Markov Chains and Random Walks

Josep Díaz Maria J. Serna Conrado Martínez
U. Politècnica de Catalunya

RA-MIRI 2023-2024

Stochastic Process

\square A stochastic process is a sequence of random variables $\left\{X_{t}\right\}_{t=0}^{n}$.
\square Usually the subindex t refers to time steps and if $t \in \mathbb{N}$, the stochastic process is said to be discrete.

- The random variable X_{t} is called the state at time t.

■ If $n<\infty$ the process is said to be finite, otherwise it is said infinite.

- A stochastic process is used as a model to study the probability of events associated to a random phenomena.

An example: Gambler's Ruin

Model used to evaluate insurance risks.
■ You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
■ You start with an initial amount of $100 €$.
■ You keep playing until you loose all your money or you arrive to have $1000 €$.

- One goal is finding the probability of winning i.e. getting the $1000 €$.

Notice in this process, once we get $0 €$ or $1000 €$, the process stops.

An example: Gambler's Ruin

Model used to evaluate insurance risks.
■ You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
■ You start with an initial amount of $100 €$.
■ You keep playing until you loose all your money or you arrive to have $1000 €$.

■ One goal is finding the probability of winning i.e. getting the $1000 €$.
Notice in this process, once we get $0 €$ or $1000 €$, the process stops.

An example: Gambler's Ruin

Model used to evaluate insurance risks.

■ You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
■ You start with an initial amount of $100 €$.

- You keep playing until you loose all your money or you arrive to have $1000 €$.

■ One goal is finding the probability of winning i.e. getting the $1000 €$.
Notice in this process, once we get $0 €$ or $1000 €$, the process stops.

Markov Chain

One simple model of stochastic process is the Markov Chain:

- Markov Chains are defined on a finite set of states (S), where at time t, X_{t} could be any state in S, together with by the matrix of transition probability for going from each state in S to any other state in S, including the case that the state X_{t} remains the same at $t+1$.

■ In a Markov Chain, at any given time t, the state X_{t} is determined only by X_{t-1}. memoryless: does not remember the history of past events,
Other memoryless stochastic processes are said to be Markovian.

An example: Gambler's Ruin

■ You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
■ You start with an initial amount of $100 €$.
■ You keep playing until you loose all your money or you arrive to have $1000 €$.

- We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, 1000\}$.

An example: Gambler's Ruin

■ You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
■ You start with an initial amount of $100 €$.
■ You keep playing until you loose all your money or you arrive to have $1000 €$.
■ We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, 1000\}$.

- The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.
■ Observe that the number of states is finite.

An example: Gambler's Ruin

■ You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
■ You start with an initial amount of $100 €$.
■ You keep playing until you loose all your money or you arrive to have $1000 €$.
■ We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, 1000\}$.
\square The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.

- Observe that the number of states is finite.

An example: Gambler's Ruin

■ You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
■ You start with an initial amount of $100 €$.

- You keep playing until you loose all your money or you arrive to have $1000 €$.
■ We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, 1000\}$.
\square The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.
■ Observe that the number of states is finite.

Markov-Chains: An important tool for CS

■ One of the simplest forms of stochastic dynamics.
■ Allows to model stochastic temporal dependencies

- Applications in many areas
- Surfing the web

■ Design of randomizes algorithms

- Random walks

■ Machine Learning (Markov Decision Processes)

- Computer Vision (Markov Random Fields)
- etc. etc.

Formal definition of Markov Chains

Definition

A finite, time-discrete Markov Chain, with finite state $S=$ $\{1,2, \ldots, k\}$ is a stochastic process $\left\{X_{t}\right\}$ s.t. for all $i, j \in$ S, and for all $t \geqslant 0$,
$\mathbb{P}\left[X_{t+1}=\mathfrak{j} \mid X_{0}=\mathfrak{i}_{0}, X_{1}=\mathfrak{i}_{1}, \ldots, X_{t}=\mathfrak{i}\right]=\mathbb{P}\left[X_{t+1}=j \mid X_{t}=\mathfrak{i}\right]$.
We can abstract the time and consider only the probability of moving from state i to state j, as $\mathbb{P}\left[X_{t+1}=j \mid X_{t}=i\right]$

Formal definition of Markov Chains

Definition

A finite, time-discrete Markov Chain, with finite state $S=$ $\{1,2, \ldots, k\}$ is a stochastic process $\left\{X_{t}\right\}$ s.t. for all $i, j \in$ S , and for all $\mathrm{t} \geqslant 0$,
$\mathbb{P}\left[X_{t+1}=\mathfrak{j} \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{t}=\mathfrak{i}\right]=\mathbb{P}\left[X_{t+1}=\mathfrak{j} \mid X_{t}=j\right]$.
We can abstract the time and consider only the probability of moving from state i to state j, as $\mathbb{P}\left[X_{t+1}=j \mid X_{t}=i\right]$

MC: Transition probability matrix

For $v, u \in S$, let $p_{u, v}$ be the probability of going from $u \rightsquigarrow v$ in 1 step i.e. $p_{u, v}=\mathbb{P}\left[X_{s+1}=v \mid X_{s}=u\right]$.
$P=\left(p_{u, v}\right)_{u, v \in S}$ is a matrix describing the transition
probabilities of the MC
P is called the transition matrix

MC: Transition probability matrix

For $v, u \in S$, let $p_{u, v}$ be the probability of going from $u \rightsquigarrow v$ in 1 step i.e. $p_{u, v}=\mathbb{P}\left[X_{s+1}=v \mid X_{s}=u\right]$.
$\mathrm{P}=\left(\mathrm{p}_{\mathfrak{u}, v}\right)_{\mathfrak{u}, v \in \mathrm{~S}}$ is a matrix describing the transition probabilities of the MC P is called the transition matrix

P also defines digraph, possibly with loops.

MC: Transition probability matrix

For $v, u \in S$, let $p_{u, v}$ be the probability of going from $u \rightsquigarrow v$ in 1 step i.e. $p_{u, v}=\mathbb{P}\left[X_{s+1}=v \mid X_{s}=u\right]$.
$\mathrm{P}=\left(\mathrm{p}_{\mathfrak{u}, v}\right)_{\mathfrak{u}, v \in \mathrm{~S}}$ is a matrix describing the transition probabilities of the MC P is called the transition matrix

P also defines digraph, possibly with loops.

MC: Transition probability matrix

For $v, u \in S$, let $p_{u, v}$ be the probability of going from $u \rightsquigarrow v$ in 1 step i.e. $p_{u, v}=\mathbb{P}\left[X_{s+1}=v \mid X_{s}=u\right]$.
$\mathrm{P}=\left(\mathrm{p}_{u, v}\right)_{u, v \in \mathrm{~S}}$ is a matrix describing the transition probabilities of the MC
P is called the transition matrix
P also defines digraph, possibly with loops.

Gambler's Ruin: MC digraph

■ You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
$■$ You start with an initial amount of $i €$ and keep playing until you loose all your money or you arrive to have $n €$.

- We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, n\}$.

Gambler's Ruin: MC digraph

■ You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
$■$ You start with an initial amount of $i €$ and keep playing until you loose all your money or you arrive to have $n €$.

- We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, n\}$.

Transition matrix: Example

A	B	C	
A $/ 0$	2/3	1/3	
B $1 / 2$	0	1/2	$=\mathrm{P}$
C 1/2	0	1/2	

Notice the entry (u, v) in P denotes the probability of going from $u \rightarrow v$ in one step.
Notice, in a MC the transition matrix is stochastic, so sum of transitions out of any state must be $1=$ sum of the elements of any row of the transition matrix must be 1

Longer transition probabilities

For $v, u \in S$, let $p_{u, v}^{(t)}$ be the probability of going from $u \rightsquigarrow v$ in exactly t steps i.e. $p_{u, v}^{(\mathrm{t})}=\mathbb{P}\left[X_{s+t}=v \mid X_{s}=u\right]$.
Formally for $s \geqslant 0$ and $t>1, p_{u, v}^{(t)}=\mathbb{P}\left[X_{s+t}=v \mid X_{s}=u\right]$.
Notice that $p_{u, v}=p_{u, v}^{(1)}$; we shall use $\mathrm{P}^{(\mathrm{t})}$ for the matrix whose entries are the values $p_{u, v}^{(t)}$, and $P^{(1)}=P$. How can we relate $P^{(t)}$ with P ?

The powers of the transition matrix

$\left.\begin{array}{c} \\ \mathrm{A} \\ \mathrm{B} \\ \mathrm{C}\end{array} \begin{array}{ccc}\mathrm{A} & \mathrm{B} & \mathrm{C} \\ 0 & 2 / 3 & 1 / 3 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2\end{array}\right)=\mathrm{P}$

In ex. $\mathbb{P}\left[X_{1}=C \mid X_{0}=A\right]=P_{A, C}^{(1)}=1 / 3$.
$\mathbb{P}\left[X_{2}=C \mid X_{0}=A\right]=P_{A B}^{(1)} P_{B C}^{(1)}+P_{A C}^{(1)} P_{C C}^{(1)}=1 / 3+1 / 6=P_{A, C}^{(2)}$
In general, assume a MC with k states and transition matrix P, let $u, v \in S$:

- What is the $\mathbb{P}\left[X_{1}=u \mid X_{0}=v\right]$, i.e. $=P_{v, u}$?
- What is the $\mathbb{P}\left[X_{2}=u \mid X_{0}=v\right]=P_{v, u}^{(2)}$?

The powers of the transition matrix

Use Law Total Probability+ Markov property:

$$
\begin{aligned}
\mathrm{P}_{v, u}^{(2)} & =\mathbb{P}\left[X_{2}=u \mid X_{0}=v\right]=\sum_{w=1}^{m} \mathbb{P}\left[X_{1}=w \mid X_{0}=v\right] \mathbb{P}\left[X_{2}=u \mid X_{1}=w\right] \\
& =\sum_{w=1}^{m} \mathrm{P}_{v, w} \mathrm{P}_{w, u} .
\end{aligned}
$$

The powers of the transition matrix

 In general$$
\begin{aligned}
p_{v, u}^{(t)} & =\mathbb{P}\left[X_{t}=u \mid X_{0}=v\right] \\
& =\sum_{w=1}^{m} \mathbb{P}\left[X_{t-1}=w \mid X_{0}=v\right] \mathbb{P}\left[X_{t}=u \mid X_{t-1}=w\right] \\
& =\sum_{w=1}^{m} P_{v, w}^{(t-1)} P_{w, u}
\end{aligned}
$$

Lemma
Given the transition matrix P of a MC, then for any $\mathrm{t} \quad>$ 1 ,

$$
\mathrm{P}^{(\mathrm{t})}=\mathrm{P}^{(\mathrm{t}-1)} \cdot \mathrm{P}
$$

With the convention $\mathrm{P}^{(0)}=\mathbf{I}$ (the identity matrix), we have

$$
\mathrm{P}^{(\mathrm{t})}=\mathrm{P}^{\mathrm{t}}
$$

for any $t \geqslant 0$.

Distributions at time t

To fix the initial state, we consider a random variable X_{0}, assigning to S an initial distribution π_{0}, which is a row vector indicating at $t=0$ the probability of being in the corresponding state.
For example, in the MC:

we may consider,

$$
\left.\begin{array}{ccc}
A & B & C \\
(0 & 0.3 & 0.6
\end{array}\right)=\pi_{0}
$$

Distributions at time t

Starting with an initial distribution π_{0}, we can compute the state distribution π_{t} (on S) at time t ,

For a state v,

$$
\begin{aligned}
\pi_{\mathrm{t}}[v] & =\mathbb{P}\left[\mathrm{X}_{\mathrm{t}}=v\right] \\
& =\sum_{\mathfrak{u} \in \mathrm{S}} \mathbb{P}\left[\mathrm{X}_{0}=\mathrm{u}\right] \mathbb{P}\left[\mathrm{X}_{\mathrm{t}}=v \mid \mathrm{X}_{0}=\mathrm{u}\right] \\
& =\sum_{\mathfrak{u} \in \mathrm{S}} \pi_{0}[\mathrm{u}] \mathrm{P}_{v, \mathfrak{u}}^{(\mathrm{t})}
\end{aligned}
$$

where $\pi_{\mathrm{t}}[y]$ is the probability at step t the system is in state y.
Therefore, $\pi_{\mathrm{t}}=\pi_{0} \mathrm{P}^{\mathrm{t}}$ and $\pi_{\mathrm{s}+\mathrm{t}}=\pi_{\mathrm{s}} \mathrm{P}^{\mathrm{t}}$.

Gambler's Ruin: Exercise

■ You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.

- You start with an initial amount of $i €$ and keep playing until you loose all your money or you arrive to have $n €$.
- We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, n\}$.
- Which is the initial distribution π_{0} ?
- And, the state distribution at time $t=3$?

Gambler's Ruin: Exercise

■ You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.

- You start with an initial amount of $i €$ and keep playing until you loose all your money or you arrive to have $n €$.
- We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, n\}$.
- Which is the initial distribution π_{0} ?

■ And, the state distribution at time $t=3$?

Example MC: Writing a research paper

Recall that Markov Chains are given either by a weighted digraph, where the edge weights are the transition probabilities, or by the $|S| \times|S|$ transition probability matrix P,

Example: Writing a paper $S=\{r, w, e, s\}$

r
w
e
e
$s$$\left(\begin{array}{cccc}r & w & e & s \\ 0.5 & 0.3 & 0 & 0.2 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0.2 & 0.3 & 0.5\end{array}\right)$

More on the Markovian property

Notice the memoryless property does not mean that X_{t+1} is independent from $X_{0}, X_{1}, \ldots, X_{t-1}$.
(For instance notice that intuitively we have:
$\mathbb{P}[$ Thinking at $t+1]<\mathbb{P}[$ Thinking at $t \mid$ Thinking at $t-1])$.
But, the dependencies of X_{t} on X_{0}, \ldots, X_{t-1}, are all captured by X_{t-1}.

Example of writing a paper

$\mathbb{P}\left[X_{2}=s \mid X_{0}=r\right]$ is the probability that, at $t=2$, we are in state s, starting in state r.

$$
\left.\begin{array}{l}
\left(\begin{array}{cccc}
0.5 & 0.3 & 0 & 0.2 \\
0.2 & 0.5 & 0.1 & 0.2 \\
0.1 & 0.3 & 0.3 & 0.3 \\
0 & 0.2 & 0.3 & 0.5
\end{array}\right)\left(\begin{array}{cccc}
0.5 & 0.3 & 0 & 0.2 \\
0.2 & 0.5 & 0.1 & 0.2 \\
0.1 & 0.3 & 0.3 & 0.3 \\
0 & 0.2 & 0.3 & 0.5
\end{array}\right)=\left(\begin{array}{cccc}
0.31 & 0.34 & 0.09 & 0.26 \\
0.21 & 0.38 & 0.14 & 0.27 \\
0.14 & 0.33 & 0.21 & 0.32 \\
0.07 & 0.29 & 0.26 & 0.38
\end{array}\right) \underset{e}{e} \\
s
\end{array}\right]\left[X_{1}=s \mid X_{0}=r\right]=0.07 . \quad .
$$

Distribution on states

Recall π_{t} is the prob. distribution at time t over S.
For our example of writing a paper, if $t=0$ (after waking up):
$\left.\pi_{0}=\begin{array}{ccc}\mathrm{r} & w & e \\ 0.2 & 0 & 0.3 \\ 0.5\end{array}\right)$
$\left(\begin{array}{llll}0.2 & 0 & 0.3 & 0.5\end{array}\right)\left(\begin{array}{cccc}0.5 & 0.3 & 0 & 0.2 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0.2 & 0.3 & 0.5\end{array}\right)=\left(\begin{array}{llll}0.13 & 0.25 & 0.24 & 0.38\end{array}\right)=\pi_{1}$
Therefore, we have $\pi_{\mathrm{t}}=\pi_{0} \times \mathrm{P}^{\mathrm{t}}$ and $\pi_{\mathrm{k}+\mathrm{t}}=\pi_{\mathrm{k}} \times \mathrm{P}^{\mathrm{t}}$
Notice $\pi_{\mathrm{t}}=\left(\pi_{\mathrm{t}}[\mathrm{r}], \pi_{\mathrm{t}}[w], \pi_{\mathrm{t}}[\mathrm{e}], \pi_{\mathrm{t}}[\mathrm{s}]\right)$

An Example of MC analysis: The 2-SAT problem

Section 7.1 of [MU].

Given a Boolean formula ϕ, on

- a set X of n Boolean variables,
- defined by m clauses $C_{1}, \ldots C_{m}$, where each clause is the disjunction of exactly 2 literals, (x_{i} or \bar{x}_{i}), on different variables.
- $\phi=$ conjunction of the m clauses.

The 2-SAT problem is to find an assignment $A^{*}: X \rightarrow\{0,1\}$, which satisfies ϕ,
i.e, to find an A^{*} s.t. $A^{*}(\phi)=1$.

Notice that if $|X|=n$, then $m \leqslant\binom{ 2 n}{2}=\mathcal{O}\left(n^{2}\right)$. In general $k-S A T \in N P$-complete, for $k \geqslant 3$. But $2-S A T \in P$.

A randomized algorithm for 2-SAT

Given a n variable 2 -SAT formula $\phi,\left\{C_{j}\right\}_{j=1}^{m}$ for $1 \leqslant i \leqslant n$ do

$$
A\left(x_{i}\right):=1
$$

end for
$t:=0$
while $t \leqslant 2 \mathrm{cn}^{2}$ and some clause is unsatisfied do
Pick and unsatisfied clause C_{j}
Choose u.a.r. one of the 2 variables in C_{j} and flip its value if ϕ is satisfied then return A
end if
end while
return ϕ is unsatisfiable

An example: unsat formula

If $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$ does not has a $A^{*} \models \phi$.

t	x_{1}	x_{2}	sel clause
1	1	1	2

An example: unsat formula

If $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$ does not has a $A^{*} \models \phi$.

t	x_{1}	x_{2}	sel clause
1	1	1	2

An example: unsat formula

If $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$ does not has a $A^{*} \models \phi$.

$$
\begin{array}{c|c|c|c}
\mathrm{t} & \mathrm{x}_{1} & \mathrm{x}_{2} & \text { sel clause } \\
1 & 1 & 1 & 2 \\
2 & 1 & 0 & 3
\end{array}
$$

An example: unsat formula

If $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$ does not has a $A^{*} \models \phi$.

t	x_{1}	x_{2}	sel clause
1	1	1	2
2	1	0	3

An example: unsat formula

If $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$ does not has a $A^{*} \models \phi$.

t	x_{1}	x_{2}	sel clause
1	1	1	2
2	1	0	3
3	0	0	1

ϕ is unsat eventually the algorithm will stop after reaching the maximum number of steps.

An example: unsat formula

If $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$ does not has a $A^{*} \models \phi$.

t	x_{1}	x_{2}	sel clause
1	1	1	2
2	1	0	3
3	0	0	1
\vdots	\vdots	\vdots	\vdots

ϕ is unsat eventually the algorithm will stop after reaching the maximum number of steps.

An example: sat formula

If $\phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right)$

$$
\begin{array}{c|c|c|c|c|c}
\mathrm{t} & x_{1} & x_{2} & x_{3} & x_{4} & \text { sel clause } \\
1 & 1 & 1 & 1 & 1 & 2
\end{array}
$$

An example: sat formula

If $\phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right)$

$$
\begin{array}{c|c|c|c|c|c}
\mathrm{t} & x_{1} & x_{2} & x_{3} & x_{4} & \text { sel clause } \\
1 & 1 & 1 & 1 & 1 & 2
\end{array}
$$

An example: sat formula

If $\phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right)$

$$
\begin{array}{c|c|c|c|c|c}
\mathrm{t} & \mathrm{x}_{1} & \mathrm{x}_{2} & x_{3} & x_{4} & \text { sel clause } \\
1 & 1 & 1 & 1 & 1 & 2 \\
2 & 0 & 1 & 1 & 1 & 1
\end{array}
$$

An example: sat formula

If $\phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right)$

t	x_{1}	x_{2}	x_{3}	x_{4}	sel clause
1	1	1	1	1	2
2	0	1	1	1	1

An example: sat formula

If $\phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right)$

t	x_{1}	x_{2}	x_{3}	x_{4}	sel clause
1	1	1	1	1	2
2	0	1	1	1	1
3	0	0	1	1	4

An example: sat formula

If $\phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right)$

t	x_{1}	x_{2}	x_{3}	x_{4}	sel clause
1	1	1	1	1	2
2	0	1	1	1	1
3	0	0	1	1	4

An example: sat formula

If $\phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right)$

t	x_{1}	x_{2}	x_{3}	x_{4}	sel clause
1	1	1	1	1	2
2	0	1	1	1	1
3	0	0	1	1	4
4	0	0	1	0	-

$(0,0,1,0)$ satisfies ϕ

An example: sat formula

If $\phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right)$

t	x_{1}	x_{2}	x_{3}	x_{4}	sel clause
1	1	1	1	1	2
2	0	1	1	1	1
3	0	0	1	1	4
4	0	0	1	0	-

$(0,0,1,0)$ satisfies ϕ

Analysis for 2-SAT algorithm

Given $\phi,|X|=n,\left\{C_{j}\right\}_{i=1}^{m}$
assume that there is A^{*} such that $\phi\left(\mathcal{A}^{*}\right)=1$

- Let A_{i} be the assignment at the i-th iteration.
- Let $X_{i}=\mid\left\{x_{j} \in X \mid A_{i}\left(x_{j}\right)=A^{*}\left(x_{j}\right)\right\}$.

■ Notice $0 \leqslant X_{i} \leqslant n$. Moreover, when $X_{i}=n$, we found A^{*}.

- Analysis: Starting from $X_{i}<n$, how long to get $X_{i}=n$?

■ Note that $\mathbb{P}\left[X_{i+1}=1 \mid X_{i}=0\right]=1$.

Analysis for 2-SAT algorithm

\square As A^{*} satisfies ϕ and A_{i} no, there is a clause C_{j} that A^{*} satisfies but A_{i} not.
\square So A^{*} and A_{i} disagree in the value of at least one variable.

- It is also possible to flip the value of a variable in C_{j} in which A and A^{*} agree.
■ Therefore,

$$
\begin{aligned}
& \text { For } 1 \leqslant k \leqslant n-1, \mathbb{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right] \geqslant 1 / 2 \text { and } \\
& \mathbb{P}\left[X_{i+1}=k-1 \mid X_{i}=k\right] \leqslant 1 / 2 .
\end{aligned}
$$

Analysis for 2-SAT

The process X_{0}, X_{1}, \ldots is not necessarily a MC,
\square The probability that $X_{i+1}>X_{i}$ depends on whether A_{i} and A^{*} disagree in 1 or 2 variables in the selected unsatisfied clause C.

- If A^{*} makes true both literals in C, $\mathbb{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right]=1$, otherwise $\mathbb{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right]=1 / 2$
■ This difference might depend on the clauses and variables selected in the past, so the transition probabilities are not memoryless.
$\square X_{t}$ is not a Markov chain.
Can we bound the process by a

Analysis for 2-SAT

The process X_{0}, X_{1}, \ldots is not necessarily a MC,
\square The probability that $X_{i+1}>X_{i}$ depends on whether A_{i} and A^{*} disagree in 1 or 2 variables in the selected unsatisfied clause C.

- If A^{*} makes true both literals in C, $\mathbb{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right]=1$, otherwise $\mathbb{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right]=1 / 2$
■ This difference might depend on the clauses and variables selected in the past, so the transition probabilities are not memoryless.
■ X_{t} is not a Markov chain. Can we bound the process by a MC?.

Analysis for 2-SAT

Define a MC $Y_{0}, Y_{1}, Y_{2}, \ldots$ which is a pessimistic version of process X_{0}, X_{1}, \ldots, in the sense that Y_{i} measures exactly the same quantity than X_{i} but the probability of change (up or down) will be exactly $1 / 2$.
■ $Y_{0}=X_{0}$ and $\mathbb{P}\left[Y_{i+1}=1 \mid Y_{i}=0\right]=1$;
$■$ For $1 \leqslant k \leqslant n-1, \mathbb{P}\left[Y_{i+1}=k+1 \mid Y_{i}=k\right]=1 / 2$;
■ $\mathbb{P}\left[Y_{i+1}=k-1 \mid Y_{i}=k\right]=1 / 2$.

The time to reach n from $j \geqslant 0$ in $\left\{Y_{i}\right\}_{i=0}^{n}$ is \geqslant that in $\left\{X_{i}\right\}_{i=0}^{n}$.

Upper Bound on the time to arrive state n

Lemma

If a $2-C N F \phi$ on n variables has a satisfying assignment
A^{*}, the 2-SAT algorithm finds one in expected time $\leqslant n^{2}$.

Proof

- Let h_{j} be the expected time, for process Y , to go from state j to state n.
■ It suffices to prove that, when Y starts in state j the time to arrives to n is $\leqslant 2 \mathrm{cn}^{2}$.
- We devise a recurrence to bound h

Upper Bound on the time to arrive state n

Proof (cont'd)

■ $h_{n}=0$ and $h_{1}=h_{0}+1$;
\square We want a general recurrence on h_{j}, for $1 \leqslant \mathfrak{j}<n$
■ Define a $r v Z_{j}$ counting the steps to go from state $j \rightarrow n$ in Y.
\square With probability $1 / 2, Z_{j}=Z_{j-1}+1$ and, with probability $1 / 2, Z_{j}=Z_{j+1}+1$.
■ So $h_{j}=\mathbb{E}\left[Z_{j}\right]$.

$$
\begin{aligned}
& \mathbb{E}\left[Z_{j}\right]=\mathbb{E}\left[\frac{Z_{j-1}+1}{2}+\frac{Z_{j+1}+1}{2}\right]=\frac{\mathbb{E}\left[Z_{j-1}\right]+1}{2}+\frac{\mathbb{E}\left[Z_{j+1}\right]+1}{2} . \\
& \text { So, } h_{j}=\frac{h_{j-1}}{2}+\frac{h_{j+1}}{2}+1 .
\end{aligned}
$$

Upper Bound on the time to arrive state n

Proof (cont'd)
From the previous bound we get $h_{j}=\frac{h_{j-1}}{2}+\frac{h_{j+1}}{2}+1$.
The recurrence has the $n+1$ equations,

$$
\begin{aligned}
& h_{n}=0 \\
& h_{0}=h_{1}+1 \\
& h_{j}=\frac{h_{j-1}}{2}+\frac{h_{j+1}}{2}+1 \quad 0 \leqslant j \leqslant n-1
\end{aligned}
$$

Let us prove, by induction that

$$
h_{j}=h_{j+1}+2 j+1 .
$$

Upper Bound on the time to arrive state n

Proposition
For $0 \leqslant j \leqslant n-1, h_{j}=h_{j+1}+2 j+1$.

Proof (of Proposition)
Base case: If $j=0,2 j+1=1$, and we were given $h_{0}=$ $h_{1}+1$.

Upper Bound on the time to arrive state n

Proposition

For $0 \leqslant j \leqslant n-1, h_{j}=h_{j+1}+2 j+1$.

Proof of Proposition (cont'd)

IH : forj $=\mathrm{k}-1, \mathrm{~h}_{\mathrm{k}-1}=\mathrm{h}_{\mathrm{k}}+2(\mathrm{k}-1)+1$.
Now consider $\mathfrak{j}=k$. By the "middle case" of our system of equations,

$$
\begin{aligned}
h_{k} & =\frac{h_{k-1}+h_{k+1}}{2}+1 \\
& =\frac{h_{k}+2(k-1)+1}{2}+\frac{h_{k+1}}{2}+1 \quad \text { by IH } \\
& =\frac{h_{k}}{2}+\frac{h_{k+1}}{2}+\frac{2 k+1}{2}
\end{aligned}
$$

Subtracting $\frac{h_{k}}{2}$ from each side, we get the result.

Upper Bound on the time to arrive state n

Proof (cont'd)
As

$$
\begin{gathered}
h_{j}=h_{j+1}+2 j+1 . \\
h_{0}=h_{1}+1=h_{2}+3+1=h_{3}+5+3+1 \cdots \\
=\underbrace{h_{n}}_{=0}+\sum_{i=0}^{n-1}(2 i+1)=n^{2} .
\end{gathered}
$$

Error probability for 2-SAT algorithm

Theorem
The 2-SAT algorithm gives the correct answer NO if ϕ is not satisfiable. Otherwise, with probability $\geqslant 1-\frac{1}{2^{c}}$ the algorithm returns a satisfying assignment.

Error probability for 2-SAT algorithm

Proof

■ Let ϕ be satisfiable (otherwise the theorem holds).
■ Break the $2 \mathrm{cn}^{2}$ iterations into c blocks of $2 \mathrm{n}^{2}$ iterations.
■ For each block \mathfrak{i}, define a r.v. $Z=$ number of iterations from the start of the i-block until a solution is found.
■ Using Markov's inequality:

$$
\mathbb{P}\left[Z>2 n^{2}\right] \leqslant \frac{n^{2}}{2 n^{2}}=\frac{1}{2}
$$

- Therefore, the probability that the algorithm fails to find a satisfying assignment after c segments (no block includes a solution) is at most $\frac{1}{2^{c}}$.

