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Stationary distribution: Writing a research paper
Recall that Markov Chains are given either by a weighted
digraph, where the edge weights are the transition probabilities,
or by the |S|× |S| transition probability matrix P,

Writing a paper: S = {r,w, e, s}
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r 0.5 0.3 0 0.2
w 0.2 0.5 0.1 0.2
e 0.1 0.3 0.3 0.3
s 0 0.2 0.3 0.5

Example



Stationary distributions: Writing a paper

Suppose in the writing a paper example, the t is measured
in minutes.
For example, to see how the Markov chain will evolve after
20 minutes P[X20 = s|X0 = r] we must compute P20, and to
seewhat happens 5’ later P[X25 = s|X20 = s].
Vectors π0P

20 and π0P
25 may be almost identical.

This indicates that in the long run, the starting state
doesn’t really matter
After a sufficiently long time t: πt ≈ πt+k, it doesn’t
change when you do further steps, and this is independent
of the initial distribution.
That is, for sufficient large t, the vector distribution
converges to π: πt+1 = πtP, i.e.,⇒ π = πP.



Stationary distributions

A probability vector π is called a stationary distribution over S
for P if it satisfies the stationary equations

π = πP.

If a MC has a stationary distribution π, running enough time the
MC, the PMF for every Xt will be close to π.



How to find the stationary distribution

Given a finite MC with finite set of states k = |S|, let P be the
k× k matrix of transition probabilities.

The stationary distribution π = (π[1], . . . ,π[k]) over S, where
πi = π[si] is defined by

(π[1], . . . ,π[k]) = (π[1], . . . ,π[k])P.

Therefore we have a system of k unknowns with k equations
plus an extra equation:

∑k
i=1 π[i] = 1.



Stationary distributions: Example

In the writing a paper problem, we can transform
π = πP into 5 equations to get the value of π:

(π[t],π[w],π[e],π[s]) = (π[t],π[w],π[e],π[s])


0.5 0.3 0 0.2
0.2 0.5 0.1 0.2
0.1 0.3 0.3 0.3
0 0.2 0.3 0.5



π[r] = .5π[r] + .2π[w] + .1π[e],

π[w] = .3π[r] + .5π[w] + .3π[e] + .2π[s],

π[e] = .1π[w] + .3π[e] + .3π[s],

π[s] = .2π[r] + .2π[w] + .3π[e] + .3π[s],

1 = π[r] + π[w] + π[e] + π[s],

which yields, π = (0.170732, 0.336043, 0.181572, 0.311653).

Example



Stationary distributions

Notice that πP = π means π is a left eigenvector of P
—with eigenvalue=1.
A Markov Chain with k states and transition matrix P, it has
a set of k+ 1 stationary equations with k unknowns
{π[1], . . .π[k]}, which are given by π = πP together with∑k

u=1 π[u] = 1:

π[u] =
∑k

v=1 π[v]Pvu, ∀1 6 v 6 k

Linear algebra tells us that such a system either has a
unique solution, or infinitely many solutions.
We want a unique stationary distribution, so we will give
conditions for MC to have a unique π.
However, for MC with a huge number of states, it is a
problem to get the stationary distribution by solving
stationary equations!!



Properties of Markov chains: Recurrent

We would like to know which properties a Markov chain should have
to assure the existence of a unique stationary distribution, i.e. that
limt→∞ Pt → P(∞), for some stable matrix P(∞).

A state is called recurrent if any time that we leave the state, we
will return to it with probability 1.

Formally, if at time t0 the MC is in state s, s is recurrent if the
probability that ∃t > 0 such that Xt0+t = s is 1. Otherwise the
state is said to be transient.

A MC is said to be recurrent if every state is recurrent.

Intuitively, transience attempts to capture how “connected” a
state is to the entirety of the Markov chain. If there is a
possibility of leaving the state and never returning, then the
state is not very connected at all, so it is known as transient.



More on Recurrent and Transient MC
Alternatively, given a MC {Xt} with state set S, a state u ∈ S is
transient if for t > 0,

P[Xt = u for infinitely many t |X0 = u] = 0

A state v ∈ S is recurrent if for t > 0,

P[Xt = u for infinitely many t |X0 = u] = 1
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For a transient state, the number of times the chain visits s
when starting at s is given by a geometric random variable in
G(p), where p =

∑
t>1 P

t
s,s.



Properties of Markov chains: Positive recurrent state
A recurrent state u has the property that the MC is expected to
return to u an infinite number of times.
However, when restricting to finite time the MC may not return
to u in a finite number of steps, which contradicts the intuition
for recurrence.
We need a further finer classification of recurrence states:
If Xt = u define τu = min{t̂ |Xt+t̂ = u}, as the first return time
to u.
A recurrent state u is positive recurrent if E[τu|X0 = u] <∞.
Otherwise u is said to be a null recurrent state.

A MC with all states positive recurent.
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Properties of Markov chains: Periodicity

Define the period of sj ∈ S as d(sj) = gcd{t ∈ Z+ |Ptsj,sj > 0}.
So from sj the chain can return to sj in periods of d(sj).

Define sj to be periodic if d(sj) > 1, and sj to be aperiodic if
d(sj) = 1.

A Markov chain P is periodic if every state is periodic, otherwise
it is aperiodic.



Periodicity: 1st. example

A state u in a MC has period = t if only comes back to itself
every t steps i.e. Piu,u = 0,∀i = t, 2t, 3t, . . .. Otherwise, the
state is said to be aperiodic.

C and D aperiodics

1/2 1/2

DA  B C  

1

1 1
A,B periodic with period=2

Notice for the left side Markov chain:

P =

(
0 1
1 0

)
,P2 =

(
1 0
0 1

)
,P3 =

(
0 1
1 0

)
, . . .

⇒ limt→∞ Pt does not exist.



Periodicity: 1st. example

However, this specific Markov chain has a unique stationary
distribution π = (1/2, 1/2)

Using balance eq. (π[A],π[B]) = (π[A],π[B])×
(

0 1
1 0

)

π[A] = 0π[A] + 1π[B]
π[B] = 1π[A] + 0π[B]

1 = π[A] + π[B]

we get π[A] = 1/2 and π[B] = 1/2.

If a MC has at least one state s with self-transition Ps,s > 0 then
the chain is aperiodic.



How to check if a MC is aperiodic

Given a strongly connected MC with a finite number of states,
1 If there is at least one self-transition Pi,i in the chain, then

the chain is aperiodic.
2 If you can return from i to i in t steps and in k steps, where

gcd(t,k) = 1, then state i is aperiodic.
3 The chain is aperiodic if and only if there exists a positive

integer k s.t. all entries in matrix Pk are > 0 (for all pair of
states (i, j) then Pki,j > 0).



Properties of Markov chains: Reducibility and
irreducibility

1a b c
1/21/2

1

This MC is sensitive to initial state.
In this MC, limt→∞ Pt exists, since

Pt =

 1 0 0
1/2 0 1/2
0 0 1

 , for all t > 0

Solving the stationary equations

(π[1],π[2],pi[3]) = (π[1],π[2],pi[3])×

 1 0 0
1/2 0 1/2
0 0 1

 ,

it turns out that we have infinite many stationary distributions
π = (p, 0, 1 − p).



Properties of Markov chains: Irreducibility

A finite Markov chain P is irreducible if its graph representation
is strongly connected.
In an irreducible MC, the system can’t be trapped in small
subsets of S .

1/3

IRREDUCIBLENo−IRREDUCIBLE

1/2

1/2
1/2

1/2

1/2 1/2

1/2 1/21/3
1/3

For finite Markov chains, an irreducible Markov chain is also
denoted as ergodic.



Some relations among the previous classes of MC

If P is irreducible and contains a self-loop, then P is also
aperiodic.
If in a finite MC P all its states are irreducible then all the
states are positive recurrent.
If P is irreducible and finite all its states are positive
recurrent, then the Markov chain has a unique stationary
distribution.



Regular Markov Chain

A matrix A is defined to be regular if there is an integer n > 0
such that An contains only (strictly) positive entries.

A Markov chain is a regular Markov Chain if its transition
probability matrix P is regular.

Consider the following example:

0.3 A B

1

0.7

P =

(
0.3 0.7
1 0

)
P2 =

(
0.79 0.21
0.3 0.07

)



Properties of Regular MC
A finite state Markov Chain is regular if ∃t <∞ such that for all
states i, j, Pti,j > 0.

Notice that if a finite state MC is irreducible that means that for
every pair of states i, j there is a t ′ s.t. Pt

′
i,j > 0. If the MC is

also aperiodic there is a value k s.t. for all pair of states (i, j),
Pki,j > 0, which is exactly the definition of being regular.
Therefore

A finite state Markov chain is irreducible and aperiodic if
and only if it is regular.

Theorem
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Markov Chains: An issue about names

For finite state Markov chains, many people call an
aperiodic, irreducible, and positive recurrent MC as
ergodic, for instance Mitzenmacher & Upfal.
However in these slides we use regular for finite MC that
are aperiodic, irreducible, and positive recurrent, and
reserve the name ergodic as a synonim for finite
irreducible MC.
The mathematical reason for do so is nicely explained in
the link: https:
//math.stackexchange.com/questions/152491/
is-ergodic-markov-chain-both-irreducible-and-aperiodic-or-just-irreducible

N.B.: for infinite MC, regularity is not easy to define.

https://math.stackexchange.com/questions/152491/is-ergodic-markov-chain-both-irreducible-and-aperiodic-or-just-irreducible
https://math.stackexchange.com/questions/152491/is-ergodic-markov-chain-both-irreducible-and-aperiodic-or-just-irreducible
https://math.stackexchange.com/questions/152491/is-ergodic-markov-chain-both-irreducible-and-aperiodic-or-just-irreducible


Fundamental Theorem of Markov Chains

Any finite, irreducible and aperiodic Markov chain P (i.e.
regular) has the following properties:

1 The chain has a unique stationary distribution
π = (π[0],π[1],π[2], . . . ,π[n]).

2 limt→∞ Pt exists and its rows are copies of the stationary
distribution π.

Recall that any finite state MC has a stationary distribution, but
it may not be unique.
If we have a a periodic state i, π[i] is not necessarily the limit
probability of being in state i, but the frequency of being in state
i.



Markov Chain Monte Carlo technique

The Monte Carlo methods are a collection of tools for
estimating values through sampling and simulations.

The Markov Chain Monte Carlo technique (MCMC) is a
particular technique to sample from a desired probability
distribution.

MCMC for sampling
Input: A large, but finite, set S (e.g., matching, coloring,
independent set), a weight function w : S→ R+;
Objective: Sample u ∈ S, from a given probability distribution
given by w,

π[u] ∼
w(u)∑
v∈Sw(v)

Technique: Construct an ad-hoc MC which converges to the
distribution we want.



Why the MCMC sampling is important?

Examining typical members of a combinatorial set (random
graphs, random formulas, etc.)
Approximate Counting: Counting the number of IS
(matching, cliques, k-colorings, etc.) in a graph.
Guessing the number of people, with a certain property, in
a very large crowd.
Combinatorial optimization, in particular heuristics.



Technique

Given a state space S (|S| may be very large) to form the MC,
which is regular (or better symmetric):

1 Connect the state space.
2 Define carefully the transition probabilities.
3 Starting at any state u follow the MC until arriving to the

stationary distribution π
The simpler case is to aim for π be the uniform distribution.

4 Bound the maximal number steps we need to walk until
arriving close enough to π.



Example: Sample the set of independent vertices in G

Given a graph G = (V,E), I ⊆ V is an independent set if there is no
edge between any two vertices in I.

Consider the Markov chain on all the set of independent
subsets of V, generated by:

We want to sample IS from the
uniform distribution
Must define the appropriated
transition probabilities



Example: Sampling IS in G

Given G = (V,E)
I0 is an arbitrary independent set in G
To go from an independent set It to It+1

choose u.a.r. v ∈ V
if v ∈ It then It+1 = It\{v}
if v 6∈ It and adding v still independent, It+1 = It ∪ {v}

Otherwise It+1 = It



Example: Sampling IS in G

We have a G = (V,E) and n = |V |, An we have a set S of
states, each state an independent subset of V. So |S| ∼ 2n.
In the MC graph every state I ∈ S differs from its neighbors
N(I) in one vertex. Therefore, if ∆ = max{deg(v)|v ∈ I} the
maximum number of neighbors of any state in the MC is
6 ∆.

We have to define formally the transition probabilities



Transition probabilities for the MC on IS

For Ii ∈ S, with probability 1/n choose v ∈ V:
If Ii ∪ {v} is not independent, stay in Ii.
If {v} in Ii go to new state Ij = Ii \ {v}.
If {v} is not in Ii and Ii ∪ {v} = Ij is a IS, go to Ij



Example: Sampling IS in a G
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d P =

a b c d e


a 0 1/3 1/3 0 1/3
b 1/3 1/3 0 1/3 0
c 1/3 0 1/3 1/3 0
d 0 1/3 1/3 1/3 0
e 1/3 0 0 0 2/3

π = (1/5, 1/5, 1/5, 1/5, 1/5)



Sampling IS in a G

Given G = (V,E), |V | = n, and want to sample uniformly from
all the N independent sets of vertices in G, including the set
with 0 elements.

Make a random walk on a Markov chain on the finite but large
state space S = {I1, I2, . . . , IN}, of all independent vertices in G.

Two states Ii, Ij are directly connected iff their size differs in
one vertex, i.e. if their Hamming distance |Ii ⊕ Ij| = 1.



Sampling independent vertex in a G

The transition matrix P:

PIi,Ij =


1
n if |Ii ⊕ Ij| = 1
1 −

N(Ii)
n if i = j and |Ii| 6= 0

0 otherwise.

Notice, P is aperiodic (self-loops) and irreducible (connected)
so it converges to a stationary distribution.

Moreover, as PIi,Ij = PIj,Ii then P is symmetric and therefore it
has a uniform stationary distribution (1/N, 1/N, 1/N, . . . , 1/N).

How long do we have to walk to get the stationary distribution?



Reversible Markov Chain

For regular MC limt→∞ Pt has all rows the same: the
stationary π.
If |S| small, we can compute π by solving the stationary
equations: π = πP.
There is a nice property for MC, which makes more easy to
compute the stationary distribution π of those MC: The
reversibility.



Reversible Markov Chain

Intuitively assume the MC below has the appropriate
probabilities to have stationary distribution π. Then for
sufficiently large t, pt+1

B,C = π[B]PtB,C (red), and
pt+1
C,B = π[C]PtC,B (blue).

So in stationary distribution, the rate B→ C = rate C→ B,
and this holds for every pair of adjacent states.
i.e. For such MC, ∀u, v ∈ Sπ[u]Pu,v = π[v]Pv,u.

DA B C

If a MC P has a stationary distribution π, this means π is the
joint PMF for X0,X1, . . . ,Xn. Assume that we run backwards
the process: if π is also the joint PMF of this time-reversal
process then we say that the MC is reversible.



Reversible Markov Chain

Given a Markov Chain P, with a finite state S and a unique
stationary distribution π, we say that the Markov Chain is time
reversible if for all pair u, v ∈ S, it satisfies the balance
equations:

π[u]Pu,v = π[v]Pv,u.

The name reversible is due to the fact that we can run the MC
in the reverse and we have the same values.

The next theorem shows that if the balance equation holds for
some distribution π̂ then it must be a stationary distribution



Reversible Markov Chain

Let P be Markov Chain with states S. If π is a
probability vector satisfying the balance equations
(π[u]Pu,v = π[v]Pv,u for all u, v ∈ S) then π is a sta-
tionary distribution.

Theorem

Check the stationary distribution holds, i.e. π = πP

(πP)[v] =
∑
u∈S

π[u]Pu,v =
∑
u∈S

π[v]Pv,u

= π[v]
∑
u∈S

Pv,u = π[v].

�

Proof



Reversible Markov Chain

Given a finite-state MC which is reversible, to find a stationary
distribution: Solve the balance equations together with the
equation

∑
v∈S π[v] = 1.



What happens if the Markov Chain is not reversible

Not all Markov Chains are time reversible.

If there is no solution to the time reversibility equations , the
way to find π is to use the stationary equations, which always
yield a solution (provided the state-space in not too large).

The following MC is not reversible:

1/3
A B

C

2/3

1/3

2/3
1/3

2/3

To prove it, find the stationary distribution π = (1/3, 1/3, 1/3)
and notice that π[B]PB,C = 2

9 6=
1
6 = π[C]PC,B.



Testing if a MC is reversible: Kolmogorov’s loop
criterion

It is desirable to verify reversibility before finding the stationary
vector π.
Recall A MC is reversible if for every finite sequence of states
i0, i1, i2, . . . ik we have
pi0,i1pi1,i2 · · · · pik−1,ikpik,i0 = pi0,ik · · ·pi1,i0

Kolmogorov’s loop criterion: A Markov transition matrix P is
reversible iff for every loop of distinct states, the forward loop
probability product equals the backward loop probability
product.

But for large number of states n, the number of loops could be
exponential.



Kolmogorov’s loop criterion

A two-state MC is always reversible as p1,2p2,1 = p2,1p1,2.
If P is symmetric (bistochastic), then. pi,j = pj,i, ∀i, j ∈ S,
Kolmogorov’s criterion is satisfied and P is reversible.
If the zeros in a regular MC P are not symmetric, then the
chain is not reversible
There is a nice algorithm based in matrix operations to
check if a MC P is reversible. Brill, Cheung, Hlynka, Jiang:
Reversibility checking for Markov chains, Comm. on
Stochastic Analysis, 12: 2, 129–135, (2018)



Symmetric matrix

If P is symmetric then the MC is reversible and it has
a unique stationary distribution π which is the uniform
distribution, i.e. ∀i ∈ S,π[i] = 1/n, where n = |S|.

Lemma

A regular MC with symmetric transition matrix is also
reversible.
Then ∀i, j ∈ S,π[i]Pi,j = π[j]Pj,i ⇒ π[i] = π[j]. If we have
n states each with the same stationary distribution then
π = (1/n, . . . , 1/n) �

Proof



Example: Random walk on a graph

Given G by its adjacency matrix, a walker moves to a randomly
from vertex i to a neighbor with probability 1/d(i).

G =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0


Interpret random walks on G as a Markov chain and give the
transition matrix P.

1/3

1 4

2 3

1/2

1/3

1/2

1/2

1/2

1/3

1/3

1/3

1/3 P =


0 1/2 0 1/4

1/3 0 1/3 1/3
0 1/3 0 1/3

1/3 1/3 1/3 0





Example: Random walk on a graph

Is P reversible?

Notice all non-diagonal 0s in P are symmetric.
There are 3 loops: (a) (1→ 2→ 4→ 1) (b) (2→ 3→ 4→ 2),
(c) (1→ 2→ 3→ 4→ 1).
For the (a), (b) and (c) Markov’s loop criteria works, so yes.

Using the previous fact determine the stationary distribution of
the MC.
As it is reversible, using the balance equations:

π[1]
2

=
π[2]

3
;
π[2]

3
=
π[3]

2
;

π[2]
3

=
π[4]

3
; 1 = π[1] + π[2] + π[3] + π[4];

We get
π = (1

5 , 3
10 , 1

5 , 3
10)



Number of steps: Expected first passage

Given a regular Markov chain with a set S of states , |S| = r, and
a unique stationary distribution π,

We want to compute the expected first recurrence time for
u ∈ S, hu,u,
i.e. the expected number of steps we need so that starting from
u we return for first time to u.
Intuitively, in the long run we expect the MC to be in state u a
fraction of π[u], so hu,u ∼ 1/π[u]

The expected first passage from u to v is denoted hu,v. and
denoted mean first passage time.

In the particular case of random walks hu,v is denoted as the
hitting time.



Computing hu,u using π

In a finite, regular Markov chain with |S| = r and a
unique stationary distribution π, for u ∈ S

hu,u =
1
π[u]

.

Theorem

This technique is important and it is called first step analysis: it
consist in breaking down the possibilities resulting from the first
step in the MC.



Proof of the Theorem

For u, v ∈ S, huv = E[# steps u→ v] =∑k
w=1 Pu,w E[# steps u→ v|1st. step u→ w]

Two cases for w:

(w = v) Then the expected time u→ v is 1.

(w 6= v)

Proof



Proof of the Theorem

(w 6= v) We take 1 step v → w. By the Markovian prop-
erty, we have to concentrate in state w:

huv = Pu,v +
∑
w 6=v

Pu,w(1 + E[time from w→ v]︸ ︷︷ ︸
hw,v

)

= Pu,v +
∑
w 6=v

Pu,w(1 + hwv)

= Pu,v − Pu,v(1 + hvv) +

r∑
w=1

Pu,w(1 + hwv)

= −Pu,vhvv︸ ︷︷ ︸
♦

+

k∑
w=1

Pu,w(1 + hwv)︸ ︷︷ ︸
∗

(1)

Proof (cont’d)



Proof of the Theorem: Term (∗)

Let J be the k × k matrix of 1’s, then 1 + hwv = (J +
H)[w, v], where H = (hv,u):1 1 1

1 1 1
1 1 1

+

hAA hAB hAC

hBA hBB hBC

hCA hCB hCC

 =

1 + hAA 1 + hAB 1 + hAC

1 + hBA 1 + hBB 1 + hBC

1 + hCA 1 + hCB 1 + hCC


k∑

w=1

hu,w(1+hwv) =

k∑
w=1

H[u,w](J+H)[w, v] = (H×(J+H))[u, v].

So the sum is just the entry (w, v) in the matrix H × (J +
H).

Proof (cont’d)



Proof of the Theorem: Term (♦)

Introduce r× r diagonal matrix D, where Dv,v = hv,v,
so Pu,vhv,v = (P ×D)[u, v].1/3 1/3 1/3

1/2 0 1/2
1/2 1/2 0

×
hAA 0 0

0 hBB 0
0 0 hCC

 =

hAA/3 hBB/3 hCC/3
hAA/2 0 hCC/2
hAA/2 hBB/2 0



Proof (cont’d)



Ending the proof

Substituting ♦ and ∗ in equation (1): hu,v = −(P ×
D)[u, v] + (H× (J+H))[u, v].

As it is true ∀(u, v), we have H = −PD + P(J + H) =
−PD+ PJ+ PH

Multiply both sides by the stationary distribution: πH =
−πPD+ πPJ+ πPH.
But by the stationary equation: πP = π ⇒ πH = −πD +
πJ+ πH ⇒ πD = πJ

Notice πJ is just the k-dimensional vector (1, 1, . . . , 1)
(
∑

i π[i] = 1)

πD = (π[1]h11,π[2]h22, . . . ,π[k]hkk)⇒ π[u] = 1
hu,u

�

Proof (cont’d)


