Random Variables and Expectation (II)

Josep Díaz Maria J. Serna Conrado Martínez
U. Politècnica de Catalunya

RA-MIRI 2023-2024

Most if the material included here is based on Chapter 13 of Kleinberg \& Tardos Algorithm Design book.

Waiting for a first success

\square A coin is heads with probability p and tails with probability $1-p$.

- How many independent flips we expect to get heads for the first time?
■ Let X the random variable that gives the number of flips until (and including) the first head.
Observe that

$$
\mathbb{P}[X=j]=(1-p)^{j-1} p
$$

and

$$
\mathbb{E}[X]=\sum_{j=1}^{\infty} j \mathbb{P}[X=j]=\sum_{j=1}^{\infty}(1-p)^{j-1} p=\frac{p}{1-p} \sum_{j=1}^{\infty} j(1-p)^{j}
$$

as $\sum_{j=1}^{\infty} j x^{j}=\frac{x}{(1-x)^{2}}$, we have

$$
\mathbb{E}[X]=\frac{p}{1-p} \frac{1-p}{p^{2}}=\frac{1}{p}
$$

Bernoulli process

■ A Bernoulli process denotes a sequence of experiments, each of them a with binary output: success (1) with probability p, and failure (0) with prob. $q=1-p$.
■ A nice thing about Bernoulli distributions: it is natural to define a indicator r.v.

$$
X= \begin{cases}1 & \text { if the output is } 1 \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, $\mathbb{E}[X]=\mathbb{P}[X=1]=p$

The binomial distribution

A r.v. X has a Binomial distribution with parameters n and p $(X \sim \operatorname{Bin}(n, p))$ if X counts the number of successes during n trials, each trial an independent Bernoulli experiment having probability of success p.
$\mathbb{P}[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k}$.

Let $X \sim \operatorname{Bin}(n, p)$. To compute $\mathbb{E}[X]$, we define indicator r.v. $\left\{X_{i}\right\}_{i=1}^{n}$, where $X_{i}=1$ iff the i-th output is 1 , otherwise $X_{i}=0$, that is, each X_{i} is the indicator rv of a Bernouilli experiment.
Then $X=\sum_{i=1}^{n} X_{i} \Rightarrow \mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \underbrace{\mathbb{E}\left[X_{i}\right]}_{=p}=n p$.

The Geometric distribution

A r.v. X has a Geometric distribution with parameter p ($X \sim \operatorname{Geom}(p)$) if X counts the number of Bernouilli trials until the first success.

If $X \sim \operatorname{Geom}(p)$ then
$\mathbb{P}[X=k]=(1-p)^{k-1} p$,
$\mathbb{E}[X]=\frac{1}{p}$.

Random generators

Consider a sequential random generator of n bits, so that the probability that a bit is 1 is p.

■ If $X=\#$ number of 1 's in the generated n bit number, $X \sim \operatorname{Bin}(n, p)$.
■ If $Y=$ \# bits in the generated number until the first 1, $Y \sim \operatorname{Geom}(p)$.

Coupon collector

Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have at least 1 coupon of each type?
Claim
The expected number of steps is $\Theta(n \log n)$.

Proof
■ Phase $j=$ number of steps between j and $j+1$ distinct coupons.
■ Let $X_{j}=$ number of steps you spend in phase j.
■ Let $X=$ total number of steps, of course, $X=X_{0}+X_{1}+\cdots+X_{n-1}$.

Coupon collector

Proof (cont'd)
$X_{j}=$ number of steps you spend in phase j.

- We can consider a Bernoulli experiment that succeeds when we hit one of the still not collected coupons.
- Conditioned on the event that we have already collected j distinct coupons, the probability of success is $p_{j}=\frac{n-j}{n}$.
- X_{j} counts the time until the Bernoulli process reaches a success, therefore $X_{j} \sim \operatorname{Geom}\left(p_{j}\right)$, hence

$$
\mathbb{E}\left[X_{j}\right]=\frac{n}{n-j}
$$

Coupon collector

Proof (cont'd)
X = total number of steps
Using linearity of expectations, we have

$$
\begin{aligned}
\mathbb{E}[X] & =E\left[X_{0}\right]+E\left[X_{1}\right]+\cdots+E\left[X_{n-1}\right] \\
& =\sum_{j=0}^{n-1} \frac{n}{n-j}=n \sum_{j=1}^{n} \frac{1}{j}=n H_{n}=n \ln n+\mathcal{O}(n) .
\end{aligned}
$$

A randomized approximation algorithm for MAX 3-SAT

A 3-SAT formula is a Boolean formula in CNF such that each clause has exactly 3 literals and each literal corresponds to a different variable.
$\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}\right)$
Maximum 3-Sat. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.
The problem is NP-hard. We can try to design a randomized algorithm that produces a good assignment, even if it is not optimal.

A randomized approximation algorithm for MAX 3-SAT

 Algorithm. For each variable, flip a fair coin, and set the variable to true (1) if it is heads, to false (0) otherwise.Note that a variable gets 1 with probability $\frac{1}{2}$, and this assignment is made independently of the other variables.
What is the expected number of satisfied clauses?
Assume that the 3-SAT formula has n variables and m clauses.

- Let $\mathrm{Z}=$ number of clauses satisfied by the random assignment
- For $1 \leqslant \mathfrak{j} \leqslant m$, define the random variables $Z_{j}=1$ if clause j is satisfied, 0 otherwise.
- By definition, $Z=\sum_{j=1}^{\mathfrak{m}} Z_{j}$.
$\square \mathbb{P}\left[Z_{j}=1\right]=1-(1 / 2)^{3}=7 / 8$, so $\mathbb{E}\left[Z_{j}\right]=7 / 8$. Therefore ,

$$
\mathbb{E}[Z]=\sum_{j=1}^{m} \mathbb{E}\left[Z_{j}\right]=\frac{7}{8} m
$$

A randomized approximation algorithm for MAX 3-SAT

How good is the solution computed by the random algorithm?

■ For a 3-CNF formula let opt (F) be the maximum number of clauses than can be satisfied by an assignment.
■ As for any assignment x the number of satisfied clauses is always $\leqslant \operatorname{opt}(F)$, we have that $\mathbb{E}[Z] \leqslant \operatorname{opt}(F)$.
■ Of course opt $(F) \leqslant m$, that is $\frac{7}{8} \operatorname{opt}(F) \leqslant \frac{7}{8} m=\mathbb{E}[Z]$, then

$$
\frac{\operatorname{opt}(F)}{\mathbb{E}[Z]} \leqslant \frac{8}{7}
$$

We have a $\frac{8}{7}$-approximation algorithm for MAX 3-SAT.

The probabilistic method

Claim
For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses.

Proof

For any random variable X there must exist one event ω for which the measured value $X(\omega)$ is at least as large as the expectation of X.

Probabilistic method. [Paul Erdős] Prove the existence of a non-obvious property by showing that a random construction produces it with positive probability

Random Quicksort

Input: An array A holding n keys. For simplicity we assumed that all keys are different.
Output: A sorted in increasing order.
I'm assuming that all of you known:

- The Quicksort algorithm which has $\mathcal{O}\left(\mathrm{n}^{2}\right)$ cost
- and $\mathcal{O}(n \log n)$ average cost.
- One randomized version randomly sorts the input and then applies the deterministic algorithm, having average running time $\mathcal{O}(n \log n)$
- Here we consider another randomized version of Quicksort.

Random-Quicksort

```
procedure Rand-Quicksort(A)
    if \(A . \operatorname{size}() \leqslant 3\) then
        Sort A using insertion sort
        return \(A\)
    end if
    Choose an element \(a \in A\) uniformly at random
    Put in \(A^{-}\)all elements \(<a\) and in \(A^{+}\)all elements \(>a\)
    Rand-Quicksort( \(A^{-}\))
    Rand-Quicksort( \(A^{+}\))
    \(A:=A^{-} \cdot a \cdot A^{+}\)
end procedure
```

The main difference is that we perform a random partition in each call around the random pivot a.

Example

$$
A=\{1,3,5,6,8,10,12,14,15,16,17,18,20,22,23\}
$$

Expected Complexity of Ran-Partition

Taken from CMU course 15451-07
https://www.cs.cmu.edu/afs/cs/academic/class/
15451-s07/www/lecture_notes/lect0123.pdf
■ The expected running time $T(n)$ of Rand-Quicksort is dominated by the number of comparisons.

- Every Rand-Partition has cost $\Theta(1)+\Theta(\underbrace{\text { number of comparisons }}_{\text {A.size }()})$
■ If we can count the number of comparisons, we can bound the the total time of Quicksort.
■ Let X be the number of comparisons made in all calls of Ran-Quicksort
$\square X$ is a r.v. as it depends of the random choices of the element used to do a Ran-Partition

Expected Complexity of Ran-Partition

■ Note: In the first application of Ran-Partition the selected a compares with all $n-1$ elements.
■ Key observation: Any two keys are compared iff one of them is selected as pivot, and they are compared at most one time.

10	12	14	15	16	17	18	20	22	23

never compare

Denote the i-th smallest element in the array by z_{i} and define the indicator r.v.:

$$
X_{i j}= \begin{cases}1 & \text { if } z_{\mathrm{i}} \text { is compared to } z_{\mathrm{j}}, \\ 0 & \text { otherwise. }\end{cases}
$$

Then, $X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i, j}$
(this is true because we never compare a pair more than once)

$$
\mathbb{E}[X]=\mathbf{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i, j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}\left[X_{i, j}\right]
$$

$\mathbb{E}\left[X_{i, j}\right]=\mathbb{P}\left[X_{i, j}=1\right]=\mathbb{P}\left[z_{i}\right.$ is compared to $\left.z_{j}\right]$

- If the pivot we choose is between z_{i} and z_{j} then we never compare them to each other.
- If the pivot we choose is either z_{i} or z_{j} then we do compare them.
■ If the pivot is less than z_{i} or greater than z_{j} then both z_{i} and z_{j} end up in the same partition and we have to pick another pivot.
- So, we can think of this like a dart game: we throw a dart at random into the array: if we hit z_{i} or z_{j} then $X_{i j}$ becomes 1 , if we hit between z_{i} and z_{j} then $X_{i j}$ becomes 0 , and otherwise we throw another dart.
- At each step, the probability that $X_{i j}=1$ conditioned on the event that the game ends in that step is exactly $2 /(j-i+1)$. Therefore, overall, the probability that $X_{i j}=1$ is $2 /(j-i+1)$.

End of the computation

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}\left[X_{i, j}\right] \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{\mathfrak{j}-i+1} \\
& =2 \cdot \sum_{i=1}^{n}\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-i+1}\right) \\
& <2 \cdot \sum_{i=1}^{n}\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right) \\
& =2 \cdot \sum_{i=1}^{n} H_{n}=2 \cdot n \cdot H_{n}=\mathcal{O}(n \lg n) .
\end{aligned}
$$

Therefore, $\mathbb{E}[X] \leqslant 2 n \ln n+\Theta(n)$.

Main theorem

Theorem
The expected complexity of Ran-Quicksort is $\mathbb{E}\left[\mathrm{T}_{\mathrm{n}}\right]$ $=$ $\mathcal{O}(\mathrm{n} \lg \mathrm{n})$.

Selection and order statistics

Problem: Given a list A of n of unordered distinct keys, and a $i \in \mathbb{Z}, 1 \leqslant i \leqslant n$, select the element $x \in A$ that is larger than exactly $i-1$ other elements in A.
Notice if:
1 i $=1 \Rightarrow$ MINIMUM element
2 $\mathfrak{i}=n \Rightarrow$ MAXIMUM element
3 $\mathfrak{i}=\left\lfloor\frac{\mathfrak{n}+1}{2}\right\rfloor \Rightarrow$ the MEDIAN
$4 \mathfrak{i}=\lfloor 0.9 \cdot n\rfloor \Rightarrow$ order statistics
Sort $A(\mathcal{O}(\mathfrak{n} \lg n))$ and search for $A[i](\Theta(n))$.
Can we do it in linear time?
Yes, there are deterministic linear time algorithms for selection-but with a bad constant factor.

Quickselect

Given unordered $A[1, \ldots, n]$ return the i-th. element
■ Quickselect (A[p, ..., q], i)
■ $\mathrm{r}=$ Ran-Partition (p, q) to find position of pivot and partition the array
■ if $\mathfrak{i}=r$ return $A[r]$
■ if $\mathfrak{i}<r$ Quickselect $(A[p, \ldots, r-1], i)$
■ else Quickselect $(A[r+1, \ldots, q], i-r)$

Search for $\mathrm{i}=2$ in A

Analysis of Quickselect

In the worst-case, the cost of Quickselect is $\Theta\left(\mathrm{n}^{2}\right)$. But on avergae its coste is $\Theta(n)$.
Theorem
Given $\mathrm{A}[1, \ldots, \mathrm{n}]$ and i , the expected number of steps for Quickselect to find the i -th. element in A is $\mathcal{O}(\mathrm{n})$

Analysis of Quickselect

■ The algorithm is in phase j when the size of the set under consideration is at most $\mathfrak{n}(3 / 4)^{j}$ but greater than $n(3 / 4)^{j-1}$
■ We bound the expected number of iterations spent in phase j.

- An element is central if at least a quarter of the elements are smaller and at least a quarter of the elements are larger.
■ If a central element is chosen as pivot, at least a quarter of the elements are dropped. So, the set shrinks by a 3/4 factor or better.
■ Since half of the elements are central, the probability of choosing as pivot a central element is $1 / 2$.
\square So the expected number of iterations in phase j is 2 .

Analysis of Quickselect

- Let $X=$ number of steps taken by the algorithm.
- Let $X_{j}=$ number of steps in phase j. We have $X=X_{0}+X_{1}+X_{2}+\ldots$
- An iteration in phase j requires at most $\mathrm{cn}(3 / 4)^{j}$ steps, for some constant c .
- Therefore, $\mathbb{E}\left[X_{j}\right] \leqslant 2 \mathrm{cn}(3 / 4)^{j}$ and by linearity of expectation.

$$
\mathbb{E}[X]=\sum_{j} \mathbb{E}\left[X_{j}\right] \leqslant \sum_{j} 2 c n\left(\frac{3}{4}\right)^{j}=2 c n \sum_{j}\left(\frac{3}{4}\right)^{j} \leqslant 8 c n
$$

Analysis of Quickselect

We have proved that its average cost is $\Theta(n)$. The proportionality constant depends on the ratio i / n. $C_{n}^{(i)}$, the expected number of comparisons to find the smallest i-th element among n is

$$
\begin{aligned}
& C_{n}^{(i)} \sim f(\alpha) \cdot n+o(n), \quad \alpha=i / n, \\
& f(\alpha)=2-2(\alpha \ln \alpha+(1-\alpha) \ln (1-\alpha))
\end{aligned}
$$

More precisely, Knuth (1971) proved that

$$
\begin{aligned}
C_{n}^{(i)} & =2\left((n+1) H_{n}-(n+3-j) H_{n+1-j}\right. \\
& \left.-(j+2) H_{j}+n+3\right)
\end{aligned}
$$

The maximum average cost corresponds to finding the median ($i=\lfloor n / 2\rfloor$); then we have

$$
C_{n}^{(\lfloor n / 2\rfloor)}=2(\ln 2+1) n+o(n) .
$$

The Continuous Master Theorem

CMT considers divide-and-conquer recurrences of the following type:

$$
F_{n}=t_{n}+\sum_{0 \leqslant j<n} \omega_{n, j} F_{j}, \quad n \geqslant n_{0}
$$

for some positive integer n_{0}, a function t_{n}, called the toll function, and a sequence of weights $\omega_{\mathrm{n}, \mathrm{j}} \geqslant 0$. The weights must satisfy two conditions:
$1 W_{n}=\sum_{0 \leqslant j<n} \omega_{n, j} \geqslant 1$ (at least one recursive call).
$2 Z_{n}=\sum_{0 \leqslant j<n} \frac{j}{n} \cdot \frac{\omega_{n, j}}{W_{n}}<1$ (the size of the subinstances is a fraction of the size of the original instance).
The next step is to find a shape function $\omega(z)$, a continuous function approximating the discrete weights $\omega_{\mathrm{n}, \mathrm{j}}$.

The Continuous Master Theorem

Definition
Given the sequence of weights $\omega_{n, j}, \omega(z)$ is a shape function for that set of weights if

1. $\int_{0}^{1} \omega(z) d z \geqslant 1$

2 there exists a constant $\rho>0$ such that

$$
\sum_{0 \leqslant j<n}\left|\omega_{n, j}-\int_{j / n}^{(j+1) / n} \omega(z) d z\right|=\mathcal{O}\left(n^{-\rho}\right)
$$

A simple trick that works very often, to obtain a convenient shape function is to substitute j by $z \cdot n$ in $\omega_{n, j}$, multiply by n and take the limit for $n \rightarrow \infty$.

$$
\omega(z)=\lim _{n \rightarrow \infty} n \cdot \omega_{n, z \cdot n}
$$

The Continuous Master Theorem

The extension of discrete functions to functions in the real domain is immediate, e.g., $j^{2} \rightarrow z^{2}$. For binomial numbers one might use the approximation

$$
\binom{z \cdot n}{k} \sim \frac{(z \cdot n)^{k}}{k!}
$$

The continuation of factorials to the real numbers is given by Euler's Gamma function $\Gamma(z)$ and that of harmonic numbers by Ψ function: $\Psi(z)=\frac{d \ln \Gamma(z)}{\mathrm{d} z}$.
For instance, in quicksort's recurrence all wright are equal:
$\omega_{n, j}=\frac{2}{n}$. Hence a simple valid shape function is
$\omega(z)=\lim _{n \rightarrow \infty} n \cdot \omega_{n, z \cdot n}=2$.

The Continuous Master Theorem

Theorem (Roura, 1997)
Let F_{n} satisfy the recurrence

$$
F_{n}=t_{n}+\sum_{0 \leqslant j<n} \omega_{n, j} F_{j}
$$

with $t_{n}=\Theta\left(n^{a}(\log n)^{b}\right)$, for some constants $a \geqslant 0$ and $b>-1$, and let $\omega(z)$ be a shape function for the weights $\omega_{n, j}$. Let $\mathcal{H}=1-$ $\int_{0}^{1} \omega(z) z^{a} \mathrm{~d} z$ and $\mathcal{H}^{\prime}=-(\mathrm{b}+1) \int_{0}^{1} \omega(z) z^{a} \ln z \mathrm{~d} z$. Then

$$
F_{n}= \begin{cases}\frac{t_{n}}{\mathcal{H}}+o\left(t_{n}\right) & \text { if } \mathcal{H}>0, \\ \frac{t_{n}}{\mathcal{H}^{\prime}} \ln n+o\left(t_{n} \log n\right) & \text { if } \mathcal{H}=0 \text { and } \mathcal{H}^{\prime} \neq 0, \\ \Theta\left(n^{\alpha}\right) & \text { if } \mathcal{H}<0,\end{cases}
$$

where $x=\alpha$ is the unique non-negative solution of the equation

$$
1-\int_{0}^{1} \omega(z) z^{x} \mathrm{~d} z=0
$$

Solving Quicksort's Recurrence

We apply CMT to quicksort's recurrence with the set of weights $\omega_{n, j}=2 / n$ and toll function $t_{n}=n-1$. As we have already seen, we can take $\omega(z)=2$, and the CMT applies with $a=1$ and $b=0$. All necessary conditions to apply CMT are met.
Then we compute

$$
\mathcal{H}=1-\int_{0}^{1} 2 z \mathrm{~d} z=1-\left.z^{2}\right|_{z=0} ^{z=1}=0
$$

hence we will have to apply CMT's second case and compute

$$
\mathcal{H}^{\prime}=-\int_{0}^{1} 2 z \ln z \mathrm{~d} z=\frac{z^{2}}{2}-\left.z^{2} \ln z\right|_{z=0} ^{z=1}=\frac{1}{2}
$$

Finally,

$$
\begin{aligned}
q_{n} & =\frac{n \ln n}{1 / 2}+o(n \log n)=2 n \ln n+o(n \log n) \\
& =1.386 \ldots n \log _{2} n+o(n \log n)
\end{aligned}
$$

Analyzing Quickselect

Let us now consider the analysis of the expected cost C_{n} of Quickselect when sought rank i takes any value between 1 and n with identical probability. Then

$$
C_{n}=n+\mathcal{O}(1)
$$

$+\frac{1}{n} \sum_{1 \leqslant k \leqslant n} \mathbb{E}$ [remaining number of comp. \mid pivot is the k-th element $]$,
as the pivot will be the k-th smallest element with probability $1 / n$ for all $k, 1 \leqslant k \leqslant n$.

Analyzing Quickselect

The probability that $i=k$ is $1 / n$, then no more comparisons are need since we would be done. The probability that $i<k$ is $(k-1) / n$, then we will have to make C_{k-1} comparisons. Similarly, with probability $(n-k) / n$ we have $i>k$ and we will then make C_{n-k} comparisons. Thus

$$
\begin{aligned}
C_{n} & =n+\mathcal{O}(1)+\frac{1}{n} \sum_{1 \leqslant k \leqslant n} \frac{k-1}{n} C_{k-1}+\frac{n-k}{n} C_{n-k} \\
& =n+\mathcal{O}(1)+\frac{2}{n} \sum_{0 \leqslant k<n} \frac{k}{n} C_{k} .
\end{aligned}
$$

Applying the CMT with the shape function

$$
\lim _{n \rightarrow \infty} n \cdot \frac{2}{n} \frac{z \cdot n}{n}=2 z
$$

we obtain $\mathcal{H}=1-\int_{0}^{1} 2 z^{2} \mathrm{~d} z=1 / 3>0$ and $C_{n}=3 n+o(n)$.

