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Application: Searching in the WWW

Complex network: Highly dynamic graphs with non-trivial
topological features that model “real life systems”.
Internet: Undirected graph of server’s and computers
connexions, with 12× 108 vertices (2015)

The actual internet is due to Vicent Cerf and Bob Kahn ( in the
1980’s)



The Web

Directed graph representing web pages (vertices) and hyperlink
connexions between web pages (edges).
Size: 5.28× 109 pages (Nov. 2018)

Developed by Tim Berners-Lee and his team in the CERN
(1989-1991)



Hypertext

An easy way to publish information. Users can make
documents available to anyone in the internet.
Each Web page is identify by its URL, so a page can be
access following an hyperlink.
Organizes the Web pages as a network linked by
hyperlinks, which links parts of a text into another text, in
other machines which could be located very far away.
This organization transforms the set of documents in a
directed graph, in which nodes is a Web document and
direct edges.
The Web is an hypertext system at a scale no one could
have anticipated.



The Web as a graph: Strongly Connected
Components

The Web is a directed graph, where the nodes are the
Webpages and the edges are the hyperlinks.

In the center of the Web there is a giant Strongly Connected
Components (SCC)
The main search engines and other “starting points” have links
to directory type sites which link to all of the major universities,
big companies, etc. And many pages in those sites point to the
search engines.



The Web as a graph: The Bow-tie structure

A. Broder et all: Graph structure in the Web-2000

The details of the structure change continuously but the overall
structure remains the same.



Web search

Information Retrieval investigates how to find relevant docs
in a large database, from which the Web is a particular
case, we make queries to find answers in the Web but
The Web is huge, full of untrusted documents random
things, false information, web spam, as well as very
interesting information.
In the Web every body is an author and a searcher.
The Web contains many sources of information, but not all
are trustful, which one to trust?
Two characteristics of the Web are the synonymy (different
thing to express the same) and polysemy (multiple
meanings for the same word) searching can yield a myriad
of different answer, which one is the best one for our
needs?



Web search: Link analysis

Instead of using textual match use the link structure of the Web
to rank the pages by some measure of authority w.r.t the
search.

G. Pinski, F. Narin: Citation aggregates for journal
aggregates of scientific publications: Theory, with
application to the literature of physics. Information
Processing and Management, 12 (5), 297-312, 1976.
Study the digraph of papers/citations, to rank the relevance
of the papers.
Jon Kleinberg (1996-97), because of his contributions got
the MacArthur Genius Prize and the Nevanlinna Prize.
Larry Page, Sergey Brin (1996-97), implemented the
PageRank algorithm and founded Google.



Web search: Hyperlink analysis
Understanding the Web structure and taking advantage of
its link structure is basic to develop good search
algorithms.
hyperlink analysis: take advantage of in and out links to
rank the Web’s pages.
Not all Web pages are equally important: There are hubs
and authority pages and nodes without in or out links.
Web pages are important if people visit them a lot, (but we
want to avoid self-spamming).
For rank the importance of a page, it is even more
important important to consider the authority of the pages
into the page.
We can think of in-hyperlinks as a flux of votes.
To define a ranking in importance of a page, we consider
that votes from important pages have more votes.
How do we get to know the important pages?



Main ideas behind PageRank

1− If a page has d out-links,
each of its hyperlinks should
count as 1/d votes.
In the figure, the importance
of A would depend on
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2− Key idea: If a page u→ v then u contributes to v with
1/d(u), but this does not take into account the authority of u:
Let π[v] define the authority of page v, and let Puv be the the
fraction out-links from u pointing to v. Then

π[v] =
∑
u→v

π[u]Puv,

which is a a recursive definition!.



PageRank as a Markov chain

We have a finite MC, where the states= Web pages and
transitions= hyperlinks.
As we saw, if π[v] is the authority of Web page v, and Pu,v
is the fraction of hyperlinks u→ v then
π[v] =

∑
u→v π[u]Pu,v

At each step, we transition according to a random hyperlink
on the page.
The importance, (PageRank) of a page is just its
probability under the stationary distribution. That is, the
long-term fraction of time a random surfer is at the page.



Problems with the MC approach: Dangling pages

The Web graph is not a Markov Chain:
Dangling nodes: pages have no outgoing links (or links
which haven’t been crawled yet).
PageRank considers that every dangling page is
connected to every page in the Web and jumps out.
The influence of that node is over the other pages is not
significant 1/(5× 109)



Problems with the MC approach: Rank sinks

Rank sinks: group of pages which only have links to each
other; once you go in, there is no way to escape.
This is actually a major pitfall in practice, spammers put
cliques of pages with a few in-links and no out-links.
PageRank solution: Consider a scaling parameter α
modify PageRank:

On each step, with probability α follow a random link on the
current page
On each step, with probability 1−α move to a random page

So at each step, PageRank jumps to a totally random
page, with probability 1 − α and follows the links with
probability α.
In early versions of PageRank, Google used a value
α = 0.85



The basic PageRank algorithm

Given a Web graph ~W = (V,~E), and a number k of iterations.

PageRank ( ~W,k), |V | = n
Assign to v ∈ V, π[v] = 1/n
For k iterations, for each v ∈ V modify π[v]

Each v divides its current π[v]
equally between its out-links

Each v updates its π[v] to
the sum on the shares it receives.
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At iteration i, to update the authority πi[v] for each v ∈ V

πi[v] =
∑

(u→v)

πi−1[u]

d(u)
.



The basic PageRank algorithm: π0

Given a Web graph ~W = (V,~E), and a number k of iterations.

PageRank ( ~W,k), |V | = n
Assign to v ∈ V, π[v] = 1/n
For k iterations, for each v ∈ V modify π[v]

Each v divides its current π[v]
equally between its out-links

Each v updates its π[v] to
the sum on the shares it receives.
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The basic PageRank algorithm: π1

Given a Web graph ~W = (V,~E), and a number k of iterations.

PageRank ( ~W,k), |V | = n
Assign to v ∈ V, π[v] = 1/n
For k iterations, for each v ∈ V modify π[v]

Each v divides its current π[v]
equally between its out-links

Each v updates its π[v] to
the sum on the shares it receives.
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Notice: For each 0 6 i 6 k
∑

v π
i[v] = 1⇒ if ~W is SCC ,

limk→∞ → π, where π is the stationary PageRank’s values.
which is the value of π for our toy example of ~W?



PageRank as a Random Walk in the Web’s graph

A discrete time stochastic process is a sequence of random
variables {X0,X1, . . . ,Xt, . . .} where the subindex represent
discrete points in time.

A random walk is a stochastic process, that describes a path
that consists of a succession of random steps on some
mathematical space such as the edges of a graph.

P: E  H A  B    D   A
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Pr:   1/2 1 1/3 1/2 1/2

T:  0  1  2   3    4    5



Final considerations

Recall that measuring the quality or authority of a web
page in an automatic way by using textual analysis was not
a good choice.
Kleinberg and Brin-Page created the basic theory to
develop the PageRank algorithm, taking into account the
direct hyperlink structure of the Web.
PageRank is just a Markov Chain random walk of the
whole Web graph.
Scaling replace the transition probability Pu,v with
αPu,v + (1 − α)/N, where N is the total number of pages.
Therefore, each entry of P becomes > 0, and the
Fundamental Theorem MC implies that there is a unique
stationary π, which gives the ranking of web pages. i.e.
The random distribution on visited pages converges to π.



Final considerations

How Google computed the PageRank?
In practice Google has crawled the whole web and has a
copy of the Web graph in their machines. Computing the
stationary distribution using the balance equations is isn
too slow (|V | = n ∼ 5.28× 109 pages).
So to compute the PageRank, Google starts with π0 as
uniform, and then compute π0P,π0P

2,π0P
3, . . .π0P

k.
To get convergence to the stationary π needs t ∼ 100. Still
everything can be done quite quickly (about 4 hours for
each computation of PageRank)
It seems Google updates the Web graph and re-computes
PageRank once a month.
The details of the actual Google searchers is a very well
kept secret!
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A MC with absorbing states: Gambler’s Ruin

Model used to evaluate insurance risks.
You place bets of 1.eWith probability p, you gain 1 ,e and
with probability q = 1 − p you loose your 1 beet.
You start with an initial amount of m .e
You keep playing until you loose all your money or you
arrive to have n .e
Define bias factor α = q/p; If α = 1 then p = q = 1/2, so it
is fair game. If α > 1 you are more likely to loose than win;
if α < 1, the game is bias against you.
The goal is finding the probability of winning i.e. starting in
state m reaching state n.

Notice in this chain, once we enter in state 0 or in state n, we
can’t leave the state. Those states are called absorbing states.



Gambler’s Ruin
The chain can be given either by a (n+ 1)× (n+ 1) transition matrix
P, where for 0 6 i 6 n: Pi,(i+1) = p and Pi,(i−1) = q, P0,0 = Pn,n = 1.
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

0 1 q 0 0 · · · 0 0
1 0 0 q 0 · · · 0 0
2 0 p 0 q · · · 0 0
...

...
...

...
...

. . .
...

...
n− 2 0 0 0 0 · · · q 0
n− 1 0 0 0 0 · · · 0 0
n 0 0 0 0 · · · p 1



Gambler’s Ruin

In a MC an absorbing state i is one for which pi,i = 1.

The chain has two absorbing states, when the system arrives to
one of them it never exit, it is absorbed.
Some of the questions to be asked about such a chain are:

What is the probability that the process will eventually
reach an absorbing state? absorption probability.
On the average, how long will it take for the process to be
absorbed? expected absorption probability.



Gambler’s Ruin Example with 4 states

Initial State

0 1

p

q

2 3 4
0.5

0.5

0.5

0.5

0.5

0.5

1 1

0 1 2 3 4


0 1 0 0 0 0
1 0.5 0 0.5 0 0
2 0 0.5 0 0.5 0
3 0 0 0.5 0 0.5
4 0 0 0 0 1

π0 = (0, 0, 1, 0, 0)
π1 = (0, 1/2, 0, 1/2, 0)
π2 = (1/4, 0, 2/4, 0, 1/4)
...

Notice in this case the states 1,2, and 3 are transient and 0, 4
are absorbing states



Gambler’s Ruin

Let Pi,n denote the probability that the gambler with i euros
arrives to n euros, before going broke.

Note that 1 − Pi,n is the corresponding probably that the
gambler ruins.

Let us compute Pi,n:
Notice P0,n = 0, Pn,n = 1 and Pi,n = pPi+1,n + qPi−1,n.

As Pi,n = pPi,n + qPi,n then Pi+1,n − Pi,n = q
p(Pi,n − Pi−1,n).

In particular P2,n − P1,n = q
pP1,n (as P0,n = 0)

and P3,n − P2,n = q
p(P2,n − P1,n) = (qp)

2P1,n

so Pi+1,n − Pi,n = (qp)
iP1,n..



Gambler’s Ruin

On the other hand
Pi+1,n =

∑i
k=0(Pk+1,n − Pk,n) =

∑i
k=1(Pk+1,n − Pk,n) + P1,n

⇒ Pi+1,n − P1,n =
∑i

k=1(Pk+1,n − Pk,n) =
∑i

k=1(
q
p)

kP1,n

⇒ Pi+1,n = P1,n + P1,n
∑i

k=1(
q
p)

k =
∑i

k=0(
q
p)

k

Using the geometric series equation
∑i

j=0 x
j = P1,n

1−xi+1

1−x .

Pi+1,n =

{
P1,n

1−(q/p)i+1

1−(q/p) , if p 6= q;

P1,n · (i+ 1) if p = q = 1/2.



Gambler’s Ruin

Choosing i = n− 1 and as Pn,n = 1, then

P1,n =

{
1−(q/p)

1−(q/p)n , if p 6= q;

1/n if p = q = 1/2.

Therefore ,Pi,n =

{
1−(q/p)i

1−(q/p)n , if p 6= q;

i/n if p = q = 1/2.

�



Becoming rich or getting ruined

Using the deduced eq. for Pi,n:
If p > 1/2 then q

p < 1 and
limn→∞ Pi,n = limn→∞(1 − (q/p)n) = 1.
In this case, the gambler will become rich with probability 1.
If p < 1/2 then q

p > 1 and limn→∞ Pi,n = 0.
So with probability 1 the gambler will get ruined
If p = q = 1/2 then Pi,n = i/n and limn→∞ Pi,n = 0 (if
i = o(n)); again the gambler gets ruined with probability 1.

For ex. if Bob starts with 2 euros and p = 0.6, what is the
probability that he gets n = 5 euros?
P2,5 =

1−(2/3)2

1−(2/3)5 = 0.64.

What is the probability that he will become infinitely rich?
(n→∞) P2,∞ = 1 − (2/3)2 = 0.56.



Markov chains with absorbing states

The Gambler ruin’s Markov chain is an example of a
Markov chain with one or more absorbing states, where
the process stops.
An absorbing state u has pu,u = 1. In many application
the absorbing MC has two states: 0 and n.
Those MC are not irreducible (states 0 and n do not exit)
Those MC play an important role in many “practical”
stochastic processes: Biological, economical, and others.
The limit probability distribution π of an absorbing MC has
the absorbing probabilities for the absorbing state, and 0
for the other states. In the ex. of the Gambler’s ruin if
p 6= q, π =

(
1 − (

1−(q/p)i

1−(q/p)n ), 0, . . . , 0, 1−(q/p)i

1−(q/p)n

)
.

The two important quantities in those absorbing MC are:
1 The absorption probability.
2 The absorption time.
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Random walks

An algorithmic paradigm.
Given a finite, connected graph G = (V,E) with |E| = m,
|V | = n, a random walk on G is a MC defined by the
sequence of moves of a particle between the vertices of G.
A random walk on G, probability starts from a given v ∈ V,
and if v has d(v) outgoing neighbors, then the probability
that the walk moves to u is 1/d(v), where N(u) = set of
neighbors of u and |N(u)| = d(u).

The generic algorithm:

Given G = (V,E), v ∈ V
for T times do

Choose u.a.r. (with probability = 1/d(v)) a u ∈ N(v)
v := u

end for



Random walks: Definitions

Given a connected graph G = (V,E) define:
1 The hitting time hv,u from v to u, that is the expected

number of steps for the random walk to go from v to u (for
first time).

2 The cover time Cv,u from v as the expected number of
steps that a walk will take in starting from v visiting all
vertices in G.

3 The cover time of G, CG as maxv∈V Cv.



Random walks and Markov Chains

A random walk on an undirected G is aperiodic iff G is
not bipartite.

Theorem

G is bipartite iff it does not have cycles with odd number
of edges.
In an undirected G there is always a path of length 2
from v→ v.
If G is bipartite the RW is periodic with period 2.
If G is not bipartite it has an odd cycle, and traversing
that cycle we have an odd-length path v → v ⇒ the
Markov chain is aperiodic. �

Proof



Random walks and Markov Chains

From now on, we assume the given undirected G is not
bipartite and it is connected.

Then the MC defined by RW on G is irreducible and aperiodic,
by the Fundamental Theorem the random walk converges to a
stationary distribution π.



Random walks and Markov Chains

The next theorem shows the stationary distribution π only
depends of sequence degree in G.

A random walk on G converges to a stationary distribu-
tion π = (π[u])u∈V , where π[u] = d(u)/2m.

Theorem

First we prove π is a true distribution: For G = (V,E):∑
u∈V d(u) = 2|E| ⇒

∑
u∈V π[u] =

∑
u∈V d(u)/2|E| = 1.

Let P be the trasition matrix of the MC, then ∀u ∈ V,
as π = πP ⇒ π[u] =

∑
v∈N(u)

d(v)
2|E|

1
d(v) =

d(u)
2|E| . �

Proof



Random walks and Markov Chains

As we already know that if P is regular, hu,u = 1/π[u], then

For u ∈ V, hu,u = 2|E|/d(u).

Corollary



Random walks and Markov Chains

Given G = (V,E), if (u, v) ∈ E then hu,v < 2|E|.
Lemma

Let u ∈ V, from the previous corollary hu,u =
2|E|
d(u) ,

On the other hand we also know hu,u =
1

d(u)

∑
w∈N(u)(1 + hw,u), since Pu,w = 1/d(u) for

all w ∈ N(u)

Therefore, 2|E|
d(u) = 1

d(u)

∑
w∈N(u)(1 + hw,u)

⇒ 2|E| =
∑

w∈N(u)(1 + hw,u)

So hu,v < 2|E|. �

Proof



Random walks and Markov Chains

Given G = (V,E), its cover time CG 6 4|E||V |.

Corollary

Given G with |V | = n, |E| = m, find a spanning tree TG with
n − 1 edges of G, then traverse TG using a cyclic Eule-
rian tour, and the number of steps to traverse it is an upper
bound to CT .
That can be done in O(m+ n) using BFS.

Eulerian tour: n−1
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c

e

G Spanning Tree

Proof



Random walks and Markov Chains

Let v0, v1, . . . v2n−2 = v0 the resulting sequence in the
tour.
The expected time of going through the tour is 6 CG, so

2n−3∑
i=0

hvi,vi+1 < (2n− 2)2m < 4nm

�

Proof (cont’d)



Algorithm to check s− t connectivity in undirected G

Given a G = (V,E), with |V | = n, |E| = m, and s, t ∈ V we want
to find a path from s→ t.

Deterministically we can do it in O(n+m) (DFS or BFS),
however they need Ω(n) space.

We produce a randomized algorithm, based in RW, that uses
O(n3) steps and O(lgn) bits of space. At each step only needs
to remember the last position

Moreover, no need of large or complicated data structure.

The clock on the number of steps is due to the fact that a
Markovian RW does not know where it has visited the whole
graph (because the Markovian property).



Algorithm to check s− t connectivity in undirected G

s-t Connectivity G = (V,E), s, t
Start a RW from s

If the RW reaches t in 6 4n3 steps,
there is a path s− t
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s− t connectivity algorithm

The s − t connectivity algorithm returns the correct an-
swer with probability > 1/2 and in O(n3) steps using
O(lgn) bits of memory.

Theorem

Using Markov’s inequality:
P[RW has not visited all vertices after 2CG steps] 6 1

2 ,
by the previous corollary CG 6 4|E||V | = 4nm 6 4n3.

Notice if we set the clock to 200nm the above theorem tells us
that the failure probability is reduced to 1/200.
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