Balls and Bins

Josep Díaz Maria J. Serna Conrado Martínez U. Politècnica de Catalunya

RA-MIRI 2023-2024

Balls and Bins

Basic Model: Given n balls, we throw each one independently and uniformly into a set of m bins.

$$
\mathbb{P}[\text { ball } i \rightarrow \text { bin } j]=\frac{1}{m}
$$

Probability space: $\Omega=\left\{\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{n}\right)\right\}$ where $\mathrm{b}_{\mathrm{i}} \in\{1, \ldots, \mathrm{~m}\}$ denotes the index of the bin containing the i-th ball: $|\Omega|=\mathrm{m}^{n}$. For any $w \in \Omega, \mathbb{P}[w]=\left(\frac{1}{m}\right)^{n}$

Balls and Bins

Basic Model: Given n balls, we throw each one independently and uniformly into a set of m bins.

$$
\mathbb{P}[\text { ball } i \rightarrow \text { bin } j]=\frac{1}{m}
$$

Probability space: $\Omega=\left\{\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n}}\right)\right\}$ where $\mathrm{b}_{\mathrm{i}} \in\{1, \ldots, \mathrm{~m}\}$ denotes the index of the bin containing the i-th ball: $|\Omega|=\mathrm{m}^{n}$. For any $w \in \Omega, \mathbb{P}[w]=\left(\frac{1}{m}\right)^{n}$

Balls and Bins as a model

Balls and Bins models are very useful in different areas of computer science. For ex.:

■ The hashing data structure: the keys are the balls and the slots in the array are the bins.

- Many situations in routing in nets: the balls represent the connectivity requirements and the bins the paths in the network
■ Load balancing randomized algorithms, the balls are the jobs and the bins are the servers.

Example

Recall that, as an application of Chernoff bounds, we proved that for n balls (jobs) and m bins (servers), under a uniform and independent distribution of jobs to servers, for $n \gg m$, the probability the load of a server deviates from the expected load n / m is $\leqslant 1 / \mathrm{m}^{3}$.

General rules for the analysis of Balls \& Bins

n balls to m bins.
$\square X_{j}$ is the random variable counting the number of balls into bin j. Then $X_{j} \sim \operatorname{Bin}\left(n, \frac{1}{m}\right)$.
■ As we know: $X_{1}, \ldots X_{m}$ are not independent.
\square The average load in a bin is $\mu=\mathbb{E}\left[X_{j}\right]=\mathfrak{n} / \mathrm{m}$.

- Rule of thumb to do the analysis:

■ If $n \gg m$, (μ large) use Chernoff bounds,

- if $\mathrm{n}=\Theta(\mathrm{m}),(\mu \in \Theta(1))$, use the Poisson approximation.

General rules for the analysis of Balls \& Bins

n balls to m bins.
$\square X_{j}$ is the random variable counting the number of balls into bin j. Then $X_{j} \sim \operatorname{Bin}\left(n, \frac{1}{m}\right)$.
\square As we know: $X_{1}, \ldots X_{m}$ are not independent.
■ The average load in a bin is $\mu=\mathbb{E}\left[X_{j}\right]=\mathrm{n} / \mathrm{m}$.

- Rule of thumb to do the analysis:

■ If $n \gg m$, (μ large) use Chernoff bounds,

- if $n=\Theta(m),(\mu \in \Theta(1))$, use the Poisson approximation.

Recall that for very small
x,
$e^{x} \sim 1+x$
$e^{-x} \sim 1-x$.

The Poisson Distribution

Recall that for $X \sim \operatorname{Bin}(n, p)$, for large n and small p, we can have a good approximation: $\mathbb{P}[X=k]=\frac{e^{-\lambda} \lambda^{k}}{k!}$, where $\lambda=\mathbb{E}[X]=\mu=\mathrm{pn}$.

The Poisson Distribution: Basic Properties

Assume that $Y \sim \operatorname{Poisson}(\lambda)$ approximates $X \sim \operatorname{Bin}(n, p)$, then as $\mathbb{E}[X]=n p$ seems natural that $\mathbb{E}[Y]=n p=\lambda$. On the other hand $\mathbb{V}[X]=\mathfrak{n p}(1-p)=\lambda(1-p)$ and if p is small $\mathbb{V}[X] \sim \lambda$ and $\mathbb{V}[\mathrm{Y}]=\lambda$.

Sum of Poisson r. v.

Lemma
If $\mathrm{Y} \sim \operatorname{Poisson}(\lambda)$ and $\mathrm{Z} \sim \operatorname{Poisson}\left(\lambda^{\prime}\right)$ are independent, then $\mathrm{Y}+\mathrm{Z} \sim \operatorname{Poisson}\left(\lambda+\lambda^{\prime}\right)$.

Proof

$$
\begin{aligned}
\mathbb{P}[Y+Z=j] & =\sum_{k=0}^{j} \mathbb{P}[(Y=k) \cap(Z=j-k)]=\sum_{k=0}^{j} \frac{e^{-\lambda} e^{-\lambda^{\prime}} \lambda^{k} \lambda^{\prime j-k}}{k!(j-k)!} \\
& \left.=\frac{e^{-\left(\lambda+\lambda^{\prime}\right)}}{j!} \sum_{k=0}^{j} \frac{j!}{k!(j-k)!} \lambda^{k} \lambda^{\prime j-k}=\frac{e^{-\left(\lambda+\lambda^{\prime}\right)}}{j!} \sum_{k=0}^{j}\binom{j}{k} \lambda^{k}\left(\lambda^{\prime}\right)^{j}\right]^{k} \\
& =\frac{e^{-\left(\lambda+\lambda^{\prime}\right)} \times\left(\lambda+\lambda^{\prime}\right)^{j}}{j!} \Rightarrow(Y+Z) \sim \operatorname{Poisson}\left(\lambda+\lambda^{\prime}\right)
\end{aligned}
$$

Basic facts

Recall X_{j} counts the number of balls in the j-th bin.

- Probability all n balls go to the same bin: $\left(\frac{1}{m}\right)^{n}$.

■ Probability that bin j is empty:
$\mathbb{P}\left[X_{j}=0\right]=\left(1-\frac{1}{m}\right)^{n} \sim e^{-\frac{n}{m}}=e^{-\lambda}$.
■ Let Y be the number of empty bins, $\mathbb{E}[Y]$?.
For $1 \leqslant j \leqslant m$, let Y_{j} be the r.v.defined as $Y_{j}=1$ iff bin j is empty, 0 otherwise. Then, $\mathbb{E}[Y]=\sum_{\mathfrak{j}=1}^{\mathfrak{m}} \mathbb{E}\left[Y_{j}\right]=\sum_{\mathfrak{j}=1}^{\mathfrak{m}} \mathbb{P}\left[X_{j}=0\right]=\mathfrak{m}(1-1 / m)^{n}$. So, the expected number of empty bins is

$$
\mathbb{E}[Y] \sim m e^{-\lambda} .
$$

Probability the j-th bin contains 1 ball

We can assume that m and n are large, (so $p=1 / m$ is small),
$\lambda=n / m=\Theta(1)$
Exact computation: $\mathbb{P}\left[X_{j}=1\right]=\binom{n}{1}(1 / m)^{1}(1-1 / m)^{n-1}$, where $\binom{n}{1}$ is the number of choices were exactly 1 ball goes into bin j,
$(1-1 / m)^{n-1}$: remaining balls do not go to bin j.
$\mathbb{P}\left[X_{j}=1\right]=\frac{n}{m}(1-1 / m)^{n}(1-1 / m)^{-1}$
Poisson approximation: Taking $\lambda=\frac{n}{m}$ and $(1-1 / m)^{n} \sim e^{-\lambda}$ and noticing $(1-1 / \mathrm{m}) \rightarrow 1$:

$$
\mathbb{P}\left[X_{j}=1\right] \sim \lambda e^{-\lambda}
$$

Example

For $n=3000$ and $m=1000, \lambda=3$, the exact value of $\mathbb{P}\left[X_{i}=1\right]=0.149286$ and the Poisson approximation is 0.149361 .

Probability the j-th bin contains exactly r balls

Assume that m and n are large and $n, m>r$
Exact computation: $\mathbb{P}\left[X_{j}=r\right]=\binom{n}{r}(1 / m)^{r}(1-1 / m)^{n-r}$.
Poisson approximation:
$(1-1 / m)^{n-r}=(1-1 / m)^{n}(1-1 / m)^{-r}=e^{-\lambda} \cdot 1^{-r}$

$$
\begin{aligned}
\binom{n}{r}(1 / m)^{r}= & \frac{1}{r!}\left(\frac{n}{m} \frac{n-1}{m} \cdots \frac{n-r+1}{m}\right) \\
= & \frac{1}{r!} \lambda\left(1-\frac{1}{n}\right) \cdots \lambda\left(1-\frac{r+1}{n}\right)=\lambda^{r} \\
& \mathbb{P}\left[X_{j}=r\right] \sim \frac{\lambda^{r} e^{-\lambda}}{r!}
\end{aligned}
$$

Example
For $n=4000$ and $m=2000, \lambda=2$, and $r=100$, the exact value of $\mathbb{P}\left[X_{i}=r\right]=5.54572 \times 10^{-130}$ and the approximation is 1.83826×10^{-130}

Probability of collisions

$\mathbb{P}[$ at least 1 bin has more than 1 ball $]=$
$1-\mathbb{P}\left[\right.$ every bin j has $\left.X_{j} \leqslant 1\right]$. If $k-1$ balls went to $k-1$ different bins. Then,

$$
\begin{aligned}
\mathbb{P}[\text { The kth. ball goes into a non-empty bin }] & =\frac{k-1}{m} \\
\mathbb{P}[\text { The kth. ball goes into an empty bin }] & =\left(1-\frac{k-1}{m}\right)
\end{aligned}
$$

$\mathbb{P}\left[\right.$ every ball goes to an empty bin] $=\prod_{i=1}^{n}\left(1-\frac{\mathfrak{i}-1}{m}\right)$

$$
\begin{aligned}
=\prod_{i=1}^{n-1}(1- & \left.\frac{i}{m}\right) \sim \prod_{i=1}^{n} e^{-i / m} \\
& =e^{-\sum_{i=1}^{n-1} i / m}=e^{-\frac{n(n-1)}{2 m}} \sim e^{-\frac{n^{2}}{2 m}}
\end{aligned}
$$

Therefore, $\mathbb{P}\left[\right.$ at least 1 bin i has $\left.X_{i}>1\right] \sim 1-e^{-\frac{n^{2}}{2 m}}$.

Birthday problem

Example

How many students should be in a class in order to have that, with probability $>\quad 1 / 2$, at least 2 have the same birthday?

This is the same problem as above, with $m=365$:
We need $e^{-\frac{n^{2}}{2 m}} \leqslant \frac{1}{2} \Rightarrow \frac{n^{2}}{2 m} \leqslant \ln 2 \sim 0.69$
$\Rightarrow n=\sqrt{2 m \ln 2}$. If $m=365$ then $n=22.49$.
If there are more than 23 students in a class, with probability greater than $1 / 2$, two or more students will have the same birthday.

Coupon Collector's problem

How many balls do we need to throw to assure that w.h.p.

 every bin contains $\geqslant 1$ balls?- Let Y a r.v. counting the number of balls we have to throw until having no empty bins
■ For $1 \leqslant \mathfrak{i} \leqslant m$, let $Y_{i}=$ \# balls thrown since the moment in which $i-1$ bins are not empty until a ball goes into an empty bin.
- $Y_{1}=1$ and $Y=\sum_{i=1}^{m} Y_{i}$.

■ $\mathbb{P}[$ new ball into non-empty bin $\mid i-1$ non-empty bins $]=$ $\frac{i-1}{m}$.
$■ \mathbb{P}[$ new ball into empty bin $\mid \mathfrak{i}-1$ non-empty bins $]=1-\frac{\mathfrak{i}-1}{m}$.

Coupon Collector's problem: $\mathbb{E}[Y]$

$Y_{i}=\#$ of balls we have to throw to hit an empty bin having $i-1$ non-empty

$$
\mathbb{P}\left[Y_{i}=k\right]=\left(\frac{\mathfrak{i}-1}{m}\right)^{k-1}(\underbrace{1-\frac{\mathfrak{i}-1}{\mathfrak{m}}}_{\mathfrak{p}_{i}})
$$

Therefore $Y_{i} \in \operatorname{Geom}\left(p_{i}\right)$ and $\mathbb{E}\left[Y_{i}\right]=\frac{m}{m+i+1}$.

$$
\mathbb{E}[Y]=\sum_{i=1}^{m} \mathbb{E}\left[Y_{i}\right]=\sum_{i=1}^{m} \frac{m}{m-i+1}=m \sum_{j=1}^{m} \frac{1}{\mathfrak{j}}=m(\ln m+\mathcal{O}(1))
$$

Coupon Collector's problem: Concentration

Let $\mathbb{E}[\mathrm{Y}]=\mathcal{O}(\mathrm{m} \ln \mathrm{m}) \sim \mathrm{cm} \ln \mathrm{m}$ for constant $\mathrm{c}>1$

- For any bin \mathfrak{j}, define the event $A_{j, r}$: bin j is empty after the first r throws.
$■$ Notice events $A_{1, r}, A_{2, r}, \ldots A_{m, r}$ are not independent.
$\square \mathbb{P}\left[A_{j, r}\right]=\left(1-\frac{1}{m}\right)^{r} \sim e^{-r / m}$
\square For $r=\mathrm{cm} \ln m \Rightarrow \mathbb{P}\left[A_{j, c m \ln m}\right] \leqslant e^{-c m \ln m / m}=m^{-c}$.
- Let W be a r.v. counting the number of balls needed to make every bin have load $\geqslant 1$.

$$
\begin{aligned}
\mathbb{P}[W>c m \lg m] & =\mathbb{P}\left[\cup_{j=1}^{m} A_{j, c m \ln m}\right] \underbrace{\leqslant}_{\text {UB }} \sum_{j=1}^{m} \mathbb{P}\left[A_{j, c m \ln m}\right] \\
& \leqslant \sum_{j=1}^{m} m^{-c}=m^{1-c}
\end{aligned}
$$

Coupon Collector's problem: Concentration Bounds

■ The previous bound using UB is more tight than the one using Chebyshev or Chernoff on random variable Y .
■ In Section 5.4.1 of MU book, there is a sharper bound for the Coupon collector's, using the Poisson approximation.

Maximum Load

This is a particular case of the job and servers with sharper bounds
Theorem
If we throw n balls independently and uniformly into $\mathrm{m}=\mathrm{n}$ bins, then the maximum load of a bin is at most $\left(\frac{3 \ln n}{\ln \ln n}\right)$, with probability $\leqslant 1-\frac{1}{n}$ if n is large enough.

Recall that, if for any bin $1 \leqslant \mathfrak{j} \leqslant n, X_{j}=$ is a r.v. with its load. We know $\left\{X_{j}\right\}$ are not independent and $\mathbb{E}\left[X_{j}\right]=n / n=1$.
To show the above bound we use the following inequality:

$$
\binom{n}{k} \frac{1}{n^{k}} \leqslant \frac{1}{k!} \leqslant\left(\frac{e}{k}\right)^{k}
$$

Max-load: Proof Upper Bound

There are $\binom{n}{k}$ ways to choose k balls out of n and the probability that all them land in bin j is $(1 / m)^{k}=(1 / n)^{k}$, hence for $1 \leqslant k \leqslant n, \mathbb{P}\left[X_{j} \geqslant k\right] \leqslant\binom{ n}{k} \frac{1}{n^{k}} \leqslant\left(\frac{e}{k}\right)^{k}$.
We want to prove that for $k \geqslant \frac{3 \ln n}{\ln \ln n}$ and n large enough

$$
\mathbb{P}\left[\exists j: X_{j} \geqslant \frac{3 \ln n}{\ln \ln n}\right] \leqslant \frac{1}{n}
$$

By the union bound and since $k \geqslant 3 \ln n / \ln \ln n$

$$
\begin{aligned}
\mathbb{P}\left[\exists j: X_{j} \geqslant k\right] & \leqslant n\left(\frac{e}{k}\right)^{k} \leqslant n\left(\frac{e \ln \ln n}{3 \ln n}\right)^{3 \ln n / \ln \ln n} \\
& <e^{\ln n}\left(\frac{\ln \ln n}{\ln n}\right)^{3 \ln n / \ln \ln n} \\
& =e^{\ln n}\left(e^{\ln \ln \ln n-\ln \ln n}\right)^{3 \ln n / \ln \ln n} \\
& =e^{\ln n} e^{3 \ln n(\ln \ln \ln n / \ln \ln n)-3 \ln n}=e^{-2 \ln n} e^{3 \ln n \frac{\ln \ln \ln n}{\ln n}} \\
& =n^{-2} e^{3 \ln n \frac{\ln \ln n}{\ln n} n} \leqslant n^{-2} \cdot o(n) \leqslant n^{-1}, \quad \text { for large } n .
\end{aligned}
$$

Further considerations on Max-load

1 The same proof could be extended to the case of n balls and m bins, with the constrain $n<m \ln m$.
2 We can obtain the same result by using Chernoff's bounds. (Nice exercise!)
3 In fact, the result could be extended to prove the Lower Bound: that w.h.p. the max-load is $\Omega\left(\frac{\ln n}{\ln \ln (n)}\right)$ balls. One easy way to prove the lower bound is using Chebyshev's bound.
4 That result yields: Throwing n balls to n bins, w.h.p. we have a max-load of $\Theta\left(\frac{\ln n}{\ln \ln (n)}\right)$.
5 We can obtain sharper bounds for max-load, using strong inequalities (Azuma-Hoeffding) or the Poisson approximation.

Poisson approximation

1 A difficulty with the exact (binomial) Balls \& Bin model is that random variables could be dependent (for ex. bin's load).
2 We have seen how to approximate the expressions arising from the exact computations by a Poisson, if p is small and n is large.
3 However, under the right conditions, we can approach the whole solution to the problem by using Poisson r.v. instead of Binomial. In the binomial case we have exactly n balls with probability $p=1 / m$, in the Poisson case we have an intensity $\lambda=n / m$, where n is the expected number of balls being used.
4 The Poisson case is to use independent Poisson random variables. It can be shown, under certain conditions, that the approach gives a good approximation to the solution. See for ex. section 5.4 in MU.

