-thrown }}
$$

as we throw more and more darts (until darts-thrown reaches the value N). The ratio should approximate π, with increasingly better approximations as the number of throws increases.

2 Buffon's needles

In Buffon's needles experiment there is a big surface divided into alternating black and white stripes of width t and a needle of length $\ell \leq t$ falls. Buffon wondered what was the probability that the needle landed across two contiguous stripes. The answer turns out to be quite simple:

$$
\frac{2 \ell}{t \pi} .
$$

You should write a program that simulates the fall of N needles and counts how many of them would be crossing two stripes. Without loss of generality, for each needle we generate a random number x between 0 and $t / 2$ that represents the distance between the center of the needle to the closest line that separates stripes, and another number θ, between 0 and $\pi / 2$, that represents the angle (in radians) between the needle and the stripe line $\theta=0$ means the needle is parallel to the line, $\theta=\pi / 2$ means it is perpendicular) - see the figure below.

In particular, the needle will cross the line if

$$
x \leq \frac{\ell}{2} \sin \theta
$$

Let C the number of needles that cross a line; then

$$
\frac{C}{N} \approx \frac{2 \ell}{t \pi}
$$

and

$$
\frac{2 \ell N}{t C} \approx \pi
$$

Like in the previous section, make a graphical depiction of the evolution of the ratio $(2 \ell N) /(t C)$. We can take $\ell=1 / 2$ and $t=1$, then $\ell=t / 2<t$, and the ratio N / C should approximate π as N grows.

3 Instructions to deliver your work

Submit your work using the FIB-Racó. The deadline for submission is October 15th, 2023 at $23: 59$. It must consist of a zip or tar file containing all your source code, auxiliary files and your report in PDF format. Include a README file that briefly describes the contents of the zip/tar file and gives instructions on how to produce the executable program(s) used and how to reproduce the experiments. The PDF file with your report must be called YourLastName_YourFirstName-1.pdf,
N.B. I encourage you to use $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ to prepare your report. For the plots you can use any of the multiple packages that $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ has (in particular, the bundle TikZ+PGF) or use independent software such as matplotlib and then include the images/PDF plots thus generated into your document.

