
Basics on Probability

Josep Díaz Maria J. Serna Conrado Martínez
U. Politècnica de Catalunya

RA-MIRI 2023–2024

Overview on basic probability
The principle of deferred decisions
Checking matrix multiplication
The minimum cut problem

Review of basic mathematics

Arithmetic Series:
∑n

i=1 i =
n(n+1)

2 = Θ(n2).

Geometric Series: for x 6= 1,
∑n

i=0 x
i = xn+1−1

x−1 .

Geometric Series: for |x| < 1,
∑n

i=0 x
i = 1

1−x .
Harmonic Series: for n finite,

Hn =

n∑
i=1

1
i
= lnn+ O(1).

Note that if n→∞ then
∑n

i=1
1
i diverges.

Review of basic mathematics: Log and Exponential

logb n = x means n = bx,
log(xy) = log x+ logy
log
(
xf(x)

)
= f(x) log x⇒ 2lgn = n.

loga x =
logb x
loga b

Recall:
d

dx
ln(f(x)) =

d(f(x))
dx

f(x)
.

d

dx
ln x =

1
x

.

lg = log2, ln = loge, log = log10

Review of basic mathematics: Exponential

lnn = loge n = x means n = ex,
where
e = limn→∞(1 + 1

n)
n ∼ 2.71...

ex = limn→∞(1 + x
n)

n.
e−x = limn→∞(1 − x

n)
n.

d
dxe

x = ex.

Recall Taylor: f(x) differentiable at a: f(x) =
∑∞

i=0
fi(a)
i! (x−a)i

Therefore ex = 1 + x+ x2

2! + · · · , e
−x = 1 − x+ x2

2! −
x3

3! + · · ·

ex > 1 + x and e−x > 1 − x

In fact, when x is very small 0 < x� 1: e−x ∼ 1 − x

e−0.4 = 0.67032, e−0.1 = 0.904837, e−0.01 = 0.99005

Binomial

Stirling: n! =
√

2πn(ne)
n + γ+ O(1/n),

Binomial coefficients:
(
n
k

)
= n!

(n−k)!k!

Binomial Thm.: (a+ b)n =
∑n

i=0
(
n
i

)
an−ibi.

∴ (1 + x)n =
∑n

i=0
(
n
i

)
xi = 1 + nx+

n(n−1)
2 x2 + · · ·+ xn

Important:
(n
k

)k
6

(
n

k

)
6
(ne
k

)k
Also useful: if k = o(

√
n) then

(
n
k

)
∼ nk

k!

Why using asymptotic notation?
Considering that an instance with size n = 1 takes 1 µ second:

26 THE BASICS

100

103

106

109

1012

1015

1018

1021

1024

0 10 20 30 40 50 60 70 80 90 100
n

µs

n

n 2

n 3

2n

n !

1 minute

1 day

1 year

age of universe

FIGURE 2.5: Running times of algorithms as a function of the size n . We assume that each one can solve
an instance of size n = 1 in one microsecond. Note that the time axis is logarithmic.

Euler
input: a graph G = (V, E)
output: “yes” if G is Eulerian, and “no” otherwise
begin

y := 0 ;
for all v ∈V do

if deg(v) is odd then y := y +1;
if y > 2 then return “no”;

end
return “yes”

end

FIGURE 2.6: Euler’s algorithm for EULERIAN PATH. The variable y counts the number of odd-degree vertices.

2.4.2 Details, and Why they Don’t Matter

In the Prologue we saw that Euler’s approach to EULERIAN PATH is much more efficient than exhaustive
search. But how does the running time of the resulting algorithm scale with the size of the graph? It turns
out that a precise answer to this question depends on many details. We will discuss just enough of these
details to convince you that we can and should ignore them in our quest for a fundamental understanding
of computational complexity.

Table of computing times according to the size of an instance.

Recall: Asymptotic notation

Symbol L = limn→∞ f(n)
g(n) Relational notation

f(n) = O(g(n)) L <∞ f 4 g
f(n) = Ω(g(n)) L > 0 f < g
f(n) = Θ(g(n)) 0 < L <∞ f � g
f(n) = o(g(n)) L = 0 f ≺ g
f(n) = ω(g(n)) L = ∞ f � g

f(n) = g(n) + o(g(n)) L = 1 f(n) ∼ g(n)

For ex. loga x = Θ(logb x), for any a,b > 0.

Remember: Basic Combinatorics

For a set S with n elements
The permutations of S are all the ordered sequences of
length n without repetition.
Ex.: S = {a,b, c} then abc,acb,bac,bca, cab, cba.
There are n! permutations of S.
The k-permutations of S (k 6 n) are all the ordered
sequences of length k without repetition.
The 2-permutations of {a,b, c} are ab,ac,ba,bc, ca, cb.
There are P(n,k) = n!

(n−k)! = n · (n−1) · · · (n−k+1) = nk

k-permutations of S.
For m > n the number of ordered m-sequences with
repetitions that we can form with elements in S is nm.
Ex. The number of binary sequences with length 5 is 25.

k-Combination: Binomial

A k-combination of S with (k 6 n) are all the non-ordered
sequences of length k without repetition. Ex.:
S = {a,b, c},k = 2 then we get ab,ac,bc

This is the same as the number of different k-subsets, i.e.,(
n

k

)
=
n(n− 1) · · · (n− k+ 1)

k!
=

n!
k!(n− k)!

.

Notice
(
n
0

)
=
(
n
n

)
= 1 and

(
n
k

)
=
(

n
n−k

)
.

Experiments and Events

Probability space (Ω): the set of outcomes associated with an
experiment.

Basic events: the elements in Ω.
Event: E ⊆ Ω, i.e. an event is any collection of outcomes.

Example: Flip two coins:
Basic events Ω = {HH,HT , TH, TT }. |Ω| = 4.
Non-basic event: Let A be the event of having at least one
H, then A = {HH,HT , TH}.

Given Ω, define F is the set of all events in the powerset of Ω,
F = P(Ω).

For any event E ∈ F, let Ē ∈ F the set of events Ē = Ω \ E; Ē is
the complementary of the event E

Probability

Given the set of events F in Ω, a probability function
(distribution) P[·] : F → [0, 1] is a function such that:

1 For any event A ∈ F: 0 6 P[A] 6 1, P[Ω] = 1,P[∅] = 0.
2 Given all basic events {Ei}

n
i=1,

∑n
i=1 P[Ei] = 1,

3 If {Aj}
k
j=1 are mutually exclusive events then

P
[
∪kj=1Aj

]
=

k∑
j=1

P
[
Aj

]
.

In a probability space (Ω,F,P[·]), the set of basic events
{Ei}

n
i=1 forms a partition of Ω, i.e., they are mutually disjoint,

therefore
∑n

i=1 P[Ei] = 1 follows from 1 and 3.

Uniform distribution

In a finite discrete probability space, |Ω| = n, the uniform
distribution assigns to any basic event Ei identical probability:
P[Ei] = 1

n .

Given a probability space we select uniformly at random (u.a.r.)
an element in Ω if we choose with equal probability among all
basic events.

Examples:
Flip 3 coins: |Ω| = 23 = 8, so probability of choosing u.a.r. :
P[000] = P[011] = 1/8.
If A is the event that we choose an element with two 1’s,
P[A] = P[011] + P[101] + P[110] = 3/8

More on events
In general, an event A is a collection of outcomes, i.e., A ⊆ Ω
Given an event A ⊆ Ω we define its probability:

P[A] =
∑
ω∈A

P[ω] ,

Flip a fair coin. If it comes up heads, roll a 3-sided
die; if it comes up tails, roll a 4-sided die. What is the
probability that the die roll is at least 3?
Ω = {(H, 1), (H, 2), (H, 3), (T , 1), (T , 2), (T , 3), (T , 4)},
|Ω| = 7

As A = {(H, 3), (T , 3), (T , 4)}

P[A] = P[(H, 3)] + P[(T , 3)] + P[(T , 4)]

=
1
2
· 1

3
+ 2 · 1

2
· 1

4
= 1/6 + 1/4 = 5/12

Example

Examples

We have a unit square S with side 1, and inside a cir-
cle C centered at the central point of S and of radius
r = 1/4. If we throw u.a.r. a point to S, which is the
probability it hits inside C?

The probability is = Area C
Area S

= π(1/4)2 = 0.1965

Example

A bag contains 100 balls, 50 red and 50 blue. We select
5 balls independently and u.a.r. What is the probability
that 3 are blue and 2 are red?
The total number of outcomes |Ω| =

(100
5

)
. Therefore the

probability is:(50
3

)(50
2

)(100
5

) =
6125

19206
≈ 0.318910757 . . .

Example

Some consequences of the probability properties

Given A,B,C ∈ F:

P
[
Ā
]
= 1 − P[A].

If A ⊆ B then P[B] = P[A] + P[B \A] > P[A].
P[A ∪ B] = P[A] + P[B] − P[A ∩ B].
Pf. Events (A \ B), (B \A) and (A ∩ B) are disjoint.

Inclusion-Exclusion: 3 events

P[A ∪ B ∪ C] = P[A] + P[B] + P[C]
− P[A ∩ B] − P[B ∩ C] − P[A ∩ C]
+ P[A ∩ B ∩ C] .

Inclusion-Exclusion and Union-Bound
Inclusion-Exclusion: General
Given n events {A1, . . . ,An},

P[∪ni=1Ai] =

n∑
i=1

P[Ai] −
∑
i<j

P
[
Ai ∩Aj

]
+

∑
i<j<k

P
[
Ai ∩Aj ∩Ak

]
+ · · · (−1)l+1

∑
i1<···<il

P
[
∩lr=1Air

]
+ · · ·

Very useful upper-bound to the probability of non-exclusive
events:Union-Bound. Given non-independent events {Ai}

n
i=1,

P[∪ni=1Ai] 6
n∑

i=1

P[Ai] .

Independent and correlated events

Given events A,B in Ω, we say they are independent (mutually
independent) if P[A ∩ B] = P[A]× P[B], otherwise they are said
to be correlated or dependent.
Events A1,A2, · · ·An are independent if

P[A1 ∩A2 ∩ · · · ∩An] =

n∏
i=1

P[Ai] .

Notice the basic events in Ω are not independent, although
they are disjoint.
For example, if we flip a coin, and E1 is the event of (H), and E2
is the event of (T), then P[E1]P[E2] =

1
4 6= 0 = P[E1 ∩ E2]

But if the experiment is flipping twice a coin and E1 is the event
of (H) in the 1st flip and E2 = event of (H) in the 2nd flip, then E1
and E2 are independent.

Independent and correlated events

Toss 2 fair coins and consider the events: A, there is at least 1
head, and B, there is at least one tail.

Ω = {HH, TT , TH,HT }⇒ P[A] = 3
4 = P[B] = 3

4

but P[A ∩ B] = 2
4 6=

3
4

3
4 = 9

16

Therefore A and B, are dependent (correlated).

Sampling and independence

Important Example: We draw sequentially 2 cards from a deck with
52 cards, where 26 of the cards are red and the other half blue. Let
R1 be the event of drawing a red card on the first trial and R2 the event
of drawing a red card on the second trial.
If the draws are with replacement R1 and R2 are independent, if they
are without replacement R1 and R2 are not independent.

(25/51)

26/52

26/52

25/51

26/51

26/51

25/51

(26/52)(25/51)

(26/52)(26/51)

(26/52)(26/51)

(26/52) (26/52)

26/52

26/52

26/52

26/52

26/52

26/52

(26/52)(26/52)

(26/52)(26/52)

(26/52)(26/52)

(26/52)

Without replacement: P[R1 ∩ R2] =
26
52 ·

25
51 6= P[R1] · P[R2]

With replacement: P[R1 ∩ R2] =
26
52 ·

26
52 = P[R1] · P[R2]

Sampling and independence

Draw sequentially 2 cards from a 52 deck. Let R1 be the event of drawing a
red card on the first trial and R2 the event of drawing a red card on the second
trial. If we draw without replacement, R1 and R2 are not independent.

Let B1 event of drawing a black card 1st. trial.

Recall: P[R1] =
26
52 and P[B1] =

26
52 .

Need P[R1 ∩ R2] =
? P[R1]P[R2]

After R1, prob. drawing another R = 25
51 ⇒ P[R1 ∩ R2] =

26
52

25
51

So P[R then R] = 26
52

25
51 and P[B then R] = 26

52
26
51

⇒ P[R2] =
26
52

25
51 + 26

52
26
51 = 26

52 .

∴ P[R1 ∩ R2] =
26
52

25
51
6= 26

52
26
52

= P[R1]P[R2] .

Pairwise and mutual independence

Given a set of events {Ai} they are said to be pairwise
independent if every pair (Ai,Aj) is independent,

P
[
Ai ∩Aj

]
= P[Ai]P

[
Aj

]
The events are said to be mutually independent if for all k and
any collection Ai1 , Ai2 , . . . , Aik of k events

P

 k⋂
j=1

Aij

 =

k∏
j=1

P
[
Aij

]
Mutual independence⇒ pairwise independence,
but pairwise independence not necessarily⇒ independence

Pairwise and mutual independence

Throw 2 dice. Let A1 be the event “sum of the points is
7”; A2 the event “dice 1 is 3” and A3 the event “dice 2 is
4.” Then:
P[A1] = P[A2] = P[A3] = 1/6 and P[A1 ∩A2] =

P[A1 ∩A3] = P[A3 ∩A2] = 1/36 but P[A1 ∩A2 ∩A3] =
1

36 , while P[A1] · P[A2] · P[A3] =
1

216 .

Example

Conditional probability

One of the important concepts in probability is conditioning,
which means revising probabilities on an event A based on
partial information that we know, i.e., based in another event B.

Flip 2 fair coins. Knowing that one of them is H (event
B), what is the probability that both of them are H?
(event A)
P[A|B] = 1/3, as the information B reduces the proba-
bility space to {TH,HT ,HH}, each one with probability
1/3.

Example

Conditional probability and independence

Formal definition of conditional probability:

P[A|B] =
P[A ∩ B]
P[B]

=
P[B ∩A]
P[B]

=
P[B|A]P[A]

P[B]

In previous example: P[A|B] = P[A∩B]

P[B] =
1/4
3/4 = 1/3.

Two events A and B are independent iff P[A|B] = P[A].

The Russian roulette

Two people play one round of Russian roulette. The gun is a
revolver with six chambers, all empty. The players put two
bullets into adjacent chambers of the barrel. The first player
takes the gun and spins the barrel, then he puts the gun in his
head and pulls the trigger and no bullet!
He gives the gun to the second player. Which would be better
for the second player, to spin the barrel first, or just pull the
trigger?

The Russian roulette

If player 2 spins the barrel, the probability of getting a bullet is
2/6 = 1/3 so the probability of survival is 1 − 1/3 = 2/3, i.e
66.66%

The Russian roulette

If he does not spin the barrel, we are conditioning to the fact
that we are positioned right after one of the 4 empty chambers.
Only one of the empty chambers leads to one with a bullet. So
the probability of having a bullet is 1/4, therefore the probability
of non-having a bullet is 3/4 = 75%. So it is better no to spin
the barrel.

Total probability law

When dealing with conditional probability, it seems that first we
have to compute the probabilities involved in a random
experiment, and then we can calculate the conditional
probabilities.
In practice we use conditional probabilities to reduce the
calculation of probabilities for events.

Total Probability Law If a set of events {Ei}
n
i=1 is a partition of

Ω and A ∈ F is a event, then

P[A] =
n∑

i=1

P[A ∩ Ei] =
n∑

i=1

P[A|Ei]P[Ei] .

Principle of deferred decisions

Not to assume that the entire set of random choices is made in
advance. Rather, at each step of the process concentrate only
on the random choices that are relevant to the algorithm
outcome

When applicable it provides a simplified probability space to
perform the probabilistic analysis.

Analyzing the Clock Solitaire game

From MR 3.5
The Clock Solitaire game: randomly shuffle a standard pack of
52 cards. Then, split the cards into 13 piles of 4 cards each;
label piles as A, 2, . . . , 10, J, Q, K; take the first card from the
“K” pile; take the next card from the pile “X”, where X is the
value of the previous card taken; repeat until:

either all cards removed (“win”)
or you get stuck (“lose”)

We want to evaluate the probability of “win”.

Analyzing the Clock Solitaire game

Game termination?
The last card we take before the game ends (either winning or
loosing) is a “K”.

Let us assume that at iteration j we draw card X but the pile X is
empty (thus the game terminates).

Suppose X 6= K. Because pile X is empty and X 6= K, we must
have already drawn (prior to draw j) the 4 cards numbered X.
But then, we can not draw an X card at the jth iteration, a
contradiction.

There is no contradiction if the last card is a “K” and all other
cards have been already removed (in that case the game
terminates with win).

Analyzing the Clock Solitaire game

Game win?
We win if and only if the fourth “K” card is drawn at the 52
iteration.

Whenever we draw for the 1st, 2nd or 3rd time a “K” card, the
game does not terminate because the “K” pile is not empty so
we can continue.

When the fourth K is drawn at the 52nd iteration then all cards
are removed and the game’s result is “win”

Analyzing the Clock Solitaire game

The probability of win?
According to the previous observations

P[win] = P[4th “K” at the 52nd iteration]

=
#game evolutions: 52nd card = 4th “K”

#all game evolutions

Considering all possible game evolutions is a rather naive
approach since we have to count all ways to partition the 52
cards into 13 distinct piles, with an ordering on the 4 cards in
each pile. This complicates the probability evaluation because
of the dependence introduced by each random draw of a card.

We define another probability space that better captures the
random dynamics of the game evolution.

Analyzing the Clock Solitaire game

The principle of deferred decisions
Basic idea: rather than fix (and enumerate) the entire set of
potential random choices in advance, instead let the random
choices unfold with the progress of the random experiment.

In this particular game at each draw any card not drawn yet is
equally likely to be drawn.

A winning game corresponds to a dynamics where the first 51
random draws include 3 “K” cards exactly.

This is equivalent to draw the 4th “K” at the 52nd iteration.
So we “forget” how the first 51 draws came out and focus on
the 52nd draw, which must be a “K”.

Analyzing the Clock Solitaire game
The probability of win:
We actually have 13x4=52 distinct positions (13 piles, 4
positions each) where 52 distinct cards are placed. This gives a
total of 52! different placements.

Each game evolution actually corresponds to an ordered
permutation of the 52 cards.

The winning permutations are those where the 52nd card is a
“K” (4 ways) and the 51 preceding cards are arbitrarily chosen
(51!). Thus:

P[win] =
4 51!
52!

=
4

52
=

1
13

.

A simpler way to get the same: The probability is 1
13 because of

symmetry (e.g., the type of the 52nd card is random uniform
among all 13 types).

The idea was to defer, i.e., first consider the last choice and
then conditionally the previous ones!

Analyzing the Clock Solitaire game
The probability of win:
We actually have 13x4=52 distinct positions (13 piles, 4
positions each) where 52 distinct cards are placed. This gives a
total of 52! different placements.

Each game evolution actually corresponds to an ordered
permutation of the 52 cards.

The winning permutations are those where the 52nd card is a
“K” (4 ways) and the 51 preceding cards are arbitrarily chosen
(51!). Thus:

P[win] =
4 51!
52!

=
4

52
=

1
13

.

A simpler way to get the same: The probability is 1
13 because of

symmetry (e.g., the type of the 52nd card is random uniform
among all 13 types).

The idea was to defer, i.e., first consider the last choice and
then conditionally the previous ones!

Checking matrix multiplication

Problem: Given 3 square matrices (n×n), A,B and C, we want
to see if A× B = C.
Easy solution: compute A× B and compare with C.

n× n matrix multiplication:
1 Naive algorithm: O(n3)

2 Strassen (1969): O(n2.81)

3 Coppersmith-Winograd (1987): O(n2.376)

4 Vassilevska (2015): O(n2.373)

Can we (randomly) check in O(n2) if A× B = C?

Freivald’s algorithm

From MU 1.3, MR 3.5 Freivald’s algorithm (1977) checks if
A× B = C for three given n× n matrices A ,B, and C

procedure FREIVALD(A,B,C)
Choose u.a.r. ~r ∈ {0, 1}n

if A(B~r) = C~r then
return true

else
return false

end if
end procedure

Choosing u.a.r. ~r can be done choosing independently with
probability 1/2 each of its n bits. This makes the probability of
any given ~r = 1/2n, and the cost of generating the vector O(n).

Freivald’s algorithm

The time complexity of Freivald’s is Θ(n2), we need time Θ(n2)
to compute the products B ·~r =: ~r ′, A · ~r ′ and C ·~r, and
additional time Θ(n) to check the equality (or not) of the vectors.

If AB = C the algorithm yields always the correct answer. It
could be that AB 6= C and the algorithm yields a wrong answer
(AB = C) with a certain probability. For example, with
prob.=1/2n, if we choose ~r = (0, 0, . . . , 0) we will get the
answer true even if AB 6= C.

Freivald’s algorithm

If AB 6= C then

P[A · (B ·~r)) = C ·~r] 6
1
2

Theorem

Neat trick: As AB 6= C taking D = AB− C, then D 6= 0.
⇒ ∃dij ∈ D s.t. dij 6= 0. W.l.o.g. assume d11 6= 0.
If ∃~r s.t. A · (B ·~r) = C ·~r then D ·~r = 0.
D ·~r = 0⇒

∑n
j=1 d1jrj = 0, but as d11 6= 0 then

r1 =
−
∑n

j=2 d1jrj

d11
.

Proof

Freivald’s algorithm

If AB 6= C then

P[A(B(~r)) = C~r] 6
1
2

Theorem

Second trick: Choose ~r = (r1, . . . , rn) from rn to r1 and
stop at r2, just before choosing r1, which could be only
0 or 1.
Then the equality r1 =

−
∑n

j=2 d1jrj
d11

holds with prob. 6
1/2 �

Proof

Notice that by considering rn, . . . , r2 to be fixed, we reduce the
sample space to r1 ∈ {0, 1}

Randomized algorithms and amplification
Freivald’s algorithm finishes always in finite time (Θ(n2)) but
may output the wrong answer. That type of randomized
algorithms are called Monte Carlo algorithms.
Freivald’s algorithm is also a one-side error algorithm, if
AB = C we always get the correct answer, but if AB 6= C we
may get the wrong answer with “small” probability.

One-side error Monte Carlo algorithms have the nice
characteristic that can be amplified: each run of the algorithm
can be considered as an independent “experiment”, so they
can be repeated, at each run we generate a new random
choice, and by independence, each run decreases the
probability of error.

If we repeat k times Freivald’s algorithm and each time we
generate a new ~r, and the answer of the algorithm is AB = C all
the time, the probability of error (that is, that in fact AB 6= C) is
6 1/2k.

The Minimum Cut problem

In the mid 50’s Harris and Ross studied the railway links
between cities in the URSS and easter Europe and determined
the easiest way to break the network by removing edges. The
minimum cut of the graph.

The Minimum Cut problem

Given an undirected graph
G = (V,E) a cut is a partition of
V in S and S̄. The capacity of
the cut is the number of edges
with an end in S and the other in
S̄. The min cut is the cut with
minimum capacity.

a

b c

de

Complexity for deterministic algorithms
Using Ford-Fulkerson: Max Flow-Min-Cut O(n2m) or
O(nm) using J. Orlin’s algorithms from 2013.
Stoer-Wagner’s algorithm (1994) O(nm+ n2 lgn)
(non-flow, weighted graphs)

Monte-Carlo algorithm for the Min-Cut problem

D. Karger, 1993.

Contracting an edge in G
Given a connected undirected graph G = (V,E), we want to
contract edges this operation will produce a graph with multiple
edges but without self-loops:

procedure CONTRACT(G, e = (u, v))
Replace u and v by a super-node w
Preserve edges, update endpoints of u and v to w
Avoid self-loops but keep parallel edges
return G

end procedure

Monte-Carlo algorithm for the Min-Cut problem

Given G, which
DS would you
use to implement
CONTRACT(e)?

Karger’s algorithm

procedure KARGER(G = 〈V,E〉)
while |V | > 2 do

Choose u.a.r. e = (u, v) ∈ E
G := CONTRACT(G, e)

end while
return # of edges between the 2 remaining vertices

end procedure

Min cut=2

a

c d

A

da

B

a

b e

dc

a

c d

A

Pr=1/7 Pr=1/6

da

B

Pr=1/4

a D

Karger’s algorithm

procedure KARGER(G = 〈V,E〉)
while |V | > 2 do

Choose u.a.r. e = (u, v) ∈ E
G := CONTRACT(G, e)

end while
return # of edges between the 2 remaining vertices

end procedure

Min cut=4

Pr=1/6

a

C

a

b e

dc

a

c d

Pr=1/7

a

c d

B B

BB
Pr=1/5

Pr=1/6

a

C

A

C

Analysis of the algorithm

The running time of the algorithm is Θ(n2).

Assume G, with |V | = n has a min-cut set C ⊆ E of size k.

Notice:
Any cut in a contracted graph is a cut in the initial graph,
Karger’s returns a cut,
A contraction eliminates all the set of edges among the
identified vertices.
Karger’s might provide a cut that is not of minimum size.

Karger’s algorithm returns a min-cut with probability
> 2/n2.

Theorem

Proof of the Theorem

Let C be a min-cut of G, assume that |C| = k
Let Gi be the graph after i contractions, Gi has n− i
nodes.
If no e ∈ C has been contracted then C is still a min-cut of
Gi, so⇒ |E(Gi)| >

(n−i)k
2 (as then, ∀v ∈ V(Gi), v is

adjacent to at least k edges)
Let Ei be the event none of the edge(s) in C is contracted
at the i-th iteration and let Fi = ∩ij=1Ei, i.e., no edge in C
is contracted in the first i iterations.

Proof of the Theorem

We want to compute P[Fn−2], that is, probability of
success.
Notice P[E1] = P[F1] > 1 − 2k

nk

As |C| = k all vertices in G must have degree > k,
|E(G)| > nk/2. So 1st contracted edge chosen u.a.r.
among the > nk/2 edges and |C| = k choices to contract
an edge in C

P[E2|F1] > 1 − k
k(n−1)/2 > 1 − 2/(n− 1)

If 1st contraction did not eliminate an edge in C (i.e.
conditioning on F1), we are left with |V(G1)| = n− 1 and
|E(G1)| > k(n− 1)/2, again because deg(v) > k
Working iteratively, P[Ei|Fi−1] > 1 − 2

(n−i+1) .

Proof of the Theorem

From P[A ∩ B] = P[A|B]P[B]:

P[Fn−2] = P[En−2 ∩ Fn−3]

= P[En−2 | Fn−3]P[Fn−3]

= P[En−2|Fn−3]P[En−3|Fn−4] . . .P[E2|F1]P[F1]

>
n−2∏
i=1

(
1 −

2
n− i+ 1

)
=

n−2∏
i=1

(
n− i− 1
n− i+ 1

)
=

(
n− 2
n

)(
n− 3
n− 1

)(
n− 4
n− 2

)
· · ·
(

3
5

)(
2
4

)(
1
3

)
=

2
n(n− 1)

�

Amplification

To increase the probability of success, run Karger’s algorithm
several times.

Run Karger’s min-cut algorithm n(n − 1) lnn times and
output the smallest cut found in all the runs.
The probability of failure (it is not the global min-cut) is
smaller or equal to(

1 −
2

n(n− 1)

)n(n−1) lnn

6 e−2 lnn =
1
n2 .

Theorem

The proof is straightforward using the definition of e−1

