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Random variables

Flip 100 times a fair coin, each time if the outcome is H we give
1e, if it is T we get 1e. At the end, how much did we win or
loose?. Notice Ω = {T ,H}100

Given Ω, a random variable is a function X : Ω→ R.
X can be interpreted as a quantity, whose value depends on the
outcome of the experiment.

In the previous example, our total gain (or loss) is a
random variable X,

X = number of H’s minus the number of T’s.

The number of heads W and the number of tails L are
also random variables (and X =W − L).

Example



Events and random variables
Given a random variable X on Ω and a ∈ R the event X > a
represents the set {ω ∈ Ω|X(ω) > a}.

P[X > a] =
∑

ω∈Ω:X(ω)>a

P[ω]

In the previous example of 100 coin flips, for the event

W = 50 we have P[W = 50] = (100
50 )

2100 (*)

Example

Given an event A define the indicator r.v. IA:

IA =

{
1 if A true
0 otherwise

If A = exactly 50 wins, P[A] = P[IA = 1] = P[W = 50],
which is exactly (*)

Example



Expectation

The expectation E[X] of a r.v. X : Ω→ R is defined as

E[X] =
∑

x∈X(Ω)

x · P[X = x] .

Expectation (mean, average) is just the weighted sum over all
values of the r.v.

Notice: If X is a r.v. then E[X] ∈ R.

Let X be an integer generated u.a.r. between 1 and 6.
Then E[X] =

∑6
x=1 x · P[X = x] =

∑6
x=1

x
6 = 3.5, which is

not a possible value for X.

Example



Linearity of expectation

1 Given r.v. X, Y, E[X+ Y] = E[X] + E[Y].
2 Given any constant c, and a rv X, then

E[cX] = cE[X].
3 More generally, given r.v. {Xi}

n
i=1 and n real

numbers {ai}
n
i=1, E[

∑n
i=1 aiXi] =

∑n
i=1 ai E[Xi].

Theorem

The proof is standard and relies on the fact that the sum of r.v.
is a r.v.



Independent r.v.
Two random variables X and Y are said to be independent if

∀x,y ∈ R,P[(X = x) ∩ (Y = y)] = P[X = x] · P[Y = y] .

Two r.v. which are not independent are said to be dependent or
correlated.

Rolling two dice, let X1 be a r.v. counting the pips in die
1, and let X2 be a r.v. counting the pips in die 2. Then
X1 and X2 are independent rv.

Example

Rolling two dice, let X1 be a r.v. counting the pips in die
1, and let X3 count the sum of pips in the two rollings,
then X1 and X3 are correlated.

Example



Inversions in Permutations

Given and array A[1, . . . ,n] containing n different keys, chosen
u.a.r. from one permutation of the set of n keys, let ai,
1 6 i 6 n, be the key contained in A[i]. We say ai and aj are
inverted if i < j but ai > aj. Compute the expected number of
inversions in A.
Let X count the number of inversions in A.
For every pair 1 6 i < j 6 n of positions in A define an indicator
r.v.:

Xi,j =

{
1 if ai > aj
0 otherwise

X =
∑
i<j Xi,j ⇒ E[X] =

∑
i<j E

[
Xi,j

]
=
∑
i<j 1 · P

[
ai > aj

]︸ ︷︷ ︸
=1/2

Notice |{(i, j)|1 6 i < j 6 n}| = (n− 1) + (n− 2) + · · ·+ 2 + 1

therefore, E[X] = 1
2
∑n
i=1(n− i) = 1

2
∑n−1
i=1 i =

n(n−1)
4



Records in Permutations
We have n students {1, . . . ,n}, we want to hire the best one to
help us. The i-th interviewed student has score/rank σ(i); each
time we find one that is more suitable that the previous ones (a
record), we preselect that candidate. At the end, we hire the
last one pre-selected, but we indemnify with S > 0 e each of
the pre-selected candiadtes who are not hired. How much will
we be paying?

procedure HIRING(n)
best := 0
for i := 1 to n do

interview i-th candidate
if σ(i) is better than σ(best) then
best := i and pre-select i

end if
end for

end procedure



Records in Permutations

n1 2 3 4

In the worst-case the list of students is given in increasing
order of score, σ(i) = i, and we will be pre-selecting
everyone =⇒ we pay S · (n− 1) e.
In the best-case, the first candidate is the one with best
rank, σ(1) = n, and the only one to be preselected. We
have no indemnizations to pay.



Average analysis of the hiring algorithm
There are n! possible orders of the students; we assume any of
them has identical probability 1

n! .

The expected number of pre-selected candidates is
Hn =

∑
16i6n 1/i = lnn+ O(1).

Lemma

Let X be a r.v. counting the number of pre-selected
students. For each 1 6 i 6 n define an indicator r.v.
Xi = Ii-th is preselected. Then, X =

∑n
i=1 Xi and

E[X] =
n∑
i=1

E[Xi] =
n∑
i=1

1 · 1
i︸︷︷︸

why?

= lnn+ O(1).

�

Proof



Randomized algorithm for the hiring problem
To fool the input given by an adversary: Permute the input

procedure RAND-HIRE-STUDENT(n)
Randomly permute the list [1, . . . ,n]
best := 0
for i := 1 to n do

interview i-th candidate
if i-th candidate is better than best then
best := i and pre-select i-th candidate

end if
end for

end procedure

Let X(n) a r.v. counting the number of pre-selections, on an
input of n students. Then E[X(n)] = lnn+ O(1), with the
expectation taken over our random choices (the initial
permutation of the input) and not on any assumption on the
probability of the possible inputs.


