
Concentration around the Mean

Josep Díaz Maria J. Serna Conrado Martínez
U. Politècnica de Catalunya

RA-MIRI 2023–2024

Deviations from the mean
The expected value of a random variable is a nice single
number to summarize the random variable, but it leaves out
most of the important properties of the r.v.

Consider r.v X with X(Ω) = {−2,−1, 0, 1, 2} with
P[X = −2] = 1

8 ,P[X = −1] = 1
4 ,P[X = 0] = 1

4 ,
P[X = 1] = 1

4 ,P[X = 2] = 1
8 .

and consider r.v. Y with Y(Ω ′) = {−2, 2} and PMF:
P[Y = −2] = 1

2 ,P[Y = 2] = 1
2 .

Note that E[X] = E[Y] = 0, but pX is totally different from pY .

Y

0−1 1 2 20−2−2

1/2

1/4

1/8

X

Deviations from the mean

Consider the deterministic Quicksort algorithm on n-size
inputs. Let T(n) be a r.v. counting the number of steps of
Quicksort on a specific input with size n
Its worst case complexity is O(n2), but its average
complexity is O(n logn).
It does not give information about the behavior of the
algorithm on a particular input.
Given an algorithm, for any input x of size |x| = n, how
close is T(x) to E[T(n)].

Deviation of a r.v. and concentration

For ex.: If E[T(n)] = 10, then 10 is an average running time
on “most inputs” to the algorithm. We want to assure, that
for most inputs, T(n) is concentrated around 10.
That is, to make sure that the probability of having
instances for which |E[T(n)] − T(n)| is large, is very small.
Intuitively, it seems clear from the definition of E[], if for the
above running time, we get an instance e for which
T(e) = 109, and E[T(n)] = 10, the probability of selecting
that specific e is going to be quite small, so that its
contribution to the average, 109 P

[
T(n) = 109

]
, is small.

Markov’s inequality

Andrey Markov (1856–1922)

If X > 0 is a r.v, for any constant a > 0,

P[X > a] 6
E[X]
a

.

Lemma

Markov’s inequality

Given the r.v. X > 0 define the indicator r.v.

Y =

{
1 if X > a true
0 otherwise

Notice if Y = 1 then Y 6 X/a, and if Y = 0 also Y 6 X/a,
so E[Y] = P[Y = 1] = P[X > a] and E[Y] = P[Y = 1] 6
E
[
X
a

]
= E[X]

a . �

Proof

Markov’s inequality

Alternative expression for Markov. Taking a = b · E[X]:

If X > 0 is a r.v, for any constant b > 0,

P[X > b · E[X]] 6
1
b

.

Corollary

Markov’s inequality

Consider the randomized hiring algorithm. We computed that
the expected number of pre-selected students is E[X] = lnn.
We also know there are instances for which X = n.

We would like to show that the probability of selecting a “bad
instance” is very small.

Using Markov’s inequality, for any constant b,
P[X > b lnn] 6 1/b. (for ex. b = 100)

The problem with Markov is that it does not bound away the
probability of bad cases as a function of the input size.

“With High Probability”

In the randomized algorithms, we aim to obtain results that hold
with high probability, in particular, that the probability that the
complexity of the algorithm for any input is “near” the expected
value tends to 1 as the size n grows.
An event is said to occur with high probability (whp) if its
probability is > 1 − 1

f(n) , for some function f(n) = Ω(nc) with
c > 0, so that the probaility goes to 1 as n→∞.

The parameter n is usually the size of the inputs or the size of
the combinatorial structure.

Variance
Given a r.v. X, its variance measures the spread of its
distribution.

Given X, with µ = E[X], the variance of X is

V[X] = E
[
(X− µ)2

]
Usually it is more easy to use the expression:

V[X] = E
[
X2
]
− E[X]2

V[X] = E
[
(X− µ)2

]
= E

[
X2 − 2µE[X] + µ2

]
= E

[
X2
]
− 2µE[X]︸︷︷︸

µ

+µ2 = E
[
X2
]
− µ2

�

Proof

Further properties of the variance

Since (X− µ)2 > 0 for any outcome ω ∈ Ω, we must have
V[X] > 0. Alternatively, since f(x) = x2 is convex, by
Jensen’s inequality, E

[
X2
]
> E[X]2.

V[X] = 0 iff X = constant
For any constant c, V[cX] = c2 V[X].

Computing V[X]

Given a discrete r.v. X on Ω, such that X(Ω) = {x1, x2, . . . , xn},
we first compute µ = E[X] =

∑n
i=1 xi P[X = xi]. Then, use one

of the following methods:
1 Use V[X] = E

[
(X− µ)2

]
: For each xi compute (xi − µ)

2,
and then V[X] =

∑n
i=1(xi − µ)

2 P[X = xi]

2 Use V[X] = E
[
X2
]
− E[X]2: For each xi compute x2

i , then
E
[
X2
]
=
∑n
i=1 x

2
i P[X = xi].

From now on, we use the probability mass function of X,
pX : R→ [0, 1], defined as pX(x) = P[X = x]—note that pX is
actually defined on a finite or infinite denumerable subset of R
as X is a discrete r.v.

Computing V[X]: Examples

Consider r.v. X with X(Ω) = {1, 3, 5} and PMF: pX(1) =
1
4 ,pX(3) = 1

4 ,PX(5) = 1
2 . Then µ = 7/2.

1 V[X] = 1
4(3 − 7

2)
2 + 1

4(5 − 7
2)

2 + 1
2(1 − 7

2)
2 = 11

4

2 X2(Ω) = {1, 9, 25}, so E
[
X2
]
= 1

4 + 9
4 + 25

2 = 15
V[X] = 15 − (7

2)
2 = 11

4

Example

Consider r.v. Y with X(Ω) = {−2, 2} and PMF: pY(−2) =
1
2 ,pY(2) = 1

2 .
Therefore, the values (X−µ)2 are (−2−0)2 and (2−0)2

⇒ V[X] = 1
24 + 1

24 = 4
Notice in this case V[X] = E

[
X2
]
= 4

Example

Computing V[X]: Examples

You win 100e with probability = 1/10, otherwise you
win 0e. Let X be a r.v. counting your earnings. What is
V[X]?
µ = 100/10 = 10. Therefore, E

[
X2
]
= 1

10(1002) = 1000
and µ2 = 100, hence V[X] = 900.

Example

Variance of X+ Y
Let X1, . . . ,Xn be independent r.v., then

V

[
n∑
i=1

Xi

]
=

n∑
i=1

V[Xi] .

We prove the particular case that if X and Y are independent
V[X+ Y] = V[X] + V[Y].

V[X+ Y] = E
[
(X+ Y)2]− (E[X+ Y])2

= E
[
X2]+ E

[
Y2]+ 2E[XY] − (E[X])2 − (E[Y])2 − 2E[X]E[Y]

= E
[
X2]− (E[X])2 + E

[
Y2]− (E[Y])2 + 2 (E[XY] − E[X]E[Y])︸ ︷︷ ︸

E[XY]=E[X]E[Y]

= V[X] + V[Y]

�

Proof

Variance of X+ Y

In general,

V[X+ Y] = E
[
(X+ Y − E[X+ Y])2

]
= E

[
(X+ Y)2

]
− (E[X] + E[Y])2

= E
[
X2
]
+ E

[
Y2
]
+ 2E[XY] − E[X]2 − E[Y]2 − 2E[X]E[Y]

= V[X] + V[Y] + 2(E[XY] − E[X]E[Y])
= V[X] + V[Y] + 2 Cov[X, Y]

Cov[X, Y] = E[XY] − E[X]E[Y]

is called the covariance of the two r.v. X and Y.

If X and Y are independent Cov[X, Y] = 0.
For any r.v. X, Cov[X,X] = V[X].

Variance of some basic distributions

1 If X ∈ Bin(p,n) then V[X] = npq, where q = (1 − p).
2 If X ∈ Poisson(λ) then V[X] = λ.
3 If X ∈ Geom(p) then V[X] = q

p2 .

(1) Let X =
∑n
i=1 Xi, where Xi is an indicator r.v s.t.

Xi = 1 with probability p
Then, V[Xi] = E

[
X2
i

]
−E[Xi]2 = (p·12+q·0−p2 = p(1−p).

Since all Xi are independent, V[X] =
∑n
i=1 V[Xi] =

np(1 − p).

Proof

Variance of some basic distributions

(2)

V[X] = E
[
X2]+ E[X] − (E[X])2 = E

[
X2]+ λ− λ2.

E
[
X2] = ∞∑

x=0

x2 e
−λλx

x!

=

∞∑
x=2

x · (x− 1)
e−λλx

x!
terms x = 0 and x = 1 are 0

=

∞∑
x=2

e−λλx

(x− 2)!
= λ2e−λ

∞∑
x=2

λx−2

(x− 2)!

= λ2e−λ
(
λ0

0!
+
λ1

1!
+
λ2

2!
+ . . .

)
= λ2e−λeλ = λ2.

Proof (cont’d)

xk = x · (x− 1) · · · (x− k+ 1)

Variance of some basic distributions

(3)
If X ∈ Geom(p) want to compute V[X] = E

[
X2
]
− (E[X])2 =

E
[
X2
]
− 1
p2 .

Need to compute E
[
X2
]
.

E
[
X2] = ∞∑

k=1

k2 P[X = k] =

∞∑
k=1

k2p(1 − p)k−1 = p

∞∑
k=1

k2(1 − p)k−1

︸ ︷︷ ︸
∗

Recall Taylor: 1
1−x =

∑∞
k=0 x

k. Differentiating 1
(1−x)2 =∑∞

k=1 kx
k−1.

Multiplying by x and differentiating x+1
(1−x)3 =

∑∞
k=1 k

2xk−1.

Making x = 1 − p then 2−p
p3 =

∑∞
k=1 k

2(1 − p)k−1.
By (∗) E

[
X2
]
= 2−p

p2

Therefore: V[X] = 2−p
p2 − 1

p2 = 1−p
p2 �

Proof (cont’d)

Standard deviation

Why we did not define V[X] = E[|X− µ|]?
This would be a natural measure of the spread of the r.v. X—all
deviations from E[X] must contribute positively. However, the
function absolute value | · | is not differentiable everywhere and
it is unfriendly for mathematical manipulation. By “squaring” the
errors we make sure all them contribute positively and the
function f(x) = x2 behaves nicely from the point of view of the
analysis.

Standard deviation

But as we defined the variance, we are using squared units!

Recall the example with X a r.v. counting the wins, when you
win 100e with probability = 1/10, otherwise you win 0e. We
got V[X] = 900e2.
To convert the numbers back to the same scale, we need to
take the square root.

The standard deviation of a r.v. X is defined as

σX =
√
V[X].

Definition

In our last example, σX =
√

900e2 = 30e.

Example

Chebyshev’s inequality

Pafnuty Chebychev (1821–1894)

If you can compute V[X] (⇒ σX) then you can get better bounds
for concentration of X (positive or negative) around its expected
value.

Let X be a r.v. with expectation µ = E[X] and standard
deviation σ = σX > 0, then for any a > 0

P[|X− µ| > aσ] 6
1
a2

Theorem

Note that |X− µ| > aσ⇔ (X > aσ+ µ) ∪ (X 6 µ− aσ).

Chebyshev’s inequality

As the r.v. |X− µ| > 0, we can apply Markov to it:

P[|X− µ| > aσ] = P
[
(X− µ)2 > a2σ2] (by Markov’s ineq.)

6
E
[
(X− µ)2

]
a2σ2 =

V[X]
a2 V[X]

=
1
a2

�

Proof

Chebyshev’s inequality

Alternative equivalent statement of Chebyshev’s inequality: For
all b > 0

P[|X− µ| > b] 6
V[X]
b2

As before: P
[
(X− µ)2 > b2

]
6

E[(X−µ)2]
b2 . �

Proof

Chebyshev’s inequality

P[|X− µ| > a] 6
V[X]
a2 .

2

a a

E[X]

Area Var[X]/a

An easy application

Flip n times a fair coin, give an upper bound on the
probability of having at least 3n

4 heads.
Let X be the number of heads. Then X ∼ Bin(n, 1/2),
µ = ExpX = n/2, and V[X] = n/4.
Thus we want to bound P

[
X > 3n

4

]
.

Markov: P
[
X > 3n

4

]
6 µ

3n/4 = 2/3.

Chebyshev: We need the value of a s.t.
P
[
X > 3n

4

]
6 P

[
|X− n

2 | > a
]
⇒ a = 3n

4 − n
2 = n

4 .

P
[
X > 3n

4

]
6 P

[
|X− n

2 | >
n
4

]
6 V[X]

(n/4)2 = 4
n .

Example

Sampling

Given a large population Σ, |Σ| = n, we wish to estimate
the proportion p of elements in Σ, with a given property.
Sampling: Take a random sample S with size m� n and
compute
p̂ = fraction of elements in S that have the property.
If n is large and 0 < p < 1 the p̂ is an unbiased estimator
of p and sufficiently good, i.e. it is sharply concentrated.
Many times getting the random sample S is non-trivial.

Finding the median of n elements

From MU 3.4

Recall that, given a set S with n distinct elements, the
median of S is the dn/2e-th smallest element in S.
We can use Quickselect to find the median with expected
time O(n). Even there is a linear time deterministic
algorithm, but in practice is worse than Quickselect.
We present another randomized algorithm to find the
median m in S, which is based in sampling.
The purpose of this example is to introduce the technique
of filtering a large data by sampling an small amount of the
data.

Finding the median of n elements

INPUT: An unordered set S = {x1, x2, . . . xn}, with n = 2k+ 1
elements.
OUTPUT: The median, which is the (k+ 1)-th smallest element
in S.
For any element y define the rank(y) = |{x ∈ S|x 6 y}|.

The idea of the filtering algorithm is to sample with replacement
a “small” subset C of elements from S, so we can sort C in time
O(n) (linear with respect to the size of S).
The algorithm outputs fail if C turns out to be too large to sort it
in time O(n) or if it doesn’t contain the sought median—can be
checked in linea time. Otherwise it finds the median of the
elements in C sorting it and returns it as the median in S.

We will prove that whp the algorithm finds the median m of S, in
linear time.

Outline of the algorithm
1 Let S̃ be the ordered set S (we do not know S̃). Let
m = S̃[k+ 1] be its median.

2 Find elements d,u ∈ S s.t. d < m < u and such that
distance between d and u in S̃ is < n/ logn, i.e.,
rank(u) − rank(d) < n/ logn.

3 To find d and u sample with replacement S to get a multiset
R, with |R| = O(dn3/4e). Notice dn3/4e < n/ logn. Find
u,d ∈ R s.t. m will be close to median in S.

4 Filter out the elements x ∈ S, which are < d or > u to form
a set C = {x ∈ S|d 6 x 6 u}.

5 Sort elements in C in O(n) and find its median. This will be
the algorithm’s output—but if the median of C cannot be
the median of S or C is too large the output of the algorithm
will be fail.

We will prove that the algorithm is correct when it returns an
element and that it will return an element (not fail) w.h.p.

Outline of the algorithm

we wish that

S

R

C

m

n different elements non−ordered

Sampling n

with repetition

3/4

d umedian
m’

m’−n m’+n

Filter from S the

elemts between d and u

Sort R in O(n)

1/2

)

1/2

|C| = O(n3/4

Things that can be wrong:
C too large,
m 6∈ C,
m ∈ C but no the median in C.

Randomized Median algorithm

1 Sample dn3/4e elements from S, u.a.r., independently, and
with replacement. Call R the sample.

2 Sort R in O(n) steps.
3 Set d the b(1

2n
3/4 −

√
n)c-th smallest element in R

4 Set u the b(1
2n

3/4 +
√
n)c-th smallest element in R

5 Compute C = {x ∈ S|d 6 x 6 u}, ld = |{x ∈ S|x < d}| and
lu = |{x ∈ S|x > u}| (cost = Θ(n)).

6 If ld > n
2 or lu > n

2 output fail (m 6∈ C)

7 If |C| 6 4n3/4, sort C, otherwise output fail.
8 Output the (bn2 c− ld + 1)-smallest element in sorted C,

that should be the median m.

Complexity and correctness of the Randomized
Median algorithm

The Randomized Median algorithm terminates in O(n)
steps. If the algorithm does not output fail, then it out-
puts the median m of S.

Theorem

Asymptotically n3/4 log
(
n3/4

)
= o(n/ logn), using

Mergesort on R takes O(n
logn log

(
n

logn

)
) = O(n).

The only incorrect answer is that it outputs an item,
but m 6∈ C, but if so, it would fail in step 6, as either
ld > n/2 or lu > n/2. �

Proof

Bounding the probability of failing

The Randomized Median algorithm finds the median m
with probability > 1 − 1

n1/4 , i.e., whp.

Theorem

In what follows, for simplicity, we will assume that all n
elements in S are distinct, that n is odd, and that both
n3/4 and

√
n are integers.

Consider the following 3 events:
E1 = “d > m” ≡ ld > n/2
E2 = “u < m” ≡ lu > n/2
E3 = “|C| > 4n3/4”

The algorithm outputs fail iff one of the three events
above occurs.

P[fail] = P[E1 ∪ E2 ∪ E3] 6 P[E1] + P[E2] + P[E3]

Proof (Highlights)

Bounding P[E1]

Consider R ordered, where
R is obtained by sampling
n3/4 elements from S

x>mx<m

Recall: d is the (n
3/4

2 −
√
n)-th element

d > m, when the green block has size
< n3/4/2 −

√
n; this happens iff ld > n/2

Let Y = |{x ∈ R | x 6 m}|, then
P[E1] = P

[
Y < n3/4/2 −

√
n
]
.

For 1 6 j 6 n3/4, define Yj = 1 iff the value in the
j-th position in R is 6 m.

Then Y =
∑n3/4

j=1 Yj, moreover as the sampling is
with replacement, then each Yj is independent.

As m = median of S (|S| = n), then we have (n−1)
2 +1 el-

ements in S that are 6 m.

Proof (cont’d)

Bounding P[E1]

P
[
Yj = 1

]
=

(n−2)/2+1
n = 1

2 + 1
2n , as there are

(n− 1)/2 + 1 elements 6 m.
Y ∼ Bin(n3/4, 1

2 + 1
2n).

E[Y] = n3/4

2 + 1
2n1/4 >

1
2n

3/4,

V[Y] = n3/4(1
2 + 1

2n)(
1
2 − 1

2n) 6
n3/4

4 .

Using Chebyshev’s inequality:

P[E1] = P
[
Y <

n3/4

2
−
√
n

]
6 P

[
|Y − E[Y] | >

√
n
]
6

V[Y]
(
√
n)2 =

1
4n1/4

Proof (cont’d)

Bounding P[E2]

In the same way as for E1, it holds P[E2] 6
1

4n1/4

Proof (cont’d)

Bounding P[E3]

E3: |C| > 4n3/4.
C is obtained directly from S by filtering, using the val-
ues d and u obtained in R.

For C to have > 4n3/4 elements, either of the following
events must happen:

1 E3,1 = “At least 2n3/4 items in C are > m”
2 E3,2 = “At least 2n3/4 items in C are < m”

Then

P[E3] 6 P[E3,1 ∪ E3,2] 6 P[E3,1] + P[E3,2] .

Proof (cont’d)

Bounding P[E3,1]

Event E3,1 happens when there are at least 2n3/4 ele-
ments in C which are > m.
If so, rank(u) in S̃ is > n/2 + 2n3/4.

Let F = {x ∈ R | x > u}. Then |F| > n3/4/2 −
√
n and any

element in F has rank > n/2 + 2n3/4 if E3,1 is true.

d

Sorted C Sorted R

ud
value >m mm

F

u

Proof (cont’d)

Bounding P[E3,1]

Let X be # of selected items in R that have rank
> n/2 + 2n3/4 (i.e., in F)
Then P[E3,1] 6 P

[
X > n3/4/2 −

√
n
]
.

For 1 6 j 6 n3/4, define Xj = 1 iff the j-th item in R
is in F. The probability that any element from S is
selected is n3/4/n = n−1/4.

Note X =
∑n3/4

j=1 Xj and

P
[
Xj = 1

]
=

n
2 −2n3/4

n = 1
2 − 2

n1/4 .

So E[X] = n3/4

2 − 2
√
n and V[X] 6 n3/4/4

P[E3,1] 6 P
[
X >

n3/4

2
− n1/2

]
6 P

[
X > E[X] + n1/2

]
6 P

[
|X− E[X] | > n1/2

]
6

V[X]
n

<
n3/4/4
n

=
1

4n1/4 .

Proof (cont’d)

Bounding P[E3,2] and finishing the proof

In the same way we can compute P[E3,2] = O(1
n1/4)

To end the whole proof, we also proved that

P[E3] 6 P[E3,1] + P[E3,2] 6
1

2n1/4

Hence

P[algorithm fails] = P[E1 ∪ E2 ∪ E3] 6
Union Bound 1

n1/4

Finally

P[algorithm succeeds] = 1− P[algorithm fails] > 1−
1
n1/4

�

Proof (cont’d)

