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Why do we need more concentration bounds?

Remember that given a random variable, we are trying to
determine how concentrated it is, trying to show the
probability of hitting a random instance which deviates far
from the expectation µ, is small.
We aim to have random variables (events) which are
concentrated around its mean with high probability.
We saw that if X > 0 Markov can give an indication that
there are values very far away from its mean, but in general
is too weak for proving strong concentration results.
Chebyshev’s inequality can give stronger results for
concentration of X around µ, but we must compute V[X],
which could be difficult.



Chernoff Bounds

H. Chernoff (1923–)

Sergei Bernstein (1924), Wassily Hoeffding (1964),
Herman Chernoff (1952)
The Chernoff bound can be used when the random variable X
is the sum of several independent random variables. For
Bernouilli trials, where each Xi can have probability of success
pi. The particular case where all pi are equal is the Bernouilli
trials, Chernoff bound takes the form given in the following
Theorem.



Chernoff Bounds

Let {Xi}ni=0 be independent Bernouilli trials, with
P[Xi = 1] = pi. Then, if X =

∑n
i=1 Xi, and µ = E[X], we

have
1 P[X 6 (1 − δ)µ] 6

(
e−δ

(1−δ)(1−δ)

)µ
, for δ ∈ (0, 1).

2 P[X > (1 + δ)µ] 6
(

eδ

(1+δ)(1+δ)

)µ
for any δ > 0.

Theorem (Theorem 1)



Weak Chernoff bound

Let {Xi}ni=0 be independent Bernouilli trials, with
P[Xi = 1] = pi. Then if X =

∑n
i=1 Xi, and µ = E[X],

we have
1 P[X 6 (1 − δ)µ] 6 e−µδ

2/2, for δ ∈ (0, 1).

2 P[X > (1 + δ)µ] 6 e−µδ
2/3, for δ ∈ (0, 1].

Corollary (Corollary 2)

Let {Xi}ni=0 be independent Bernouilli trials, with
P[Xi = 1] = pi. Then if X =

∑n
i=1 Xi, µ = E[X] and

δ ∈ (0, 1), we have

P[|X− µ| > δµ] 6 2e−µδ
2/3.

Corollary (Corollary 3)



Proof of Corollary 3

Using Cor. 2

P[|X− µ| > δµ] = P[X < (1 − δ)µ] + P[X > (1 + δ)µ]

6 e−µδ
2/2 + e−µδ

2/3 6 2e−µδ
2/3

�

Sketch



Proof of Corollary 2.1

For Cor. 2.1: Using Thm. 1.1, we must prove that,
for δ ∈ (0, 1), we have

(
e−δ

(1−δ)(1−δ)

)µ
6 e−µδ

2/2 =(
e−δ

2/2
)µ

.

Let f(δ) = ln
(

e−δ

(1−δ)(1−δ)

)
− ln

(
e−δ

2/2
)

f(δ) = −δ− (1 − δ) ln(1 − δ) + δ2/2 6 0.

Differenciating f(δ):

f ′(δ) = ln(1 − δ) + δ

f ′′(δ) =
−1

1 − δ
+ 1 6 0

⇒ f ′′(δ) < 0 in (0, 1) and as f ′(0) = 0, then f ′(δ) 6 0 in
[0, 1), i.e. f(δ) is non-increasing in [0, 1).

As f(0) = 0⇒ f(δ) 6 0 for δ ∈ (0, 1). �

Proof



Proof of Corollary 2.2

For Cor. 2.2: Using Thm. 1.2, we must prove that for
δ ∈ (0, 1), we have

(
eδ

(1+δ)(1+δ)

)µ
6 e−δ

2/3.

Taking logs: f(δ) = δ− (1 + δ) ln(1 + δ) + δ2/3 6 0.
Differentiating 2 times f(δ), and using the same argu-
ment as above, we see f(δ) 6 0 in (0, 1]. �

Proof



An easy application
Back to an old example: We flip n-times a fair coin, we wish an
upper bound on the probability of having at least 3n

4 heads.
Recall Let X ∼ Bin(n, 1/2), then, µ = n/2,V[X] = n/4.

We want to bound P
[
X > 3n

4

]
.

Markov: P
[
X > 3n

4

]
6 µ

3n/4 = 2/3.

Chebyshev: P
[
X > 3n

4

]
6 P

[
|X− n

2 | >
n
4

]
6 V[X]

(n/4)2 = 4
n .

Chernoff: Using Cor. 2.2,
P
[
X > 3n

4

]
= P

[
X > (1 + δ)n2

]
⇒ (1 + δ)3

2 ⇒ δ = 1
2

=⇒ P
[
X > 3n

4

]
6 e−µδ

2/3 = e−
n
24

If n = 100, Cheb. = 0.04, Chernoff = 0.0155
If n = 106, Cheb. = 4× 10−6, Chernoff
= 2.492× 10−18095

Example



Another example

Toss n times a fair coin, what is the probability of deviat-
ing from n/2 heads?

Example

Let X = # heads, then µ = n/2 and V[X] = n/4.

1 Markov: P[X > n/2] 6 n/2
n/2 = 1. So P[X 6 n/2] > 0. =⇒

no information!
2 Chebyshev: Between n/4 and 3n/4 heads:

P
[
|X− n

2 | >
n
4

]
6 4
n

3 Chernoff: Using the last bound

P
[
|X− n

2 | >
1
2

√
6n lnn

]
6 2e−

1
3
n
2

6 lnn
n = 2

n

Even P
[
|X− n

2 | >
n
4

]
6 2e−

1
3
n
2

1
4 6 2e−

n
24



Proof of Theorem 1: Upper tail

Note if for a r.v. X, and a > 0 and for any t > 0 we have

(etX > eta)⇔ (X > a)

Therefore P[X > a] = P
[
etX > eta

]
6︸︷︷︸

Markov

E[etX]
eta

.

P[X > (1 + δ)µ] = P
[
etX > et(1+δ)µ

]
6︸︷︷︸

Markov

E[etX]
et(1+δ)µ (*)

E
[
etX
]
= E

[
et(

∑n
i=1 Xi)

]
= E

[∏n
i=1 e

tXi
]

=︸︷︷︸
Ind.Xi

∏n
i=1 E

[
etXi

]
.

E
[
etXi

]
= pie

t + (1 − pi)e
0 = pi(e

t − 1) + 1 < epi(et−1).

∴
∏n
i=1 E

[
etXi

]
<

∏n
i=1 e

pi(e
t−1) = e

∑n
i=1 pi(e

t−1) =︸︷︷︸
et=Θ(1)

eµ(e
t−1).

From (*): P[X > (1 + δ)µ] < eµ(et−1)

et(1+δ)µ = eµ(e
t−1−t−δt)

Proof



Proof of Theorem 1: Upper tail

We got P[X > (1 + δ)µ] < eµ(e
t−1−t−δt).

To get a tight bound we have to choose t s.t. it mini-
mizes the above expression.
i.e. we have to derivate wrt t: d

dt

(
et − 1 − t− δt

)
=

0⇒ t = ln(δ+ 1)
Substituting in the above equation:

P[X > (1 + δ)µ] < eµ((δ+1)−1−ln(δ+1)−δ ln(δ+1))

=

(
eδ+1−1

e(δ+1) ln(δ+1)

)µ
=

(
eδ

(δ+ 1)δ+1

)µ
.

�

Proof (cont’d)



Proof of Theorem 1: Lower tail

As before, we write inequality as inequality in exponents, multiplied
by a t > 0, which we minimized to get the sharp bound.

We use Markov, but the inequality would be reversed:

P[X < (1 − δ)µ] = P
[
e−tX > e−t(1−δ)µ

]
6

E[e−tX]
e−t(1−δ)µ .

As X =
∑
Xi, where {Xi} are independent, then e−tX =

∏n
i=1 e

−tXi ,

⇒ E
[
e−tX

]
= E

[∏n
i=1 e

−tXi
]
=

∏n
i=1 E

[
e−tXi

]
.

But E
[
e−tXi

]
= pie

−t + (1 − pi)e
0 = pie

−t + (1 − pi) = 1 − pi(1 −

e−t) 6︸︷︷︸
e−t>1−t

e−pi(1−e−t) 6 epi(e
−t−1)

⇒
∏n
i=1 E

[
e−tXi

]
<

∏n
i=1 e

pi(e
−t−1) = e

∑
i pi(e

−t−1) = e(µ(e
−t−1))

So P[X < (1 − δ)µ] < e(µ(e−t−1))

e−t(1−δ)µ = eµ(e
−t+t−tδ−1).

Proof



Proof of Theorem 1: Lower tail

We have to minimize wrt t: P[X < (1 − δ)µ] <

eµ(e
−t+t−tδ−1).

d
dtµ

(
e−t + t− tδ− 1

)
= 0⇒ t = ln 1

1−δ .
Substituting back into the above equation,

P[X < (1 − δ)µ] < eµ((−e
ln(1/(1−δ)))+(1−δ) ln(1/(1−δ))−1)

= eµ((1−δ)+(1−δ)(ln(1)−ln(1−δ))−1)

= eµ((1−δ)−1+1/((1−δ)1−δ) =

(
e−δ

(1 − δ)1−δ

)µ
�

Proof (cont’d)



Powerful Technique: Chernoff + Union-Bound

Assume we have an event A = ∪ni=1Ai , where the {Ai}
n
i=1 are

not independent, and we want to prove that the probability that
A has a bad instance goes→ 0.
The technique consists in:

1 Use Chernoff to prove that for each Ai the probability of a
bad instance is very small, for each Ai of the n ones, i.e.
we compute that P[Ai is bad] is very small,

2 Use Union-Bound to prove
P[A is bad] = P

[
∪ni=1Ai is bad

]
6

∑n
i=1 P[Ai is bad] is

very small.
Notice, that means that we need P[Ai is bad] = o(1/n), so the
sum does not affect P[A is bad].



Load balancing problem

Suppose we have k servers and n jobs, n� k. Assume
n jobs stream sequentially but very quickly, we have to
assign each job to a server, where each job take a while
to process. We are interested in to keep similar load
in each servers. We want to have an algorithm that on
the fly distribute the jobs into the servers, to balance the
load between them, as much as we can.

Example



Random algorithm for load balancing

We want to see “how close” our the load balance achieved by
our algorithm is to the perfect load balance = n/k,
i.e. we prove that w.h.p., the maximum load of all the servers is
near n/k

Randomized Algorithm: Assign independently each job to a
random server, with probability = 1/k.



Load balancing: correctness

For (1 6 i 6 k) let Xi be a r.v. counting the number of jobs
handled by server i (notice these are not indicator r.v.)

For each Xi ∼ Bin(n, 1
k)⇒ E[Xi] = n

k

But (X1, . . . ,Xk) are not independent, as

P[(X1 = n) ∩ · · · ∩ (Xk = n)]︸ ︷︷ ︸
=0

6= (P[X1 = n] · · ·P[Xk = n]︸ ︷︷ ︸
=( 1

k )
kn

.

Let M be a r.v. counting the maximum load among all the k
servers. M = max{X1, . . . ,Xk}

We want to show P
[
M > n

k + γ
]

very small, for some γ not too
large.



Load balancing: correctness

For any 1 6 i 6 k define the bad event Bi as Bi ≡ Xi > n
k + γ,

Define the event B = ∪ki=1Bi, i.e B is the event M > n
k + γ.

We aim to show that P[B] 6 1
k2 ,⇒ P

[
B̄
]
> 1 − 1

k2 .

Notice that for all 1 6 i 6 k we have the same value of P[Bi].
therefore, let P[Bi] = P

[
Xi >

n
k + γ

]
= β.

To get P[B] 6 1
k2 , using Union Bound:

P[B] 6
∑k
i=1 P[Bi] = kβ, we need kβ = 1

k2 ,⇒ we need
P[Bi] = β 6 1

k3 .

W.l.o.g. let us compute P[B1].



Upper bound for P[B1]

As X1 ∼ Bin(n, 1
k), then X1 =

∑n
j=1 Ij, where Ij is the indicator

r.v. that is 1 if job j goes to server 1. So P
[
Ij = 1

]
= 1
k .

⇒ E[X1] = µ =
∑n
i=1

1
k = n

k .

We use Cor. 2.2 to bound P[B1] = P[X1 > µ+ γ].

P
[
X1 > (1 + δ)(nk )

]
= P

X1 >

nk +
δn

k︸︷︷︸
γ


 6 e− δ2µ

3

We need to find suitable values of δ and γ to make everything
work.



Choosing values of δ and γ

We know n� k, we want δ < 1 and P[B1] 6 1/k3, then we can
make

1
k3 = e−

µδ2
3 .

Taking logarithms in both sides:
µδ2 = 9 lnk⇒ δ = 3

√
lnk
√
k/n.

As γ = δn
k ⇒ γ = 3

√
lnk
√
n/k.

Therefore, P[B1] = P
[
X1 > µ+ 3

√
n lnk
k

]
6 1
k3 ,

and P[B] 6 1
k2 .



The final result

We have proved that the simple randomized algorithm to
allocate n jobs to k servers, with n > 9k lnk, we get that the
algorithm produces a good load balancing, where the
probability of having a bad event, is 6 1/k3, i.e., a bad event is
that the loads in one server deviates more that 3

√
lnk
√
n/k

from the expected load n/k.

Therefore. w.h.p. the randomized algorithm will keep the load
concentrated around n/k.



Consequences

In practice, how good is that bound ?

Pretty good! If n = 106 and k = 103, n/k = 103 and γ = 250.
So the result⇒ w.h.p. , the maximum load is 6 1250.

There are better algorithms to the load distribution’s problem,
but they use more advanced probability techniques, as the
power of two choices.



Chernoff: More Sampling

(See also section 4.2.3 in MU book)

We want to poll a sample of size n from a large population of N
individuals, about the if they like or they do not like, a given
product (answer yes/no).

We want to estimate the real fraction p (0 < p < 1) of the
population N, that likes the product, i.e. p = #yes votes/N.

For that, we sample u.a.r. n persons, i.e. with replacement, and
want to know how large n should be so the sampling yields an
estimation p̃ = #yes answers/n of the likeness of the product,
which is “accurate” and has a high “confidence”.



Sampling: Accuracy and confidence

Accuracy: It is difficult to pinpoint exactly the value of p, so
we consider a δ > 0 (the accuracy), and define an interval
[p̃− δ, p̃+ δ], such that P[p ∈ [p̃− δ, p̃+ δ]] is very high.
Confidence: choosing γ as small as possible so that
P[p ∈ [p̃− δ, p̃+ δ]] > 1− γ, where 1− γ is the confidence.

Notice we have to tune the values of n, δ and γ as to optimize
the accuracy δ with as high as possible confidence 1 − γ.

In a poll, we want to be able to say things like:
This poll is 3% accurate, with 95% confidence
which means that the confidence is 1 − γ = 0.95, the outcome
on the whole population N is ±3% of our obtained prediction p̃,
i.e. the accuracy is δ = 0.03.



Sampling

Let n be the selected number of people that we poll. Define a
set of independent r.v. {Xi}ni=1, where each Xi = 1 if the i-th
person would vote for the product, otherwise Xi = 0.

Let X =
∑n
i=1 Xi, then X ∼ Bin(n, p̃) and X counts the number

of people who likes the product.

We want to compute how large do we have to make n to have a
good accuracy δ with high confidence 1 − γ.



Sampling Theorem

Suppose we use independent, uniformly random sam-
ples (with replacement) to compute an estimate p̃, for p.
If the number n of samples satisfies n > 3

δ2 ln 2
γ , then

P[p ∈ [p̃− δ, p̃+ δ]] > 1 − γ.

Theorem (Sampling Theorem)



Proof of the sampling theorem

Given a particular sampling of n people, we find that exactly np̃
people like the product. we have to find values of δ and γ s.t.:

P[p ∈ [p̃− δ, p̃+ δ]] = P[np ∈ [n(p̃− δ),n(p̃+ δ)]] > 1 − γ.

If p 6∈ [p̃− δ, p̃+ δ] is because either,

p < p̃− δ⇒ X = np̃ > n(p+ δ) = µ(1 + δ/p), or

p > p̃+ δ⇒ X = np̃ < n(p− δ) = µ(1 − δ/p).

Using Corollary 2

P[p 6∈ [p̃− δ, p̃+ δ]] = P[X < np (1 − δ/p)] + P[X > np (1 + δ/p)]

< e−nδ
2/2p + e−nδ

2/3p

As p 6 1 we get

P[p ∈ [p̃− δ, p̃+ δ]] = 1 − P[p 6∈ [p̃− δ, p̃+ δ]] > 1 − 2e−nδ
2/3.

But if we want confidence 1 − γ, then we need γ > 2e−
nδ2

3

⇒ 2
γ
6 e

nδ2
3 ⇒ 2

γ
6 nδ2

3 ⇒ n > 3
δ2 ln 2

γ
�

Proof



Sampling Theorem: Some comments

In the previous example, δ = 3% and confidence 95%
i.e., γ = 1/20, then we need n > d 3

0.022 ln 2
1/20e = 12297

people giving valid answers.

Example

Notice in the Sampling Theorem, the number of samples n
does not depend on the size N of the total population, i.e.,
the number of samples you need to get a certain accuracy
and a certain confidence only depends on that accuracy
and confidence.
Computing a high accuracy could be costly in the number
n of samples, because of the 1/δ2 term. We should design
the sampling to tune between accuracy and a realistic
sampling of people.
Getting really high confidence is cheap: because of the
logarithm, it hardly costs anything to get a very small γ.


