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Stochastic Process

m A stochastic process is a sequence of random variables
{Xtho-

m Usually the subindex t refers to time steps and if t € N, the
stochastic process is said to be discrete.

m The random variable X is called the state at time t.

m If n < oo the process is said to be finite, otherwise it is said
infinite.

m A stochastic process is used as a model to study the
probability of events associated to a random phenomena.



An example: Gambler's Ruin

Model used to evaluate insurance risks.

m You place bets of 1€. With probability p, you gain 1€, and
with probability ¢ = 1 — p you loose your 1€ bet.

m You start with an initial amount of 100€.

m You keep playing until you loose all your money or you
arrive to have 1000<.
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An example: Gambler's Ruin

Model used to evaluate insurance risks.

m You place bets of 1€. With probability p, you gain 1€, and
with probability ¢ = 1 — p you loose your 1€ bet.

m You start with an initial amount of 100€.

m You keep playing until you loose all your money or you
arrive to have 1000<.

m One goal is finding the probability of winning i.e. getting
the 1000<€.

Notice in this process, once we get 0€ or 1000€, the process
stops.



Markov Chain

One simple model of stochastic process is the Markov Chain:

m Markov Chains are defined on a finite set of states (S),
where at time t, X could be any state in S, together with
by the matrix of transition probability for going from each
state in S to any other state in S, including the case that the
state X; remains the same at t + 1.

m In a Markov Chain, at any given time t, the state X is
determined only by X;_1.
memoryless: does not remember the history of past
events,

Other memoryless stochastic processes are said to be
Markovian.
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An example: Gambler's Ruin

m You place bets of 1€. With probability p, you gain 1€, and
with probability ¢ = 1 — p you loose your 1€ bet.

m You start with an initial amount of 100<.

m You keep playing until you loose all your money or you
arrive to have 1000<€.

m We have a state for each possible amount of money you
can accumulate S ={0,1,...,1000}.

m The probability of losing/winning is independent on the
state and the time, so this process is a Markov chain.

m Observe that the number of states is finite.



Markov-Chains: An important tool for CS

m One of the simplest forms of stochastic dynamics.

m Allows to model stochastic temporal dependencies
m Applications in many areas

Surfing the web

Design of randomizes algorithms

Random walks

Machine Learning (Markov Decision Processes)
Computer Vision (Markov Random Fields)

etc. etc.



Formal definition of Markov Chains

~ Definition

S, and for all t > 0,

PX¢11 =1 X0 =10, Xy =14,..

A finite, time-discrete Markov Chain, with finite state S =
{1,2,...,k} is a stochastic process {X} s.t. foralli,j €

S Xe =1 =PXp1 =j 1 X =

i)



Formal definition of Markov Chains

~ Definition

A finite, time-discrete Markov Chain, with finite state S =
{1,2,...,k} is a stochastic process {X} s.t. foralli,j €
S, and for all t > 0,

PX¢r1 =31Xo =10, X4 =11,..., Xt =i = PXp1 =1 Xy =

We can abstract the time and consider only the probability of
moving from state i to state j, as P[X{ 1 =j | Xt =il

i)



MC: Transition probability matrix

Forv,u € S, let p,,» be the probability of going from u ~~ vin 1
stepi.e. puv =PXs11 =Vv|Xs =ul.
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MC: Transition probability matrix

Forv,u € S, let p,,» be the probability of going from u ~~ vin 1
stepi.e. puv =PXs11 =Vv|Xs =ul.

P = (punv)uves iS @ matrix describing the transition
probabilities of the MC
P is called the transition matrix

P also defines digraph, possibly with loops.




Gambler’s Ruin: MC digraph

m You place bets of 1€. With probability p, you gain 1€, and
with probability ¢ = 1 — p you loose your 1€ bet.

m You start with an initial amount of i € and keep playing until
you loose all your money or you arrive to have n €.

m We have a state for each possible amount of money you
can accumulate S ={0,1,...,n}L
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Transition matrix: Example

A B C
Al O 2/3 1/3
Bl12 0 | =P
cliz o 12

Notice the entry (u,v) in P denotes the probability of going from
u — v in one step.

Notice, in a MC the transition matrix is stochastic, so sum of
transitions out of any state must be 1 = sum of the elements of
any row of the transition matrix must be 1



Longer transition probabilities

Forv,u e S, let p&t)v be the probability of going from uw ~ v in
exactly t steps i.e. pff,)v =PXsit =Vv|Xs =ul.

Formally fors > 0and t > 1, pl(f)v =PXsit =Vv|Xs =u].

Notice that py v = pﬂ,)v; we shall use P(t) for the matrix whose
entries are the values p&tl and P(1) = P.

How can we relate P(t) with P?



The powers of the transition matrix

A B C
Al O 2/3 1/3
Bl12 0 | =P
cliz o 12

In ex. PIX; = C|Xo = A] = P(”C = 1/3

P[Xp = C[Xo = Al = PPy + PRLPIL =1/83 +1/6 = P2
In general, assume a MC with k states and transition matrix P,
letu,ves:

e What is the P[X; = u|Xg = V], i.e. = Py ,?

e What is the P[Xz = u[Xo =] = P\3,?



The powers of the transition matrix

Use Law Total Probability+ Markov property:

m
PEL=PXz =uXo =V = Y PIX; = wlXo = VI P[Xp = ulX; =
w=1

m
> PuwPua.

w=1



The powers of the transition matrix
In general

Pl = PIXe = ulXg =]

m
= ) PXe1 =wXo =VIPXe = ulX(—1 = W]

~ Lemma
Given the transition matrix P of a MC, then for any t >
1,
pit) — plt=1) ' p

With the convention P©®) = I (the identity matrix), we
have
pt) — pt,

forany t > 0.




Distributions at time t

To fix the initial state, we consider a random variable Xg,
assigning to S an initial distribution 7y, which is a row vector
indicating at t = 0 the probability of being in the corresponding
state.

For example, in the MC:

we may consider,



Distributions at time t

Starting with an initial distribution 7ty, we can compute the state
distribution 7ty (on S) at time t,

For a state v,

where 7t [y] is the probability at step t the system is in state y.

Therefore, my = moPt and s = msP*.



Gambler’s Ruin: Exercise

m You place bets of 1€. With probability p, you gain 1€, and
with probability ¢ = 1 — p you loose your 1€ bet.

m You start with an initial amount of i € and keep playing until
you loose all your money or you arrive to have n €.

m We have a state for each possible amount of money you
can accumulate S ={0,1,...,n}L



Gambler’s Ruin: Exercise

m You place bets of 1€. With probability p, you gain 1€, and
with probability ¢ = 1 — p you loose your 1€ bet.

m You start with an initial amount of i € and keep playing until
you loose all your money or you arrive to have n €.

m We have a state for each possible amount of money you
can accumulate S ={0,1,...,n}L

m Which is the initial distribution 7p?
m And, the state distribution at time t = 3?



Example MC: Writing a research paper

Recall that Markov Chains are given either by a weighted
digraph, where the edge weights are the transition probabilities,
or by the |S| x [S| transition probability matrix P,

Example: Writing a paper S = {r,w, e, s}

0.5 03 0.5
T w (& S
Think 0.2_4 Write r 05 03 0 0.2
w02 05 01 0.2
02 02
0.1 0.3 e |01 03 03 0.3
i 0.1 s \0 02 03 05
Surf  [*—T73 e—mail
03



More on the Markovian property

Notice the memoryless property does not mean that X, 1 is
independent from Xg, X1, ..., X{_1.

(For instance notice that intuitively we have:
P[Thinking at t + 1] < P[Thinking at t| Thinking at t — 1]).

But, the dependencies of X; on X, ..., X;_1, are all captured
by Xi_1-




Example of writing a paper

P[X> = s|Xg = 1] is the probability that, at t = 2, we are in state
s, starting in state r.

05 03 0 02\ /05 03 0 0.2 0.31 0.34 0.09 0.26

02 05 0.1 02 02 05 01 02| [021 038 0.14 0.27
0.1 03 03 03 0.1 03 03 03| |0.14 0.33 0.21 0.32
0 02 03 05 0 02 03 05 0.07 0.29 0.26 0.38

P[Xy = s|Xg =1] = 0.07.

» o 3 =



Distribution on states

Recall 7y is the prob. distribution at time t over S.
For our example of writing a paper, if t = 0 (after waking up):

T w e S
M= (02 0 03 05)

05 03 0 02
02 05 0.1 02
0.1 03 03 0.3
0 02 03 05

(02 0 03 0.5) =(0.13 025 0.24 0.38) =my

Therefore, we have t; = 7y x Pt and ¢ = my x Pt

Notice 7ty = (¢ [v], 7t W], ¢ [e], te[s])



An Example of MC analysis: The 2-SAT problem

Section 7.1 of [MU].

Given a Boolean formula ¢, on

e a set X of n Boolean variables,

e defined by m clauses Cy, ... Cyy, Where each clause is the
disjunction of exactly 2 literals, (x; or x;), on different variables.

e ¢ = conjunction of the m clauses.

The 2-SAT problem is to find an assignment A* : X — {0, 1},
which satisfies ¢,
i.e,tofindan A* s.t. A*(¢p) =1.

Notice that if [X| = n, then m < (3') = 0(n?).

In general k-SAT< NP-complete, for k > 3. But 2-SAT< P.



A randomized algorithm for 2-SAT

Given a n variable 2-SAT formula ¢, {C; }}11
for1 <i<ndo
A(xi) =1
end for
t:=0
while t < 2cn? and some clause is unsatisfied do
Pick and unsatisfied clause C;
Choose u.a.r. one of the 2 variables in C; and flip its value
if ¢ is satisfied then
return A
end if
end while
return ¢ is unsatisfiable



An example: unsat formula

If b = (x1Vx2) A (X1 VXx2) A (X1 Vx2) A (%1 V X2)
does not has a A* | ¢.

t sel clause

1

X1
1

X2
1
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1

X1
1

X2
1
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An example: unsat formula

If b = (x1Vx2) A (X1 VXx2) A (X1 Vx2) A (%1 V X2)
does not has a A* | ¢.

t | x1 | xo | selclause
111 1 2
211 0 3




An example: unsat formula

Ifp=(x1Vx2) A(X1Vxa) A (X1 Vx2) A (%1 V X2)
does not has a A* | ¢.

t | x1 | xo | selclause
111 1 2
211 0 3
3/01|0



An example: unsat formula

If b = (x1Vx2) A (X1 VXx2) A (X1 Vx2) A (%1 V X2)
does not has a A* | ¢.

t | x1 | xo | selclause
1011 2
2110 3
3/01]0 1

¢ is unsat eventually the algorithm will stop after reaching the
maximum number of steps.



An example: sat formula

If d = (x1 VX2) A (X1 VX3) A (X1 Vx2) A (X4 V X3) N (x4 V X1)

t sel clause

1

X1
]

X2
1

X3
1

X4
1




An example: sat formula

If d = (x1 VX2) A (X1 VX3) A (X1 Vx2) A (X4 V X3) N (x4 V X1)

sel clause
2

t
1

X1
]

X2
1

X3
1

X4
1




An example: sat formula

If d = (x1 VX2) A (X1 VX3) A (X1 Vx2) A (X4 V X3) N (x4 V X1)

sel clause
2

XA X2
1

1

X3
1
1

X4
1
1

N = e+

1
0



An example: sat formula

If d = (x1 VX2) A (X1 VX3) A (X1 Vx2) A (X4 V X3) N (x4 V X1)

sel clause
2
1

XA X2
1

1

X3
1
1

X4
1
1

N = e+

1
0



An example: sat formula

If d = (x1 VX2) A (X1 VX3) A (X1 Vx2) A (X4 V X3) N (x4 V X1)

t | xq | xo| x3 | x4 | s€lclause
1] 1 1 1 1 2
210 | 1 1 1 1
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An example: sat formula

If d = (x1 VX2) A (X1 VX3) A (X1 Vx2) A (X4 V X3) N (x4 V X1)

t | xq | xo| x3 | x4 | s€lclause
1] 1 1 1 1 2
210 | 1 1 1 1
3,00 |11 4



An example: sat formula

If d = (x1 VX2) A (X1 VX3) A (X1 Vx2) A (X4 V X3) N (x4 V X1)

X1 | X2 | x3 | x4 | sel clause
1 1 2
1 1 1
1 1 4
110

A OWN = +

111
0|1
0|0
0|0



An example: sat formula

If & = (x1 VX2) A (X1 VX3) A (X1 Vxa) A (xa V X3) A (x4 V Xq)

t | xq | xo| x3 | x4 | s€lclause
1] 1 1 1 1 2
210 | 1 1 1 1
3,00 |11 4
4,001 |0 -

(0,0,1,0) satisfies ¢



Analysis for 2-SAT algorithm

Given ¢, [X| = n,{C;
assume that there is A* such that $(A*) =1

m Let A; be the assignment at the i-th iteration.
m Let Xi = |{Xj e X | Ai(Xj) = A*(Xj)}.
m Notice 0 < X; < n. Moreover, when X; = n, we found A*.

m Analysis: Starting from X; < n, how long to get X; =n?

m Note that P[X; 1 =1[X; =0] =1.



Analysis for 2-SAT algorithm

m As A satisfies ¢ and A; no, there is a clause C; that A*
satisfies but A; not.

m So A* and A; disagree in the value of at least one variable.

m ltis also possible to flip the value of a variable in Cj in
which A and A* agree.

m Therefore,

Fori <k<n—1,PXi 1 =k+1|X;=%kl >1/2and
PXi 1 =k—1[X; =kl <1/2.



Analysis for 2-SAT

The process Xp, X1, .. . is not necessarily a MC,

m The probability that X;, 1 > X; depends on whether A; and
A* disagree in 1 or 2 variables in the selected unsatisfied
clause C.

m |f A* makes true both literals in C,
PXi11 =k + 1]|X; =kl = 1, otherwise
P[Xi+1 =k+1|X;=k] = 1/2

m This difference might depend on the clauses and variables
selected in the past, so the transition probabilities are not
memoryless.

m X; is not a Markov chain.



Analysis for 2-SAT

The process Xp, X1, .. . is not necessarily a MC,

m The probability that X;, 1 > X; depends on whether A; and
A* disagree in 1 or 2 variables in the selected unsatisfied
clause C.

m |f A* makes true both literals in C,
PXi11 =k + 1]|X; =kl = 1, otherwise
P[Xi+1 =k+1|X;=k] = 1/2

m This difference might depend on the clauses and variables
selected in the past, so the transition probabilities are not
memoryless.

m X is not a Markov chain. Can we bound the process by a
MC?.



Analysis for 2-SAT

Define a MC Yy, Y1, Yo, ... which is a pessimistic version of
process Xp, X1, ..., in the sense that Y; measures exactly the
same quantity than X; but the probability of change (up or
down) will be exactly 1/2.
B Yyg=Xoand P[Yiy 1 =1]Y; =0]=1;
mFor1<k<n—1,PYi; 1 =k+1]Yyi =kl =1/2;
mPYi, =k—1]Y;=k]=1/2.

1/2

1/2
OMO MO 0N S CIN0N]

172 172 172 172 112
MC for 2-SAT

The time to reach n from j > 0 in {Y;}T* ; is > that in {X;}I*



Upper Bound on the time to arrive state n

~ Lemma

If a 2-CNF ¢ on n variables has a satisfying assignment
A*, the 2-SAT algorithm finds one in expected time
< n2.

~ Proof

m Let h; be the expected time, for process Y, to go
from state j to state n.

m It suffices to prove that, when Y starts in state j the
time to arrives to n is < 2cn?.

m We devise a recurrence to bound h




Upper Bound on the time to arrive state n

~ Proof (cont'd)
mh,=0and hy =hg+1;
m We want a general recurrence on h;, for 1 <j <n

m Define a rv Z; counting the steps to go from state
j—=ninY.

m With probability 1/2, Z; = Z;_1 + 1 and, with
probability 1/2, Z; = Z; 1 +1.

m So hj = E[Z)]

Zi 1 +1  Zjq+1 Zj 4]+ 1 Z; 1
EZ)] - E i1t Zi _ ElZj 41+ +E[ il 1

2 2 2 2

So, hy = Mt 4 Miet 4 g,




Upper Bound on the time to arrive state n

~ Proof (cont'd)

From the previous bound we get hj = Mt 4 Mt 4 1,

The recurrence has the n + 1 equations,

h, =0
hg =hy + 1
hjy 1 hyjyq )
h; :]T”L]TH 0<j<n—1

Let us prove, by induction that




Upper Bound on the time to arrive state n

~ Proposition
FOI’OS).QTL—‘I,]T)" :hj+1+2j+1.

-

~ Proof (of Proposition)

Base case: If j =0, 2j +1 =1, and we were given hy =
hy + 1.




Upper Bound on the time to arrive state n

~ Proposition

FOFO<j<H—1,hj:hj+1+2j+1.

~ Proof of Proposition (cont'd)

IH:forj=k—1, hy 1 =hg+2(k—1)+1.
Now consider j = k. By the “middle case” of our system
of equations,

hy_1+h
hk:$+1
L D N PR
2 2
_E hk+1 2k + 1
S22 2

Subtracting % from each side, we get the result. O




Upper Bound on the time to arrive state n

~ Proof (cont'd)

As
hj :hj+1 +2j+1.

n—1
:ltlljg(zwn:n%
=0 =

hp=h{+1=hp+3+1=h3+5+3+1---




Error probability for 2-SAT algorithm

Theorem
The 2-SAT algorithm gives the correct answer NO if ¢ is
not satisfiable. Otherwise, with probability > 1 — X the
algorithm returns a satisfying assignment.




Error probability for 2-SAT algorithm

~ Proof

Let ¢ be satisfiable (otherwise the theorem holds).

Break the 2cn? iterations into ¢ blocks of 2n?
iterations.

For each block i, define a r.v. Z = number of
iterations from the start of the i-block until a
solution is found.

Using Markov’s inequality:

n?

P[Z>2n2} < ity

Therefore, the probability that the algorithm fails to
find a satisfying assignment after ¢ segments (no
block includes a solution) is at most ..




