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Balls and Bins

Basic Model: Given n balls, we throw each one independently
and uniformly into a set of m bins.

P[ball i→ bin j] =
1
m

.

m bins

n balls

Probability space: Ω = {(b1,b2, . . . ,bn)} where bi ∈ {1, . . . ,m}

denotes the index of the bin containing the i-th ball: |Ω| = mn.
For any w ∈ Ω,P[w] = ( 1

m)n



Balls and Bins

Basic Model: Given n balls, we throw each one independently
and uniformly into a set of m bins.

P[ball i→ bin j] =
1
m

.

m bins

n balls

Probability space: Ω = {(b1,b2, . . . ,bn)} where bi ∈ {1, . . . ,m}

denotes the index of the bin containing the i-th ball: |Ω| = mn.
For any w ∈ Ω,P[w] = ( 1

m)n



Balls and Bins as a model
Balls and Bins models are very useful in different areas of
computer science. For ex.:

The hashing data structure: the keys are the balls and the
slots in the array are the bins.
Many situations in routing in nets: the balls represent the
connectivity requirements and the bins the paths in the
network
Load balancing randomized algorithms, the balls are the
jobs and the bins are the servers.

Recall that, as an application of Chernoff bounds, we proved
that for n balls (jobs) and m bins (servers), under a uni-
form and independent distribution of jobs to servers, for
n � m, the probability the load of a server deviates from the
expected load n/m is 6 1/m3.

Example



General rules for the analysis of Balls & Bins

n balls to m bins.

Xj is the random variable counting the number of balls into
bin j. Then Xj ∼ Bin(n, 1

m).
As we know: X1, . . .Xm are not independent.
The average load in a bin is µ = E

[
Xj
]
= n/m.

Rule of thumb to do the analysis:
If n� m, (µ large) use Chernoff bounds,
if n = Θ(m), (µ ∈ Θ(1)), use the Poisson approximation.

Recall that for very small
x,
ex ∼ 1 + x
e−x ∼ 1 − x.
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The Poisson Distribution

Recall that for X ∼ Bin(n,p), for large n and small p, we can
have a good approximation: P[X = k] = e−λλk

k! , where
λ = E[X] = µ = pn.



The Poisson Distribution: Basic Properties

Assume that Y ∼ Poisson(λ) approximates X ∼ Bin(n,p), then
as E[X] = np seems natural that E[Y] = np = λ. On the other
hand V[X] = np(1 − p) = λ(1 − p) and if p is small V[X] ∼ λ and
V[Y] = λ.



Sum of Poisson r. v.

If Y ∼ Poisson(λ) and Z ∼ Poisson(λ ′) are independent,
then Y + Z ∼ Poisson(λ+ λ ′).

Lemma

P[Y + Z = j] =

j∑
k=0

P[(Y = k) ∩ (Z = j− k)] =

j∑
k=0

e−λe−λ
′
λkλ ′j−k

k!(j− k)!

=
e−(λ+λ′)

j!

j∑
k=0

j!
k!(j− k)!

λkλ ′j−k =
e−(λ+λ′)

j!

j∑
k=0

(
j

k

)
λk(λ ′)j−k

=
e−(λ+λ′) × (λ+ λ ′)j

j!
⇒ (Y + Z) ∼ Poisson(λ+ λ ′)

�

Proof



Basic facts

Recall Xj counts the number of balls in the j-th bin.
Probability all n balls go to the same bin: ( 1

m)n.
Probability that bin j is empty:
P
[
Xj = 0

]
= (1 − 1

m)n ∼ e−
n
m = e−λ.

Let Y be the number of empty bins, E[Y]?.
For 1 6 j 6 m, let Yj be the r.v.defined as Yj = 1 iff bin j is
empty, 0 otherwise. Then,
E[Y] =

∑m
j=1 E

[
Yj
]
=

∑m
j=1 P

[
Xj = 0

]
= m(1 − 1/m)n. So,

the expected number of empty bins is

E[Y] ∼ me−λ.



Probability the j-th bin contains 1 ball
We can assume that m and n are large, (so p = 1/m is small),
λ = n/m = Θ(1)
Exact computation: P

[
Xj = 1

]
=
(
n
1

)
(1/m)1(1 − 1/m)n−1,

where
(
n
1

)
is the number of choices were exactly 1 ball goes

into bin j,

(1 − 1/m)n−1: remaining balls do not go to bin j.
P
[
Xj = 1

]
= n
m(1 − 1/m)n(1 − 1/m)−1

Poisson approximation: Taking λ = n
m and (1 − 1/m)n ∼ e−λ

and noticing (1 − 1/m)→ 1:

P
[
Xj = 1

]
∼ λe−λ.

For n = 3000 and m = 1000, λ = 3, the exact value
of P[Xi = 1] = 0.149286 and the Poisson approximation is
0.149361.

Example



Probability the j-th bin contains exactly r balls
Assume that m and n are large and n,m > r

Exact computation: P
[
Xj = r

]
=
(
n
r

)
(1/m)r(1 − 1/m)n−r.

Poisson approximation:
(1 − 1/m)n−r = (1 − 1/m)n(1 − 1/m)−r = e−λ · 1−r(

n

r

)
(1/m)r =

1
r!

(
n

m

n− 1
m
· · · n− r+ 1

m

)
=

1
r!
λ(1 −

1
n
) · · · λ(1 −

r+ 1
n

) = λr

P
[
Xj = r

]
∼
λre−λ

r!

For n = 4000 and m = 2000, λ = 2, and r = 100, the exact
value of P[Xi = r] = 5.54572 × 10−130 and the approximation
is 1.83826× 10−130

Example



Probability of collisions
P[at least 1 bin has more than 1 ball ] =
1 − P

[
every bin j has Xj 6 1

]
. If k− 1 balls went to k− 1

different bins. Then,

P[The kth. ball goes into a non-empty bin] =
k− 1
m

P[The kth. ball goes into an empty bin] = (1 −
k− 1
m

)

P[every ball goes to an empty bin] =
n∏
i=1

(
1 −

i− 1
m

)

=

n−1∏
i=1

(
1 −

i

m

)
∼

n∏
i=1

e−i/m

= e−
∑n−1
i=1 i/m = e−

n(n−1)
2m ∼ e−

n2
2m

Therefore, P[at least 1 bin i has Xi > 1] ∼ 1 − e−
n2
2m .



Birthday problem

How many students should be in a class in order to
have that, with probability > 1/2, at least 2 have the
same birthday?

Example

This is the same problem as above, with m = 365:

We need e−
n2
2m 6 1

2 ⇒
n2

2m 6 ln 2 ∼ 0.69
⇒ n =

√
2m ln 2. If m = 365 then n = 22.49.

If there are more than 23 students in a class, with probability
greater than 1/2, two or more students will have the same
birthday.



Coupon Collector’s problem

How many balls do we need to throw to assure that w.h.p.
every bin contains > 1 balls?

Let Y a r.v. counting the number of balls we have to throw
until having no empty bins
For 1 6 i 6 m, let Yi = # balls thrown since the moment in
which i− 1 bins are not empty until a ball goes into an
empty bin.
Y1 = 1 and Y =

∑m
i=1 Yi.

P[new ball into non-empty bin | i− 1 non-empty bins] =
i−1
m .

P[new ball into empty bin | i− 1 non-empty bins] = 1 − i−1
m .



Coupon Collector’s problem: E[Y]

Yi = # of balls we have to throw to hit an empty bin having i− 1
non-empty

P[Yi = k] =
(
i− 1
m

)k−1

1 −
i− 1
m︸ ︷︷ ︸

pi

 .

Therefore Yi ∈ Geom(pi) and E[Yi] = m
m+i+1 .

E[Y] =
m∑
i=1

E[Yi] =
m∑
i=1

m

m− i+ 1
= m

m∑
j=1

1
j
= m(lnm+ O(1)).



Coupon Collector’s problem: Concentration

Let E[Y] = O(m lnm) ∼ cm lnm for constant c > 1
For any bin j, define the event Aj,r: bin j is empty after the
first r throws.
Notice events A1,r,A2,r, . . .Am,r are not independent.

P
[
Aj,r

]
= (1 − 1

m)r ∼ e−r/m

For r = cm lnm⇒ P
[
Aj,cm lnm

]
6 e−cm lnm/m = m−c.

Let W be a r.v. counting the number of balls needed to
make every bin have load > 1.

P[W > cm lgm] = P
[
∪mj=1Aj,cm lnm

]
6︸︷︷︸
UB

m∑
j=1

P
[
Aj,cm lnm

]
6

m∑
j=1

m−c = m1−c.



Coupon Collector’s problem: Concentration Bounds

The previous bound using UB is more tight than the one
using Chebyshev or Chernoff on random variable Y.
In Section 5.4.1 of MU book, there is a sharper bound for
the Coupon collector’s, using the Poisson approximation.



Maximum Load

This is a particular case of the job and servers with sharper bounds

If we throw n balls independently and uniformly into
m = n bins, then the maximum load of a bin is at most( 3 lnn

ln lnn

)
, with probability 6 1 − 1

n if n is large enough.

Theorem

Recall that, if for any bin 1 6 j 6 n, Xj = is a r.v. with its load.
We know {Xj} are not independent and E

[
Xj
]
= n/n = 1.

To show the above bound we use the following inequality:(
n

k

)
1
nk
6

1
k!
6
(e
k

)k



Max-load: Proof Upper Bound
There are

(
n
k

)
ways to choose k balls out of n and the

probability that all them land in bin j is (1/m)k = (1/n)k, hence
for 1 6 k 6 n, P

[
Xj > k

]
6
(
n
k

) 1
nk
6 (ek)

k.
We want to prove that for k > 3 lnn

ln lnn and n large enough

P
[
∃j : Xj >

3 lnn
ln lnn

]
6

1
n

.

By the union bound and since k > 3 lnn/ ln lnn

P
[
∃j : Xj > k

]
6 n

(e
k

)k
6 n

(
e ln lnn
3 lnn

)3 lnn/ ln lnn

< elnn
(

ln lnn
lnn

)3 lnn/ ln lnn

= elnn(eln ln lnn−ln lnn)3 lnn/ ln lnn

= elnne3 lnn(ln ln lnn/ ln lnn)−3 lnn = e−2 lnne3 lnn ln ln lnn
ln lnn

= n−2e3 lnn ln ln lnn
ln lnn 6 n−2 · o(n) 6 n−1, for large n.



Further considerations on Max-load

1 The same proof could be extended to the case of n balls
and m bins, with the constrain n < m lnm.

2 We can obtain the same result by using Chernoff’s bounds.
(Nice exercise!)

3 In fact, the result could be extended to prove the Lower
Bound: that w.h.p. the max-load is Ω( lnn

ln ln(n)) balls. One
easy way to prove the lower bound is using Chebyshev’s
bound.

4 That result yields: Throwing n balls to n bins, w.h.p. we
have a max-load of Θ( lnn

ln ln(n)).

5 We can obtain sharper bounds for max-load, using strong
inequalities (Azuma-Hoeffding) or the Poisson
approximation.



Poisson approximation

1 A difficulty with the exact (binomial) Balls & Bin model is
that random variables could be dependent (for ex. bin’s
load).

2 We have seen how to approximate the expressions arising
from the exact computations by a Poisson, if p is small and
n is large.

3 However, under the right conditions, we can approach the
whole solution to the problem by using Poisson r.v. instead
of Binomial. In the binomial case we have exactly n balls
with probability p = 1/m, in the Poisson case we have an
intensity λ = n/m, where n is the expected number of
balls being used.

4 The Poisson case is to use independent Poisson random
variables. It can be shown, under certain conditions, that
the approach gives a good approximation to the solution.
See for ex. section 5.4 in MU.


