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1. (2.5 points) We need to send a signal S which might be S = —1 or S = +1 over
a wireless network. Because of other sources emitting signals S;, 1 < i < n, at the
same time, the received signal R can be expressed as

i=1

where the p; > 0 measures the strength of signal S;; the p;’s are not probabilities,
since ) .p; might be # 1. If R > 0, we assume that the original signal S = +1;
conversely, if R < 0 then we assume that S = —1 (if R = 0, we choose at random).
We want to bound the probability of that we identify S wrongly. That will happen
whenever |R — S| > 1.

Let X = 3" | p;S; denote the “‘noise”, and assume the S;’s are i.i.d. with
1
P[Si:+1}:P[SZ-:—1]:§, 1<i<n.
(a) Compute E[X] and V[X].
(b) Compute the moment generating function E[etX] and show that it is bounded

by (X202 Ugeful formula: (e 4+ e7*)/2 < e**/2 (it can be shown using the
Taylor series expasions of both sides of the inequality).

(c) Using Markov’s inequality we can derive a Chernoff-like bound as
]P)[X 2 a] :P[etX Z eati| S ]E[etX} 6—at‘

Use the bound on E[e¢'¥] and set ¢ = 1/, p} to obtain an exponentially de-
caying upper bound for P[X > a].

(d) Using analogous arguments, the upper bound above also applies to P[—X > a,
and then we can combine this result to obtain a bound for P[|X| > a]. Using
that bound, give a lower bound for the probability of a correct identification of

S.




2. (2.5 points) We have a computer monitoring a sensor, by requesting data from the
sensor from time to time. It does so at randomly picked moments, to avoid any easily
predictable pattern which could be exploited by a malicious adversary. However,
we are guaranteed that the computer will monitor the sensor A = 3 times on each
interval of 10 minutes on average (we will call a time frame or just a frame, each such
10-minutes interval).

(a) Give a formula for the probability that the computer monitors the sensor exactly
J times in a frame. To compute it, consider that the frame is subdivided in a big
number n tiny time intervals, each one a potential moment in which the computer
issues a monitoring request to the sensor. Thus, each tiny time interval contains,
with some probability, a monitoring request, independently of the others, and
of those n intervals, on average, A of them have monitoring requests (and the
other don’t).

(b) If there is no monitoring request during a frame we say that it is non-monitored.
Consider m consecutive non-overlapping frames. What is the expected number
of non-monitored frames? Let Y denote the number of non-monitored frames
out of m. Prove

PV~ E[Y]| > 0VE]] < 5.

3. (2.5 points) A certain city has N bus lines numbered 1,2,..., N. Walking around
the city you have seen buses with numbers 1 <47 < iy <.+ <4 < N. You might
have observed less than k different bus lines, because you could have observed more
than one bus of the same line. You do not know N, that is, how many bus lines
there are in the city, but you can give an estimate N of N as a function of k and

the observed numbers iq,...,i;, such that E[N] ~ N. Here, the expectation is on

the sample of k lines that you have observed; each one of the N* possible choices is
assumed equally likely.

(a) Compute the probability that X = i, the largest of k£ randomly drawn numbers
from {1,...,N}is < j, for 1 <j < N. The k draws are independent and “with
replacement” as any particular bus line can be observed several times.

(b) Compute the expected value of X. To that end, prove first that E[X] =
n1‘+1

> 1<jen PIX > ). Useful fact: 377, " = 2= + O(n").
(¢) Propose an asymptotically unbiased estimator N for N: N := f(k, X) and
E[]\Af} =N+o0o(N) as N — 0.




4. (2.5 points) Modern hardware tries to optimize the execution of instructions in
a pipelined fashion by predicting on each conditional instruction which of the two
branches will be taken. Many solutions have been proposed, but branch predictions
must be carried out at a very low level, so very sophisticated solutions must be
avoided. One such mechanism is using a finite automaton that keeps information
about the behavior of the conditional instruction on the last k£ times it has been
executed. One such particular automaton for k£ = 2 is the so-called 2-bit flip-on-
consecutive counter. To analyze the performance of this branch prediction mechanism
we are lead to consider the Markov chain below

where 0 <p<landg=1-p.

(a) Write the transition matrix P® for two steps of the Markov chain. That is, )

is the probability that we are at state v after two steps of the Markov chain if
we started at state u, for all u and v.

(b) Find the stationary distribution m = m(p) for the Markov chain. Identities such
as p’q + pg® = pq or p?> + ¢ = 1 — pq might be helpful here and in the next
question.

(c) Compute a closed form for the probability of a misprediction, which is, by defi-
nition
Pmisprediction = W(p) . (Q7 Qapap)T

Prove that Pyisprediction = 0 if p = 0 or p = 1. Prove also that it is maximum if
p = q = 1/2; for that case, Puisprediction = 1/2-




