Random Variables and Expectation (Il)

Josep Diaz Maria J. Serna Conrado Martinez
U. Politécnica de Catalunya

RA-MIRI 2023-2024

Most if the material included here is based on Chapter 13 of
Kleinberg & Tardos Algorithm Design book.

Waiting for a first success

m A coin is heads with probability p and tails with probability
1—p.

m How many independent flips we expect to get heads for the
first time?

m Let X the random variable that gives the number of flips
until (and including) the first head.
Observe that

and

Bernoulli process

m A Bernoulli process denotes a sequence of experiments,
each of them a with binary output: success (1) with
probability p, and failure (0) with prob. g =1 —p.

m A nice thing about Bernoulli distributions: it is natural to
define a indicator r.v.

_] 1 ifthe outputis 1,
~ 10 otherwise.

Clearly, EIX| =PIX=1]=p

The binomial distribution

A r.v. X has a Binomial distribution with parameters n and p

(X ~ Bin(n, p)) if X counts the number of successes during n
trials, each trial an independent Bernoulli experiment having
probability of success p.

PX =k = ()p*(1 —p)" k. - W

Let X ~ Bin(n, p). To compute E[X], we define indicator r.v.
{Xi}* 1, where X; = 1 iff the i-th output is 1, otherwise X; = 0,
that is, each X; is the indicator rv of a Bernouilli experiment.
ThenX =Y Xi = EX =E[} X =>4 E\D,(fl =np.

=p

The Geometric distribution

A r.v. X has a Geometric distribution with parameter p
(X ~ Geom(p)) if X counts the number of Bernouilli trials until

the first success.

If X ~ Geom(p) then
PX =k =(1—p)Tp,

EX = 1.

Random generators

Consider a sequential random generator of n bits, so that the
probability that a bit is 1 is p.

m If X = # number of 1’s in the generated n bit number,
X ~ Bin(n, p).

m If Y = # bits in the generated number until the first 1,
Y ~ Geom(p).

Coupon collector

Each box of cereal contains a coupon. There are n different
types of coupons. Assuming all boxes are equally likely to
contain each coupon, how many boxes before you have at least
1 coupon of each type?

~ Claim
The expected number of steps is @(nlogn).

~ Proof
m Phase j = number of steps between j and j + 1
distinct coupons.

m Let X; = number of steps you spend in phase j.

m Let X = total number of steps, of course,
X=Xg+ X1+ +Xn_1.

Coupon collector

~ Proof (cont'd)

Xj = number of steps you spend in phase j.

m We can consider a Bernoulli experiment that
succeeds when we hit one of the still not collected
coupons.

m Conditioned on the event that we have already
collected j distinct coupons, the probability of
success is pj = =.

n
® Xj counts the time until the Bernoulli process
reaches a success, therefore X; ~ Geom(p;), hence

Coupon collector

~ Proof (cont'd)

X = total number of steps
Using linearity of expectations, we have

E[X] = E[Xo] + E[Xq] + -+ - + E[X 1]

n—1 n AL
Zf:nzgann:nlnn%—O(n)-
—n—)

j=0

=

A randomized approximation algorithm for MAX 3-SAT

A 3-SAT formula is a Boolean formula in CNF such that each
clause has exactly 3 literals and each literal corresponds to a
different variable.

(x2Vx3VX4) A (x2Vx3VXa) A (X7 Vx2Vxa) A\ (X1 VX2 Vx3) A (X1 VX2 VXg)
MAXIMUM 3-SAT. Given a 3-SAT formula, find a truth

assignment that satisfies as many clauses as possible.

The problem is NP-hard. We can try to design a randomized
algorithm that produces a good assignment, even if it is not
optimal.

A randomized approximation algorithm for MAX 3-SAT
Algorithm. For each variable, flip a fair coin, and set the
variable to true (1) if it is heads, to false (0) otherwise.

Note that a variable gets 1 with probability % and this
assignment is made independently of the other variables.

What is the expected number of satisfied clauses?
Assume that the 3-SAT formula has n variables and m clauses.

m Let Z = number of clauses satisfied by the random
assignment

m For 1 <j < m, define the random variables Z; = 1 if
clause j is satisfied, 0 otherwise.

m By definition, Z = Zj"; Z;.

m P[Z; =1] =1—(1/2)® =7/8, s0 E[Z;] = 7/8. Therefore ,

A randomized approximation algorithm for MAX 3-SAT

How good is the solution computed by the random algorithm?

m For a 3-CNF formula let opt(F) be the maximum number of
clauses than can be satisfied by an assignment.

m As for any assignment x the number of satisfied clauses is
always < opt(F), we have that E[Z] < opt(F).

m Of course opt(F) < m, thatis opt(F) < §m = E[Z], then

opt(F) o 8
ElZ] ~7

We have a %—approximation algorithm for MAX 3-SAT.

The probabilistic method

~ Claim

For any instance of 3-SAT, there exists a truth assign-
ment that satisfies at least a 7/8 fraction of all clauses.

~ Proof
For any random variable X there must exist one event w
for which the measured value X(w) is at least as large
as the expectation of X. O

Probabilistic method. [Paul Erdés] Prove the existence of a
non-obvious property by showing that a random construction
produces it with positive probability

Random Quicksort

Input: An array A holding n keys. For simplicity we assumed
that all keys are different.
Output: A sorted in increasing order.

I’'m assuming that all of you known:

m The Quicksort algorithm which has ©(n?) cost

m and O(nlogn) average cost.

m One randomized version randomly sorts the input and then
applies the deterministic algorithm, having average running
time 9(nlogn)

m Here we consider another randomized version of
Quicksort.

Random-Quicksort

procedure RAND-QUICKSORT(A)
if A.sizE() < 3 then
Sort A using insertion sort
return A
end if
Choose an element a € A uniformly at random
Putin A~ all elements < aand in A" all elements > a
RAND-QUICKSORT(A ™)
RAND-QUICKSORT(A™)
A=A -a-A"
end procedure

The main difference is that we perform a random partition in
each call around the random pivot a.

Example

- A={1,3,5,6,8,10,12,14,15,16,17,18,20,22,23}

mem=f> Ran-Partition of input

Expected Complexity of Ran-Partition

Taken from CMU course 15451-07

https://www.cs.cmu.edu/afs/cs/academic/class/
15451-s07/www/lecture_notes/lect0123.pdf
m The expected running time T(n) of Rand-Quicksort is
dominated by the number of comparisons.
m Every Rand-Partition has cost
O(1) + ©(number of comparisons)

A.size()
m If we can count the number of comparisons, we can bound
the the total time of Quicksort.
m Let X be the number of comparisons made in all calls of
Ran-Quicksort

m X is ar.v. as it depends of the random choices of the
element used to do a Ran-Partition

https://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0123.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0123.pdf

Expected Complexity of Ran-Partition

m Note: In the first application of Ran-Partition the selected a
compares with all n — 1 elements.

m Key observation: Any two keys are compared iff one of
them is selected as pivot, and they are compared at most
one time.

\10\ 2] 14\15 \ 16\17 [18 \20\22\23‘

never compare

Denote the i-th smallest element in the array by z; and define
the indicator r.v.:

)1 ifz; is compared to z;,
Y10 otherwise.

n—1 n
Th.enl, X=2 101 2imi1 Xij _
(this is true because we never compare a pair more than once)

n—-1 n n—-1 n
EX=E|S S x| =3 3 M

i=1 j=i+1 i=1 j=i+1

E[Xi;] =P[Xij = 1] = P[z: is compared to z;]

If the pivot we choose is between z; and z; then we never
compare them to each other.

If the pivot we choose is either z; or z; then we do compare
them.

If the pivot is less than z; or greater than z; then both z;
and z; end up in the same partition and we have to pick
another pivot.

So, we can think of this like a dart game: we throw a dart
at random into the array: if we hit z; or z; then X;; becomes
1, if we hit between z; and z; then X;; becomes 0, and
otherwise we throw another dart.

At each step, the probability that X;; = 1 conditioned on
the event that the game ends in that step is exactly

2/(j —i+1). Therefore, overall, the probability that X;; = 1
is2/G—1i+1).

End of the computation

n—1 n
E[X]: Z E[Xl)]

i=1 j=i+1
_n71 i >

i=1 j:i+1]71+1

n
1 1 1

_z'g(§+§+”'+n—i+1)

n
1
=2 Z Hh,=2-n-H, =0(nlgn).
i—1

Therefore, E[X] < 2ninn + O(n).

Main theorem

Theorem
The expected complexity of Ran-Quicksort is E[T;]
O(nlgn).

Selection and order statistics

Problem: Given a list A of n of unordered distinct keys, and a
i€ Z,1 <1< n, select the element x € A that is larger than
exactly i — 1 other elements in A.
Notice if:

i =1 = MINIMUM element

i =n = MAXIMUM element

i= "] = the MEDIAN

i=10.9-n] = order statistics

Sort A (9(nlgn)) and search for A[i] (©(n)).

Can we do it in linear time?

Yes, there are deterministic linear time algorithms for
selection—but with a bad constant factor.

Quickselect

Given unordered Al1,...,n] return the i-th. element

m Quickselect (Alp,...,ql,1)

m v = Ran-Partition (p, q) to find
position of pivot and partition A mlu[hfe]c[b][Kk][V]
the array

m if i =rreturn Alr]

m if i < r Quickselect
(Alp,...,7—1],1) [eelo]n]u]v][x]m]

m else Quickselect
(Alr+1,...,ql,i—7)

Search for i=2 in A

1 8
3=Ran-Partition(1,8)

1 3

Analysis of Quickselect

In the worst-case, the cost of QUICKSELECT is ©(n?). But on
avergae its coste is ©(n).

Theorem

Given A[1,...,n] and i, the expected number of steps
for Quickselect to find the i-th. element in A is 9(n)

Analysis of Quickselect

m The algorithm is in phase j when the size of the set under
consideration is at most n(3/4)7 but greater than n(3/4)7 "

m We bound the expected number of iterations spent in
phase j.

m An element is central if at least a quarter of the elements
are smaller and at least a quarter of the elements are
larger.

m [f a central element is chosen as pivot, at least a quarter of
the elements are dropped. So, the set shrinks by a 3/4
factor or better.

m Since half of the elements are central, the probability of
choosing as pivot a central element is 1/2.

m So the expected number of iterations in phase j is 2.

Analysis of Quickselect

m Let X = number of steps taken by the algorithm.

m Let X; = number of steps in phase j. We have
X=Xg+X1+Xo+...

m An iteration in phase j requires at most cn(3/4) steps, for
some constant c.

m Therefore, E[X;] < 2cn(3/4) and by linearity of
expectation.

j j
EX] = ZE[X]-] < Zch <Z> = 2CTLZ <2> < 8cn
j j j

Analysis of Quickselect
We have proved that its average cost is ©(n). The

proportionality constant depends on the ratio i/n. c'V the
expected number of comparisons to find the smallest i-th
element among n is

Cff) ~f(a) -n+o(n), x=1i/n,
fla) =2—-2(alna+ (1 —) In(1 — «))

More precisely, Knuth (1971) proved that

Ch) =2((n+ 1Hp — (N +3—) Hy i1
—(+2)H; +n+3)

The maximum average cost corresponds to finding the median
(i=|n/2]); then we have

c™2) —2(n2+ 1)+ o).

The Continuous Master Theorem

CMT considers divide-and-conquer recurrences of the following
type:
Fo=1th + Z wn,ij, n = ng
0<ji<n
for some positive integer ng, a function t,,, called the toll
function, and a sequence of weights w,, ; > 0. The weights
must satisfy two conditions:

W, = ZO<j<n wnj > 1 (at least one recursive call).

Zn=3 oien - W < 1 (the size of the subinstances is

n

a fraction of the size of the original instance).

The next step is to find a shape function w(z), a continuous
function approximating the discrete weights w, ;.

The Continuous Master Theorem

~ Definition
Given the sequence of weights w., ;, w(z) is a shape
function for that set of weights if
fa w(z)dz > 1
there exists a constant p > 0 such that

(G+1)/n
Z Wn,j —J w(z) dz

0<j<n i/m

A simple trick that works very often, to obtain a convenient
shape function is to substitute j by z - n in wy ;, multiply by n
and take the limit for n — oo.

w(z) = n“—r>noon cWnzn

The Continuous Master Theorem

The extension of discrete functions to functions in the real
domain is immediate, e.g., j> — z2. For binomial numbers one
might use the approximation

z-n\ (z-n)k

(k > Y
The continuation of factorials to the real numbers is given by
Euler's Gamma function I'(z) and that of harmonic numbers by
Y function: ¥(z) = d'”drz(z).
For instance, in quicksort’s recurrence all wright are equal:
Wnj = % Hence a simple valid shape function is
w(z) =My 500N Wn zn = 2.

The Continuous Master Theorem

~ Theorem (Roura, 1997)

Let F,, satisfy the recurrence

n—tn E wnj js

0gi<n

with t, = ®(n%(logn)®), for some constants a > 0 andb > —1,
and let w(z) be a shape function for the weights Wy LetH=1-—

o w(z)z¢ dz and H' = —(b + 1) [w(z)z® Inzdz. Then
tn 4 o(ty,) if 3 >0,
Fo=4q s Inn+o(tylogn) if H=0 and H' #0,
O(n%) ifH <0,

where x = « is the unique non-negative solution of the equation

]
1 —J w(z)z*dz =0.
0

Solving Quicksort’s Recurrence
We apply CMT to quicksort’s recurrence with the set of weights
wn,j = 2/n and toll function t, =n — 1. As we have already
seen, we can take w(z) = 2, and the CMT applies with a = 1
and b = 0. All necessary conditions to apply CMT are met.
Then we compute

1 z=1
%:1—J 2zdz=1-—7° =0,
0 z=0

hence we will have to apply CMT’s second case and compute

z=1 1

1 22
H’ :—J 2zInzdz = = —Z%Inz
2 z=0

0

Finally,

n = Tal;]zn—l—o(nlogn) =2ninn 4+ o(nlogn)

=1.386...nlog,n + o(nlogn).

Analyzing Quickselect

Let us now consider the analysis of the expected cost C;, of
Quickselect when sought rank i takes any value between 1 and
n with identical probability. Then

Cn:n+0(1)

1 - —
+— Z Elremaining number of comp. | pivot is the k-th element],

1<k<n

as the pivot will be the k-th smallest element with probability
1/nforallk, 1 <k <n.

Analyzing Quickselect

The probability that i = k is 1/n, then no more comparisons are
need since we would be done. The probability that i < k is

(k —1)/n, then we will have to make Cy_1 comparisons.
Similarly, with probability (n — k)/n we have i > k and we will
then make C,,_x comparisons. Thus

1 k—1 n—k
Cn,=11+'0(1)+“* E Crug+ ——Chx
n n n
1<k<n

2 k
= N+ Y o
n+O()+TL an

o<k<n
Applying the CMT with the shape function

. 2z-n
imn-— =2z
n—oo n n

we obtain H =1 — [§222dz =1/3>0and Cn, = 3n + o(n).

