
Random Variables and Expectation (II)

Josep Díaz Maria J. Serna Conrado Martínez
U. Politècnica de Catalunya

RA-MIRI 2023–2024



Most if the material included here is based on Chapter 13 of
Kleinberg & Tardos Algorithm Design book.



Waiting for a first success
A coin is heads with probability p and tails with probability
1 − p.
How many independent flips we expect to get heads for the
first time?
Let X the random variable that gives the number of flips
until (and including) the first head.
Observe that

P[X = j] = (1 − p)j−1p

and

E[X] =
∞∑
j=1

jP[X = j] =

∞∑
j=1

(1 − p)j−1p =
p

1 − p

∞∑
j=1

j(1 − p)j

as
∑∞
j=1 jx

j = x
(1−x)2 , we have

E[X] =
p

1 − p

1 − p

p2 =
1
p



Bernoulli process

A Bernoulli process denotes a sequence of experiments,
each of them a with binary output: success (1) with
probability p, and failure (0) with prob. q = 1 − p.
A nice thing about Bernoulli distributions: it is natural to
define a indicator r.v.

X =

{
1 if the output is 1,
0 otherwise.

Clearly, E[X] = P[X = 1] = p



The binomial distribution

A r.v. X has a Binomial distribution with parameters n and p
(X ∼ Bin(n,p)) if X counts the number of successes during n
trials, each trial an independent Bernoulli experiment having
probability of success p.

P[X = k] =
(
n
k

)
pk(1 − p)n−k.

Let X ∼ Bin(n,p). To compute E[X], we define indicator r.v.
{Xi}

n
i=1, where Xi = 1 iff the i-th output is 1, otherwise Xi = 0,

that is, each Xi is the indicator rv of a Bernouilli experiment.
Then X =

∑n
i=1 Xi ⇒ E[X] = E[

∑n
i=1 Xi] =

∑n
i=1 E[Xi]︸ ︷︷ ︸

=p

= np.



The Geometric distribution

A r.v. X has a Geometric distribution with parameter p
(X ∼ Geom(p)) if X counts the number of Bernouilli trials until
the first success.

If X ∼ Geom(p) then
P[X = k] = (1 − p)k−1p,
E[X] = 1

p .



Random generators

Consider a sequential random generator of n bits, so that the
probability that a bit is 1 is p.

If X = # number of 1’s in the generated n bit number,
X ∼ Bin(n,p).
If Y = # bits in the generated number until the first 1,
Y ∼ Geom(p).



Coupon collector

Each box of cereal contains a coupon. There are n different
types of coupons. Assuming all boxes are equally likely to
contain each coupon, how many boxes before you have at least
1 coupon of each type?

The expected number of steps is Θ(n logn).
Claim

Phase j = number of steps between j and j+ 1
distinct coupons.
Let Xj = number of steps you spend in phase j.
Let X = total number of steps, of course,
X = X0 + X1 + · · ·+ Xn−1.

Proof



Coupon collector

Xj = number of steps you spend in phase j.
We can consider a Bernoulli experiment that
succeeds when we hit one of the still not collected
coupons.
Conditioned on the event that we have already
collected j distinct coupons, the probability of
success is pj = n−j

n .
Xj counts the time until the Bernoulli process
reaches a success, therefore Xj ∼ Geom(pj), hence

E
[
Xj
]
=

n

n− j

Proof (cont’d)



Coupon collector

X = total number of steps
Using linearity of expectations, we have

E[X] = E[X0] + E[X1] + · · ·+ E[Xn−1]

=

n−1∑
j=0

n

n− j
= n

n∑
j=1

1
j
= nHn = n lnn+ O(n).

�

Proof (cont’d)



A randomized approximation algorithm for MAX 3-SAT

A 3-SAT formula is a Boolean formula in CNF such that each
clause has exactly 3 literals and each literal corresponds to a
different variable.

(x2∨x3∨x4)∧(x2∨x3∨x4)∧(x1∨x2∨x4)∧(x1∨x2∨x3)∧(x1∨x2∨x4)

MAXIMUM 3-SAT. Given a 3-SAT formula, find a truth
assignment that satisfies as many clauses as possible.

The problem is NP-hard. We can try to design a randomized
algorithm that produces a good assignment, even if it is not
optimal.



A randomized approximation algorithm for MAX 3-SAT
Algorithm. For each variable, flip a fair coin, and set the
variable to true (1) if it is heads, to false (0) otherwise.

Note that a variable gets 1 with probability 1
2 , and this

assignment is made independently of the other variables.

What is the expected number of satisfied clauses?

Assume that the 3-SAT formula has n variables and m clauses.

Let Z = number of clauses satisfied by the random
assignment
For 1 6 j 6 m, define the random variables Zj = 1 if
clause j is satisfied, 0 otherwise.
By definition, Z =

∑m
j=1 Zj.

P
[
Zj = 1

]
= 1 − (1/2)3 = 7/8, so E

[
Zj
]
= 7/8. Therefore ,

E[Z] =
m∑
j=1

E
[
Zj
]
=

7
8
m



A randomized approximation algorithm for MAX 3-SAT

How good is the solution computed by the random algorithm?

For a 3-CNF formula let opt(F) be the maximum number of
clauses than can be satisfied by an assignment.
As for any assignment x the number of satisfied clauses is
always 6 opt(F), we have that E[Z] 6 opt(F).
Of course opt(F) 6 m, that is 7

8opt(F) 6
7
8m = E[Z], then

opt(F)

E[Z]
6

8
7

We have a 8
7 -approximation algorithm for MAX 3-SAT.



The probabilistic method

For any instance of 3-SAT, there exists a truth assign-
ment that satisfies at least a 7/8 fraction of all clauses.

Claim

For any random variable X there must exist one event ω
for which the measured value X(ω) is at least as large
as the expectation of X. �

Proof

Probabilistic method. [Paul Erdős] Prove the existence of a
non-obvious property by showing that a random construction
produces it with positive probability



Random Quicksort

Input: An array A holding n keys. For simplicity we assumed
that all keys are different.
Output: A sorted in increasing order.

I’m assuming that all of you known:
The Quicksort algorithm which has O(n2) cost
and O(n logn) average cost.
One randomized version randomly sorts the input and then
applies the deterministic algorithm, having average running
time O(n logn)
Here we consider another randomized version of
Quicksort.



Random-Quicksort

procedure RAND-QUICKSORT(A)
if A.SIZE() 6 3 then

Sort A using insertion sort
return A

end if
Choose an element a ∈ A uniformly at random
Put in A− all elements < a and in A+ all elements > a
RAND-QUICKSORT(A−)
RAND-QUICKSORT(A+)
A :=A− · a ·A+

end procedure

The main difference is that we perform a random partition in
each call around the random pivot a.



Example

Ran−Partition of input

A={1,3,5,6,8,10,12,14,15,16,17,18,20,22,23}

8

3

6

16

12 18

1715 22

1

5 10

232014



Expected Complexity of Ran-Partition

Taken from CMU course 15451-07
https://www.cs.cmu.edu/afs/cs/academic/class/
15451-s07/www/lecture_notes/lect0123.pdf

The expected running time T(n) of Rand-Quicksort is
dominated by the number of comparisons.
Every Rand-Partition has cost
Θ(1) +Θ(number of comparisons︸ ︷︷ ︸

A.size()

)

If we can count the number of comparisons, we can bound
the the total time of Quicksort.
Let X be the number of comparisons made in all calls of
Ran-Quicksort
X is a r.v. as it depends of the random choices of the
element used to do a Ran-Partition

https://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0123.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0123.pdf


Expected Complexity of Ran-Partition

Note: In the first application of Ran-Partition the selected a
compares with all n− 1 elements.
Key observation: Any two keys are compared iff one of
them is selected as pivot, and they are compared at most
one time.

never compare

10 12 14 16 17 18 20 22 2315



Denote the i-th smallest element in the array by zi and define
the indicator r.v.:

Xij =

{
1 if zi is compared to zj,
0 otherwise.

Then, X =
∑n−1
i=1
∑n
j=i+1 Xi,j

(this is true because we never compare a pair more than once)

E[X] = E

n−1∑
i=1

n∑
j=i+1

Xi,j

 =

n−1∑
i=1

n∑
j=i+1

E
[
Xi,j
]

E
[
Xi,j
]
= P

[
Xi,j = 1

]
= P

[
zi is compared to zj

]



If the pivot we choose is between zi and zj then we never
compare them to each other.
If the pivot we choose is either zi or zj then we do compare
them.
If the pivot is less than zi or greater than zj then both zi
and zj end up in the same partition and we have to pick
another pivot.
So, we can think of this like a dart game: we throw a dart
at random into the array: if we hit zi or zj then Xij becomes
1, if we hit between zi and zj then Xij becomes 0, and
otherwise we throw another dart.
At each step, the probability that Xij = 1 conditioned on
the event that the game ends in that step is exactly
2/(j− i+ 1). Therefore, overall, the probability that Xij = 1
is 2/(j− i+ 1).



End of the computation

E[X] =
n−1∑
i=1

n∑
j=i+1

E
[
Xi,j
]

=

n−1∑
i=1

n∑
j=i+1

2
j− i+ 1

= 2 ·
n∑
i=1

(
1
2
+

1
3
+ · · ·+ 1

n− i+ 1
)

< 2 ·
n∑
i=1

(
1
2
+

1
3
+ · · ·+ 1

n
)

= 2 ·
n∑
i=1

Hn = 2 · n ·Hn = O(n lgn).

Therefore, E[X] 6 2n lnn+Θ(n).



Main theorem

The expected complexity of Ran-Quicksort is E[Tn] =

O(n lgn).

Theorem



Selection and order statistics

Problem: Given a list A of n of unordered distinct keys, and a
i ∈ Z, 1 6 i 6 n, select the element x ∈ A that is larger than
exactly i− 1 other elements in A.

Notice if:
1 i = 1⇒ MINIMUM element
2 i = n⇒ MAXIMUM element
3 i = bn+1

2 c ⇒ the MEDIAN
4 i = b0.9 · nc ⇒ order statistics

Sort A (O(n lgn)) and search for A[i] (Θ(n)).
Can we do it in linear time?
Yes, there are deterministic linear time algorithms for
selection—but with a bad constant factor.



Quickselect

Given unordered A[1, . . . ,n] return the i-th. element

Quickselect (A[p, . . . ,q], i)
r = Ran-Partition (p,q) to find
position of pivot and partition
the array
if i = r return A[r]
if i < r Quickselect
(A[p, . . . , r− 1], i)
else Quickselect
(A[r+ 1, . . . ,q], i− r)

3

A

1 8

Search for i=2 in A

m u h e c b k v

3=Ran−Partition(1,8)

he c b u v k m

1



Analysis of Quickselect

In the worst-case, the cost of QUICKSELECT is Θ(n2). But on
avergae its coste is Θ(n).

Given A[1, . . . ,n] and i, the expected number of steps
for Quickselect to find the i-th. element in A is O(n)

Theorem



Analysis of Quickselect

The algorithm is in phase j when the size of the set under
consideration is at most n(3/4)j but greater than n(3/4)j−1

We bound the expected number of iterations spent in
phase j.
An element is central if at least a quarter of the elements
are smaller and at least a quarter of the elements are
larger.
If a central element is chosen as pivot, at least a quarter of
the elements are dropped. So, the set shrinks by a 3/4
factor or better.
Since half of the elements are central, the probability of
choosing as pivot a central element is 1/2.
So the expected number of iterations in phase j is 2.



Analysis of Quickselect

Let X = number of steps taken by the algorithm.
Let Xj = number of steps in phase j. We have
X = X0 + X1 + X2 + . . .
An iteration in phase j requires at most cn(3/4)j steps, for
some constant c.
Therefore, E

[
Xj
]
6 2cn(3/4)j and by linearity of

expectation.

E[X] =
∑
j

E
[
Xj
]
6
∑
j

2cn
(

3
4

)j
= 2cn

∑
j

(
3
4

)j
6 8cn



Analysis of Quickselect
We have proved that its average cost is Θ(n). The
proportionality constant depends on the ratio i/n. C(i)

n , the
expected number of comparisons to find the smallest i-th
element among n is

C
(i)
n ∼ f(α) · n+ o(n), α = i/n,

f(α) = 2 − 2 (α lnα+ (1 − α) ln(1 − α))

More precisely, Knuth (1971) proved that

C
(i)
n = 2

(
(n+ 1)Hn − (n+ 3 − j)Hn+1−j

− (j+ 2)Hj + n+ 3
)

The maximum average cost corresponds to finding the median
(i = bn/2c); then we have

C
(bn/2c)
n = 2(ln 2 + 1)n+ o(n).



The Continuous Master Theorem

CMT considers divide-and-conquer recurrences of the following
type:

Fn = tn +
∑

06j<n

ωn,jFj, n > n0

for some positive integer n0, a function tn, called the toll
function, and a sequence of weights ωn,j > 0. The weights
must satisfy two conditions:

1 Wn =
∑

06j<nωn,j > 1 (at least one recursive call).

2 Zn =
∑

06j<n
j
n ·

ωn,j
Wn

< 1 (the size of the subinstances is
a fraction of the size of the original instance).

The next step is to find a shape function ω(z), a continuous
function approximating the discrete weights ωn,j.



The Continuous Master Theorem

Given the sequence of weights ωn,j, ω(z) is a shape
function for that set of weights if

1
∫1

0 ω(z)dz > 1
2 there exists a constant ρ > 0 such that

∑
06j<n

∣∣∣∣∣ωn,j −

∫ (j+1)/n

j/n

ω(z)dz

∣∣∣∣∣ = O(n
−ρ)

Definition

A simple trick that works very often, to obtain a convenient
shape function is to substitute j by z · n in ωn,j, multiply by n
and take the limit for n→∞.

ω(z) = lim
n→∞n ·ωn,z·n



The Continuous Master Theorem

The extension of discrete functions to functions in the real
domain is immediate, e.g., j2 → z2. For binomial numbers one
might use the approximation(

z · n
k

)
∼
(z · n)k

k!
.

The continuation of factorials to the real numbers is given by
Euler’s Gamma function Γ(z) and that of harmonic numbers by
Ψ function: Ψ(z) = d ln Γ(z)

dz .
For instance, in quicksort’s recurrence all wright are equal:
ωn,j =

2
n . Hence a simple valid shape function is

ω(z) = limn→∞ n ·ωn,z·n = 2.



The Continuous Master Theorem

Let Fn satisfy the recurrence

Fn = tn +
∑

06j<n

ωn,jFj,

with tn = Θ(na(logn)b), for some constants a > 0 and b > −1,
and let ω(z) be a shape function for the weights ωn,j. Let H = 1−∫1

0 ω(z)za dz and H ′ = −(b+ 1)
∫1

0 ω(z)za ln z dz. Then

Fn =


tn
H

+ o(tn) if H > 0,
tn
H′ lnn+ o(tn logn) if H = 0 and H ′ 6= 0,
Θ(nα) if H < 0,

where x = α is the unique non-negative solution of the equation

1 −

∫1

0
ω(z)zx dz = 0.

Theorem (Roura, 1997)



Solving Quicksort’s Recurrence
We apply CMT to quicksort’s recurrence with the set of weights
ωn,j = 2/n and toll function tn = n− 1. As we have already
seen, we can take ω(z) = 2, and the CMT applies with a = 1
and b = 0. All necessary conditions to apply CMT are met.
Then we compute

H = 1 −

∫1

0
2z dz = 1 − z2

∣∣∣z=1

z=0
= 0,

hence we will have to apply CMT’s second case and compute

H ′ = −

∫1

0
2z ln z dz =

z2

2
− z2 ln z

∣∣∣∣z=1

z=0
=

1
2

.

Finally,

qn =
n lnn
1/2

+ o(n logn) = 2n lnn+ o(n logn)

= 1.386 . . .n log2 n+ o(n logn).



Analyzing Quickselect

Let us now consider the analysis of the expected cost Cn of
Quickselect when sought rank i takes any value between 1 and
n with identical probability. Then

Cn = n+ O(1)

+
1
n

∑
16k6n

E[remaining number of comp. |pivot is the k-th element] ,

as the pivot will be the k-th smallest element with probability
1/n for all k, 1 6 k 6 n.



Analyzing Quickselect
The probability that i = k is 1/n, then no more comparisons are
need since we would be done. The probability that i < k is
(k− 1)/n, then we will have to make Ck−1 comparisons.
Similarly, with probability (n− k)/n we have i > k and we will
then make Cn−k comparisons. Thus

Cn = n+ O(1) +
1
n

∑
16k6n

k− 1
n

Ck−1 +
n− k

n
Cn−k

= n+ O(1) +
2
n

∑
06k<n

k

n
Ck.

Applying the CMT with the shape function

lim
n→∞n · 2

n

z · n
n

= 2z

we obtain H = 1 −
∫1

0 2z2 dz = 1/3 > 0 and Cn = 3n+ o(n).


