
Fingerprinting and Primality

Josep Díaz Maria J. Serna Conrado Martínez
U. Politècnica de Catalunya

RA-MIRI 2023–2024

Fingerprinting technique

Freivalds’s algorithm is an example of the algorithmic
fingerprinting technique, we do not want to compute, but just to
check.
We want to compare two items, A1 and A2, instead of
comparing them directly, we compute random fingerprints
φ(A1) and φ(A2) and compare these.
We seek a fingerprint function φ() with the following properties:

If A1 = A2 then P[φ(A1) = φ(A2)] = 1.
If A1 6= A2 then P[φ(A1) = φ(A2)] 6 c for some c 6 1/2 or
P[φ(A1) = φ(A2)]→ 0 whp.
It is a lot more efficient to compute and compare φ(A1)
and φ(A2), than computing and comparing A1 and A2.

Notice that for Freivalds’s algorithm, if A is n× n matrix, then
φ(A) = A ·~r, for a random n-dimensional Boolean vector ~r.

Database consistency

From MR 7.4
Alice and Bob are in different continents. Each has a copy of a huge
database with N bits. Alice maintain its large N-bit database
X = {xN−1, . . . , x0} of information, while Bob maintains a second copy
Y = {yN−1, . . . ,y0} of the same database.

Periodically they want to check consistency of their copies, i.e., to check that
both are the same.

Alice could send X to Bob, and he could compare it to Y. But this requires
transmission of N bits, which is costly and error-prone.

Instead, suppose Alice first computes a much smaller fingerprint φ(X) and
sends this to Bob. He then computes φ(Y) and compares it with φ(X). If the
fingerprints are equal, he announces that the copies are identical.

What kind of fingerprint function should we use here?
How many bits do we need to send?
Which is the error in the fingerprint test?

Database consistency

From MR 7.4
Alice and Bob are in different continents. Each has a copy of a huge
database with N bits. Alice maintain its large N-bit database
X = {xN−1, . . . , x0} of information, while Bob maintains a second copy
Y = {yN−1, . . . ,y0} of the same database.

Periodically they want to check consistency of their copies, i.e., to check that
both are the same.

Alice could send X to Bob, and he could compare it to Y. But this requires
transmission of N bits, which is costly and error-prone.

Instead, suppose Alice first computes a much smaller fingerprint φ(X) and
sends this to Bob. He then computes φ(Y) and compares it with φ(X). If the
fingerprints are equal, he announces that the copies are identical.

What kind of fingerprint function should we use here?
How many bits do we need to send?
Which is the error in the fingerprint test?

Database consistency

From MR 7.4
Alice and Bob are in different continents. Each has a copy of a huge
database with N bits. Alice maintain its large N-bit database
X = {xN−1, . . . , x0} of information, while Bob maintains a second copy
Y = {yN−1, . . . ,y0} of the same database.

Periodically they want to check consistency of their copies, i.e., to check that
both are the same.

Alice could send X to Bob, and he could compare it to Y. But this requires
transmission of N bits, which is costly and error-prone.

Instead, suppose Alice first computes a much smaller fingerprint φ(X) and
sends this to Bob. He then computes φ(Y) and compares it with φ(X). If the
fingerprints are equal, he announces that the copies are identical.

What kind of fingerprint function should we use here?
How many bits do we need to send?
Which is the error in the fingerprint test?

Database consistency

From MR 7.4
Alice and Bob are in different continents. Each has a copy of a huge
database with N bits. Alice maintain its large N-bit database
X = {xN−1, . . . , x0} of information, while Bob maintains a second copy
Y = {yN−1, . . . ,y0} of the same database.

Periodically they want to check consistency of their copies, i.e., to check that
both are the same.

Alice could send X to Bob, and he could compare it to Y. But this requires
transmission of N bits, which is costly and error-prone.

Instead, suppose Alice first computes a much smaller fingerprint φ(X) and
sends this to Bob. He then computes φ(Y) and compares it with φ(X). If the
fingerprints are equal, he announces that the copies are identical.

What kind of fingerprint function should we use here?
How many bits do we need to send?
Which is the error in the fingerprint test?

Review of Algebra (i)

Given a,b,n ∈ Z, a congruent with b modulo n (a ≡ b
(mod n)) if n|(a− b) (n divides (a− b)).

1 a mod n = b⇒ a ≡ b (mod n).
2 (a+ b) mod n = ((a mod n) + (b mod n)) mod n.
3 (a · b) mod n = ((a mod n) · (b mod n)) mod n.
4 a+ (b+ c) ≡ (a+ b) + c (mod n) (associativity)
5 ab ≡ ba (mod n) (commutativity)
6 a(b+ c) ≡ ab+ ac (mod n) (distributivity)

n partitions Z in n equivalence classes: Zn = {0, 1 . . . ,n− 1}.
For any m ∈ Z, m mod n ∈ Zn.

Define Z+
n = {1 . . . ,n− 1}. (Zn,+n, ·n) form a commutative

ring.

Review of Algebra (ii)

Let n ∈ Z and let π(n) be the number of primes 6 n,
then

π(n) ∼
n

lnn
, as n→∞.

Theorem (Prime number Theorem)

The frequency of primes slowly decays as the integers increase
in length.

For ex. if n = 104, π(n) = 1929 and n
lnn = 1086,

while, if n = 107, π(n) = 664579 and n
lnn = 620420.

Review of Algebra (iii)

If n ∈ Z has N-bits, then n 6 2N, and at most N differ-
ent primes can divide n

Lemma

As prime numbers are > 2, the number of distinct
primes that divide n is 6 N, because if we multiply to-
gether more than N numbers that are at least 2, then
we would get a number greater than 2N �

Proof

For ex. if n = 33, (332 = 100001), so N = 6 and 26 =
64. Besides, π(33) = 11 of which only 2 of them divide
33 (2 < 6)

Example

Review of Algebra (iv)

Let pi be the i-th. prime number, then the value of pi ∼

i ln i

Corollary

For ex. if i = 1000, then pi ∼ 1000 ln(1000) = 6907 and
the exact value is p1000 = 7919

Example

Solution to the database consistency problem

If Alice (A) has X and Bob (B) has Y, they use the following
algorithm to check they are the same:

See the data as N-bit integers: x =
∑N−1

i=0 xi2i and
y =

∑N−1
i=0 yi2i.

A chooses u.a.r. a prime p ∈ [2, 3, 5, . . . ,m], for suitable
m = cN lnN. (The number of primes in 2N is N)

A computes φ(x) = x mod p and sends the result together
with the value p to B.
B computes φ(y) = y mod p and compares with the
quantity he got from A.
If φ(x) 6= φ(y) for sure X 6= Y , but it is possible φ(x) = φ(y)
and X 6= Y. (This happens if x mod p = y mod p, with x 6= y).

Bounding the probability of error
By the Prime Number Theorem π(m) ∼ m

lnm
, so as we see below, we need to

take m = cN lnN, for constant c > 1.

We want to bound the probability that x 6= y but φ(x) = φ(y), i.e.,

P[x mod p = y mod p | x 6= y] = P[p divides |x − y|]

=
of primes dividing |x − y|

of primes 6 m

6
N

m/ lnm
=
N lnm
cN lnN

=
lnm
c lnN

=
ln(cN lnN)

c lnN
=

lnN+ ln(c lnN)

c lnN

=
1
c
+

ln(c lnN)

c lnN
=

1
c
+ o(1)

Lemma: Taking c = 1/ε for a chosen 0 < ε < 1, the algorithm achieves an
error probability of 6 ε.

Choosing a large m⇒, i.e. a large c, we have a larger selection for p, so it is
less likely that p divides |x − y|.

Communication bits

The fingerprint algorithm to check the consistency of two
databases with N bits uses O(lgN) bits of communica-
tion.

Lemma

A sends to B p and x mod p, both are 6 m.
Since m = cN lnN, then m requires lg(cN lnN) = lgN +
lg(c lnN) ∼ O(lgN) bits, so the number of transmitted
bits is O(lgN). �

Proof

We proved that by using a more efficient representation of the
data (modular), the randomized fingerprinting algorithm gives
an exponential decrease in the amount of communication at a
small cost in correctness.

How to pick a random prime number
Problem: Given an integer N we want to pick a random prime
p ∈ [2, . . . , 2N − 1].

Recall: if n has N bits⇒ n 6 2N − 1 and N > lgn.

Assume we have an efficient algorithm Prime? which tell us if
an integer is a prime, or not.
Define the set P = {p |1 < p 6 2N − 1 and p is prime}.
We want to pick u.a.r. p ∈ P (i.e., with probability 1

|P|)

procedure PICKPRIME(p)
for i := 0 to t do
p := RAND(2N − 1)
if PRIME?(p) then

return p
end if

end for
end procedure

t will be fixed later
First analyze one
iteration of the algorithm
After we analyze the
probability of error after
amplifying t times.

Analysis of the algorithm
Let A be the event that a random generated N-bit integer is a
prime in P:

P[A] =
|P|

2N
=

(2N/ ln 2N)

2N
=

1
N ln 2

=
1.442
N

.

If N = 2000 then P[A] = 0.000721, therefore the proba-
bility of failing is P

[
Ā
]
= 0.999271. Quite high!

Example

Taking into consideration the t-amplification,

P[Failure after t repetitions] =
(

1 −
1.442
N

)t

6 e−
1.442t

N ,

so taking t = 10N suffices to make small the probability of
failure.

Analysis of the algorithm: Numerical example

If N = 2000 taking t = 10N = 20000 yields P[Failure] =
0.00004539 and P[Success] = 0.999955. If t = N =
2000, P[Success] = 0.76425.

Example

In practice, most of the algorithms to generate a large prime,
follow the previous scheme (see for ex.
https://asecuritysite.com/encryption/random3)

The Primality problem

From Cormen et al., 31.8 (3rd edition)
INPUT: n ∈ N. QUESTION: Is n prime?

Naïve algorithm:

procedure PRIME?(n)
for a ∈ {2, 3, . . . ,

√
n} do

if n mod a = 0 then
return false . n is composite

end if
end for
return true

end procedure

Recall that in arithmetic complexity, for large n (n = 22024), the
input size is the number of bits N to express n
i.e., n = 2N and N = lgn

Complexity of the algorithm: T(N) = O(2N/2N2) Too slow!

Randomized algorithms for Primality Testing

If n is prime, then for all a ∈ Z+
n , an−1 ≡ 1 (mod n).

Theorem (Fermat’s Little Th.,XVII)

Fermat only works in one direction. There exist composite
integers n s.t. for all a, an−1 ≡ 1 (mod n) such that
gcd(a,n) = 1. These composite numbers are known as
Carmichael numbers.
For example 561 = 3× 11× 17 is the smallest Carmichael
number. The next two are 1105 and 1729.
Carmichael numbers are very rare.
C(x) = # of Carmichael numbers 6 x

k 8 9 10 11 12 13 14
C(10k) 255 646 1547 3605 8241 19279 44706

k 15 16 17 18 19 20 21
C(10k) 105212 246683 585355 1401644 3381806 8220777 20138200

Test of pseudo-primality

Assuming the non-existence of Carmichael numbers:

procedure PRIME?(n)
a := RAND(1,n− 1)
if an−1 ≡ 1 (mod n) then

return “prime”
else

return composite
end if

end procedure

Complexity: O(N3).

Test of pseudo-primality: Error probability

Assume n is not a Carmichael number. If the algorithm
says composite then n is composite.
If the algorithm says prime then the answer might be
correct because n is prime or it might be wrong: n
can be composite and still an−1 ≡ 1 (mod n); but this
happens with probability 6 1/2.

Theorem

Test of pseudo-primality: Error probability

Suppose n is composite but not a Carmichael number.
Then the set

Fn := {a |1 6 a < n∧ an−1 ≡ 1 (mod n)}

must be a proper subset of Z+
n = {a |1 6 a < n},

because there must be at least one a ∈ Z+
n such that

an−1 6≡ 1 (mod n)—because n is composite and it is
not a Carmichael number.
But (Fn, ·) is then a proper subgroup of Z+

n , and this im-
plies that |Fn| must divide |Z+

n | = n− 1. Since |Fn| < |Z+
n |

we must have |Fn| 6 |Z+
n |/2, therefore the probability

that we choose an integer from Fn will be at most 1/2.
�

Proof

Test of pseudo-primality: Error probability

The previous algorithm has one-side error, therefore amplifying
t times the algorithm, the probability of error goes down to
6 1/2t. The complexity is O(tN3).

procedure REPEATED-FERMAT(n, t)
for i := 1 to t do
a := RAND(1,n− 1)
if an−1 6≡ 1 (mod n) then

return composite
end if

end for
return “prime”

end procedure

Taking into consideration the Carmichel numbers

If equation x2 ≡ 1 (mod n) has exactly solutions x = ±1
that implies n is prime.
If there is another solution different than ±1, then n can
not be prime.
To see if n is prime: Randomly choose an integer a < n, if
a2 ≡ 1 (mod n), then a is a non-trivial root of 1 mod n, so
n is not prime. Such an a is denoted a witness to the
compositeness of n. Otherwise, n may be a prime.

Based on the observation above G. Miller (1976) and later M.
Rabin (1980) gave an algorithm which is very similar to the
pseudoprimality test in previous slides; however, it will detect if
n is a Carmichael number and report composite in that case.
Miller-Rabin’s algorithm is also a Montecarlo one-side error
algorithm and the probability of error be reduced to less than
2−t as usual.

Deciding primality

For a long time it was open to prove that primality is in P. In
2006, Agrawal, Kayal and Saxena gave a deterministic
polynomial time algorithm for Primality.
If n 6 2N the best implementation for the AKS algorithm is
Õ(N6) = O(N6 lgN).
AKS has terrible running time, and it is not clear that it can
be improved in the near future.
Miller-Rabin’s algorithm is the basis for existing efficient
algorithms.
However, the Fermat pseudo-primality test can also work
fairly nicely; for example, if we are dealing with N = 9, the
probability of hitting a Carmichel number is 0.000000255,
so we can take this little risk —and avoid the somewhat
costly and cumbersome tests needed to deal with
Carmichael numbers.

