Random Variables and Expectation (III)

Josep Díaz Maria J. Serna Conrado Martínez
U. Politècnica de Catalunya

RA-MIRI 2023-2024

Jensen's inequality

Recall $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if, for all $x_{1}, x_{2} \in \mathbb{R}$ and for all $t \in[0,1]$, we have

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leqslant t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)
$$

If f is twice differentiable, a necessary and sufficient condition for f to be convex is that $f^{\prime \prime}(x) \geqslant 0$ for $x \in \mathbb{R}$.

Lemma
If f is convex then $\mathbb{E}[f(X)] \geqslant f(\mathbb{E}[X])$.

Jensen's inequality

Proof
Let $\mu=\mathbb{E}[X](\mu \in \mathbb{R})$. Using Taylor to expand f at $X=\mu$,

$$
\begin{aligned}
f(X) & =f(\mu)+f^{\prime}(\mu)(X-\mu)+\frac{f^{\prime \prime}(\mu)(X-\mu)^{2}}{2}+\cdots \\
& \geqslant f(\mu)+f^{\prime}(\mu)(X-\mu) \\
\mathbb{E}[f(X)] & \geqslant \mathbb{E}\left[f(\mu)+f^{\prime}(\mu)(X-\mu)\right] \\
& =\mathbb{E}[f(\mu)]+f^{\prime}(\mu)(\mathbb{E}[X]-\mu)=f(\mu)
\end{aligned}
$$

i.e., $\mathbb{E}[f(X)] \geqslant f(\mathbb{E}[X])$.

Expectation of combinations of r.v.

Consider the following experiment:
$X=\operatorname{Uniform}(\{1,2\})$ and $Y=\operatorname{Uniform}(\{1, X+1\})$
Thus Y depends on X.
What is the expectation of the r.v. XY?
$\Omega=\{(1,1),(1,2),(2,1),(2,2),(2,3)\}$

Expectation of combinations of r.v.

Consider the following experiment:
$X=\operatorname{Uniform}(\{1,2\})$ and $Y=\operatorname{Uniform}(\{1, X+1\})$
Thus Y depends on X.
What is the expectation of the r.v. XY ?

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(2,1),(2,2),(2,3)\} \\
& \mathbb{E}[X Y]=\sum_{\omega \in \Omega} X(\omega) Y(\omega) \mathbb{P}[\omega]
\end{aligned}
$$

We have

$$
\begin{aligned}
& \mathbb{P}[(1,1)]=\mathbb{P}[(1,2)]=1 / 4 ; \\
& \mathbb{P}[(2,1)]=\mathbb{P}[(2,2)]=\mathbb{P}[(2,3)]=1 / 6 .
\end{aligned}
$$

Expectation of combinations of r.v.

Consider the following experiment:
$X=\operatorname{Uniform}(\{1,2\})$ and $Y=\operatorname{Uniform}(\{1, X+1\})$
Thus Y depends on X .
What is the expectation of the r.v. XY?

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(2,1),(2,2),(2,3)\} \\
& \\
& \mathbb{E}[X Y]=\sum_{\omega \in \Omega} X(\omega) Y(\omega) \mathbb{P}[\omega]
\end{aligned}
$$

We have

$$
\begin{aligned}
& \mathbb{P}[(1,1)]=\mathbb{P}[(1,2)]=1 / 4 \\
& \mathbb{P}[(2,1)]=\mathbb{P}[(2,2)]=\mathbb{P}[(2,3)]=1 / 6 .
\end{aligned}
$$

$$
\mathbb{E}[X Y]=\frac{1}{4} \cdot 1 \cdot 1+\frac{1}{4} \cdot 1 \cdot 2+\frac{1}{6} \cdot 2 \cdot 1+\frac{1}{6} \cdot 2 \cdot 2+\frac{1}{6} \cdot 2 \cdot 3=\frac{11}{4}
$$

We have, $\mathbb{P}[X=1]=1 / 2 ; \mathbb{P}[X=2]=1 / 2$ and
$\mathbb{P}[Y=1]=\mathbb{P}[Y=1 \mid X=1] \mathbb{P}[X=1]+\mathbb{P}[Y=1 \mid X=2] \mathbb{P}[X=2]=1 / 4+1 / 6=5 / 12$;
$\mathbb{P}[Y=2]=\mathbb{P}[Y=2 \mid X=1] \mathbb{P}[X=1]+\mathbb{P}[Y=2 \mid X=2] \mathbb{P}[X=2]=1 / 4+1 / 6=5 / 12$;
$\mathbb{P}[Y=3]=\mathbb{P}[Y=3 \mid X=1] \mathbb{P}[X=1]+\mathbb{P}[Y=3 \mid X=2] \mathbb{P}[X=2]=0+1 / 6=1 / 6$.
Then $\mathbb{E}[X]=3 / 2$ and $\mathbb{E}[Y]=7 / 4$ so $\mathbb{E}[X] \mathbb{E}[Y]=21 / 8$.
Therefore,
$\mathbb{E}[\mathrm{XY}] \neq \mathbb{E}[\mathrm{X}] \mathbb{E}[\mathrm{Y}]$.

Joint Probability Mass Function

The joint PMF of r.v. X, Y is the function $p_{X Y}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $p_{X Y}(x, y)=\mathbb{P}[X=x \wedge Y=y]$.
With the joint PMF of r.v. X, Y you can compute the expectation of any function $f(X, Y)$:

$$
\mathbb{E}[f(X, Y)]=\sum_{x, y} f(x, y) \cdot p_{X Y}(x, y) .
$$

Compute $\mathbb{E}\left[\frac{\mathrm{X}}{\mathrm{Y}}\right]$ for the previous r.v. X, Y

$$
\begin{aligned}
\mathbb{E}\left[\frac{X}{Y}\right] & =p_{X Y}(1,1) \frac{1}{1}+p_{X Y}(1,2) \frac{1}{2} \\
& +p_{X Y}(2,1) \frac{2}{1}+p_{X Y}(2,2) \frac{2}{2}+p_{X Y}(2,3) \frac{2}{3} \\
& =\frac{1}{4} \cdot(1+1 / 2)+\frac{1}{3} \cdot(2+1+2 / 3)=\frac{3}{8}+\frac{11}{3}=\frac{97}{24}=4 \frac{1}{24}
\end{aligned}
$$

Independent r.v.: Main result

Theorem

If X and Y are independent r.v. then $\mathbb{E}[\mathrm{XY}]=\mathbb{E}[\mathrm{X}] \mathbb{E}[\mathrm{Y}]$.

Proof

$$
\begin{aligned}
\mathbb{E}[X \cdot Y] & =\sum_{x, y} p_{X Y}(x, y) \cdot x \cdot y \\
& =\sum_{x, y} p_{X}(x) \cdot p_{Y}(y) \cdot x \cdot y \text { (by independence) } \\
& =\sum_{x, y} x \cdot p_{X}(x) \cdot y \cdot p_{Y}(y) \\
& =\left(\sum_{x} x \cdot p_{X}(x)\right) \cdot\left(\sum_{y} y \cdot p_{Y}(y)\right) \\
& =\mathbb{E}[X] \cdot \mathbb{E}[Y]
\end{aligned}
$$

The Poisson approximation to the Binomial

For $X \sim \operatorname{Bin}(n, p)$, for large n, computing the $\operatorname{PMF} \mathbb{P}[X=x]$ could be quite nasty.
It turns out that for large n and small $p, \operatorname{Bin}(n, p)$ can be easily approximated by the PMF of a simpler Poisson random variable.
A discrete r.v. X is Poisson with parameter λ ($\mathrm{X} \sim \operatorname{Poisson}(\lambda)$), if it has $\operatorname{PMF} \mathbb{P}[X=i]=\frac{\lambda^{i} e^{-\lambda}}{i!}$, for $i \in\{0,1,2,3, \ldots\}$
If $X \sim \operatorname{Poisson}(\lambda)$ then $\mathbb{E}[X]=\lambda$.
This is the reason that sometimes λ is denoted μ.
Proof

$$
\mathbb{E}[X]=\sum_{i=1}^{\infty} i \frac{\lambda^{i} e^{-\lambda}}{i!}=e^{-\lambda} \lambda \underbrace{\sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!}}_{\text {Taylor for } e^{\lambda}}=e^{-\lambda} \lambda e^{\lambda}=\lambda
$$

The Poisson approximation to the Binomial

Theorem
If $\mathrm{X} \in \operatorname{Bin}(\mathrm{n}, \mathrm{p})$, with $\mu=\mathrm{pn}$, then as $\mathrm{n} \rightarrow \infty$, for each fixed $i \in\{0,1,2,3, \ldots\}$,

$$
\mathbb{P}[X=i] \sim \frac{\mu^{i} e^{-\mu}}{i!}
$$

Proof
As $\mu=n p$,

$$
\begin{aligned}
\mathbb{P}[X=i] & =\binom{n}{i}\left(\frac{\mu}{n}\right)^{i}\left(1-\frac{\mu}{n}\right)^{n-i} \\
& =\frac{n(n-1) \cdots(n-i+1)}{i!} \frac{\mu^{i}}{n^{i}}\left(1-\frac{\mu}{n}\right)^{n}\left(1-\frac{\mu}{n}\right)^{-i} \\
& =\frac{\mu^{i}}{i!}\left(1-\frac{\mu}{n}\right)^{n} \frac{n(n-1) \cdots(n-i+1)}{n^{i}}\left(1-\frac{\mu}{n}\right)^{-i} \\
& \sim \frac{\mu^{i}}{i!} e^{-\mu} \text { as } n \rightarrow \infty .
\end{aligned}
$$

Example

The population of Catalonia is around 7 million people. Assume that the probability that a person is killed by lightning in a year is $p=\frac{1}{5 \times 10^{8}}$.
a) Let's compute the exact probability that 3 or more people will be killed by lightning next year in Catalonia.
Let X be a r.v. counting the number of people that will be killed in Cat. next year by a lightning.
We want to compute
$\mathbb{P}[X \geqslant 3]=1-\mathbb{P}[X=0]-\mathbb{P}[X=1]-\mathbb{P}[X=2]$, where
$X \sim \operatorname{Bin}\left(7 \times 10^{6}, \frac{1}{5 \times 10^{8}}\right)$.
Then,
$\mathbb{P}[X \geqslant 3]=1-(1-p)^{n}-n p(1-p)^{n-1}-\binom{n}{2} p^{2}(1-p)^{n-2}=1.65422 \times 10^{-7}$

Example

b) Use Poisson approximation to approximate $\mathbb{P}[X \geqslant 3]$.
$\lambda=\mathfrak{n p}=7 / 500$ so
$\mathbb{P}[X \geqslant 3] \sim 1-e^{\lambda}-\lambda e^{-\lambda}-\frac{\lambda^{2}}{2} e^{-\lambda}=1.52558 \times 10^{-7}$
c) Approximate the probability that 2 or more people will be killed by lightning the first 6 months of the year Notice we are considering λ as a rate. Then we have now
$\lambda=(7 / 500) / 2$
$\mathbb{P}[X \geqslant 2$ during 6 months $] \sim 1-e^{\lambda}-\lambda e^{-\lambda}=5.79086 \times 10^{-7}$
d) Approximate the probability that in 3 of the next 10 years exactly 3 people will be killed
We have $\lambda=7 / 500$, then the probability that in any particular year 3 people are killed is $=\frac{e^{-\lambda} \lambda^{3}}{3!}$. Let Y be a r.v. counting the number of years with exactly 3 kills.
Assuming independence between years, $Y \sim \operatorname{Bin}\left(10, \frac{e^{-\lambda} \lambda^{3}}{3!}\right)$, therefore the answer is $\binom{10}{3}\left(\frac{e^{-\lambda} \lambda^{3}}{3!}\right)^{3}\left(1-\frac{e^{-\lambda} \lambda^{3}}{3!}\right)^{7} \approx 1.1 \cdot 10^{-17}$

