Random Variables and Expectation

Josep Díaz Maria J. Serna Conrado Martínez U. Politècnica de Catalunya

RA-MIRI 2023-2024

Random variables

Flip 100 times a fair coin, each time if the outcome is H we give $1 €$, if it is T we get $1 €$. At the end, how much did we win or loose?. Notice $\Omega=\{\mathrm{T}, \mathrm{H}\}^{100}$
Given Ω, a random variable is a function $\mathrm{X}: \Omega \rightarrow \mathbb{R}$.
X can be interpreted as a quantity, whose value depends on the outcome of the experiment.

Example

In the previous example, our total gain (or loss) is a random variable X,

$$
X=\text { number of H's minus the number of T's. }
$$

The number of heads W and the number of tails L are also random variables (and $\mathrm{X}=\mathrm{W}-\mathrm{L}$).

Events and random variables

Given a random variable X on Ω and $a \in \mathbb{R}$ the event $X \geqslant a$ represents the set $\{\omega \in \Omega \mid X(\omega) \geqslant a\}$.

$$
\mathbb{P}[X \geqslant a]=\sum_{\omega \in \Omega: X(\omega) \geqslant a} \mathbb{P}[\omega]
$$

Example

In the previous example of 100 coin flips, for the event
$W=50$ we have $\mathbb{P}[W=50]=\frac{\binom{100}{50}}{2^{100}}\left({ }^{*}\right)$

Given an event A define the indicator r.v. $\mathbb{I}_{\mathcal{A}}$:

$$
\mathbb{I}_{\mathcal{A}}= \begin{cases}1 & \text { if } A \text { true } \\ 0 & \text { otherwise }\end{cases}
$$

Example

If $A=$ exactly 50 wins, $\mathbb{P}[A]=\mathbb{P}\left[\mathbb{I}_{A}=1\right]=\mathbb{P}[W=50]$, which is exactly (*)

Expectation

The expectation $\mathbb{E}[\mathrm{X}]$ of a r.v. $\mathrm{X}: \Omega \rightarrow \mathbb{R}$ is defined as

$$
\mathbb{E}[X]=\sum_{x \in X(\Omega)} x \cdot \mathbb{P}[X=x] .
$$

Expectation (mean, average) is just the weighted sum over all values of the r.v.

Notice: If X is a r.v. then $\mathbb{E}[X] \in \mathbb{R}$.

Example

Let X be an integer generated u.a.r. between 1 and 6 . Then $\mathbb{E}[X]=\sum_{x=1}^{6} x \cdot \mathbb{P}[X=x]=\sum_{x=1}^{6} \frac{x}{6}=3.5$, which is not a possible value for X.

Linearity of expectation

Theorem
1 Given r.v. $\mathrm{X}, \mathrm{Y}, \mathbb{E}[\mathrm{X}+\mathrm{Y}]=\mathbb{E}[\mathrm{X}]+\mathbb{E}[\mathrm{Y}]$.
2 Given any constant c, and a rv X, then $\mathbb{E}[\mathrm{c} X]=\mathrm{c} \mathbb{E}[\mathrm{X}]$.
3 More generally, given r.v. $\left\{X_{i}\right\}_{i=1}^{n}$ and n real numbers $\left\{a_{i}\right\}_{i=1}^{n}, \mathbb{E}\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[X_{i}\right]$.

The proof is standard and relies on the fact that the sum of r.v. is a r.v.

Independent r.v.

Two random variables X and Y are said to be independent if

$$
\forall x, y \in \mathbb{R}, \mathbb{P}[(X=x) \cap(Y=y)]=\mathbb{P}[X=x] \cdot \mathbb{P}[Y=y] .
$$

Two r.v. which are not independent are said to be dependent or correlated.

Example
Rolling two dice, let X_{1} be a r.v. counting the pips in die 1 , and let X_{2} be a r.v. counting the pips in die 2. Then X_{1} and X_{2} are independent rv.

Example

Rolling two dice, let X_{1} be a r.v. counting the pips in die 1 , and let X_{3} count the sum of pips in the two rollings, then X_{1} and X_{3} are correlated.

Inversions in Permutations

Given and array $A[1, \ldots, n]$ containing n different keys, chosen u.a.r. from one permutation of the set of n keys, let a_{i}, $1 \leqslant i \leqslant n$, be the key contained in $A[i]$. We say a_{i} and a_{j} are inverted if $i<j$ but $a_{i}>a_{j}$. Compute the expected number of inversions in A.
Let X count the number of inversions in A.
For every pair $1 \leqslant \mathfrak{i}<\mathfrak{j} \leqslant n$ of positions in A define an indicator r.v.:

$$
X_{i, j}= \begin{cases}1 & \text { if } a_{i}>a_{j} \\ 0 & \text { otherwise }\end{cases}
$$

$X=\sum_{i<j} X_{i, j} \Rightarrow \mathbb{E}[X]=\sum_{i<j} \mathbb{E}\left[X_{i, j}\right]=\sum_{i<j} 1 \cdot \underbrace{\mathbb{P}\left[a_{i}>a_{j}\right]}_{=1 / 2}$
Notice $|\{(i, j) \mid 1 \leqslant i<j \leqslant n\}|=(n-1)+(n-2)+\cdots+2+1$ therefore, $\mathbb{E}[X]=\frac{1}{2} \sum_{i=1}^{n}(n-i)=\frac{1}{2} \sum_{i=1}^{n-1} i=\frac{n(n-1)}{4}$

Records in Permutations

We have n students $\{1, \ldots, n\}$, we want to hire the best one to help us. The i-th interviewed student has score/rank $\sigma(i)$; each time we find one that is more suitable that the previous ones (a record), we preselect that candidate. At the end, we hire the last one pre-selected, but we indemnify with $S>0 €$ each of the pre-selected candiadtes who are not hired. How much will we be paying?

```
procedure HIRING(n)
    best:=0
    for \(i:=1\) to \(n\) do
        interview i-th candidate
        if \(\sigma(i)\) is better than \(\sigma\) (best) then
        best \(:=i\) and pre-select \(i\)
        end if
    end for
end procedure
```


Records in Permutations

■ In the worst-case the list of students is given in increasing order of score, $\sigma(\mathfrak{i})=\mathfrak{i}$, and we will be pre-selecting everyone \Longrightarrow we pay $S \cdot(n-1) €$.
■ In the best-case, the first candidate is the one with best rank, $\sigma(1)=\mathrm{n}$, and the only one to be preselected. We have no indemnizations to pay.

Average analysis of the hiring algorithm

There are n ! possible orders of the students; we assume any of them has identical probability $\frac{1}{n!}$.

Lemma

The expected number of pre-selected candidates is $H_{n}=\sum_{1 \leqslant i \leqslant n} 1 / i=\ln n+\mathcal{O}(1)$.

Proof

Let X be a r.v. counting the number of pre-selected students. For each $1 \leqslant i \leqslant n$ define an indicator r.v. $X_{i}=\mathbb{I}_{i \text {-th }}$ is preselected. Then, $X=\sum_{i=1}^{n} X_{i}$ and

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{n} 1 \cdot \underbrace{\frac{1}{i}}_{\text {why? }}=\ln n+\mathcal{O}(1)
$$

Randomized algorithm for the hiring problem

To fool the input given by an adversary: Permute the input

```
procedure RAND-HIRE-StudENT(n)
    Randomly permute the list [1,\ldots,n]
    best:=0
    for i:= 1 to n do
        interview i-th candidate
        if i-th candidate is better than best then
        best:=i and pre-select i-th candidate
        end if
    end for
end procedure
```

Let $X(n)$ a r.v. counting the number of pre-selections, on an input of n students. Then $\mathbb{E}[X(n)]=\ln n+\mathcal{O}(1)$, with the expectation taken over our random choices (the initial permutation of the input) and not on any assumption on the probability of the possible inputs.

