Markov Chains and Random Walks

Josep Díaz Maria J. Serna Conrado Martínez U. Politècnica de Catalunya

RA-MIRI 2023-2024

Stochastic Process

- A stochastic process is a sequence of random variables $\{X_t\}_{t=0}^n$.
- Usually the subindex t refers to time steps and if $t \in \mathbb{N}$, the stochastic process is said to be discrete.
- The random variable X_t is called the state at time t.
- If n < ∞ the process is said to be finite, otherwise it is said infinite.</p>
- A stochastic process is used as a model to study the probability of events associated to a random phenomena.

Model used to evaluate insurance risks.

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 p you loose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you loose all your money or you arrive to have 1000€.

One goal is finding the probability of winning i.e. getting the 1000€.

Notice in this process, once we get $0 \in$ or $1000 \in$, the process stops.

Model used to evaluate insurance risks.

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 p you loose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you loose all your money or you arrive to have 1000€.
- One goal is finding the probability of winning i.e. getting the 1000€.

Notice in this process, once we get $0 \in$ or $1000 \in$, the process stops.

Model used to evaluate insurance risks.

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 p you loose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you loose all your money or you arrive to have 1000€.
- One goal is finding the probability of winning i.e. getting the 1000€.

Notice in this process, once we get $0 \in$ or $1000 \in$, the process stops.

Markov Chain

One simple model of stochastic process is the Markov Chain:

- Markov Chains are defined on a finite set of states (S), where at time t, X_t could be any state in S, together with by the matrix of transition probability for going from each state in S to any other state in S, including the case that the state X_t remains the same at t + 1.
- In a Markov Chain, at any given time t, the state X_t is determined only by X_{t-1}. memoryless: does not remember the history of past events,

Other memoryless stochastic processes are said to be Markovian.

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 p you loose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you loose all your money or you arrive to have 1000€.
- We have a state for each possible amount of money you can accumulate S = {0, 1, ..., 1000}.
- The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.
- Observe that the number of states is finite.

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 p you loose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you loose all your money or you arrive to have 1000€.
- We have a state for each possible amount of money you can accumulate S = {0, 1, ..., 1000}.
- The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.
- Observe that the number of states is finite.

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 p you loose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you loose all your money or you arrive to have 1000€.
- We have a state for each possible amount of money you can accumulate S = {0, 1, ..., 1000}.
- The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.
- Observe that the number of states is finite.

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 p you loose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you loose all your money or you arrive to have 1000€.
- We have a state for each possible amount of money you can accumulate S = {0, 1, ..., 1000}.
- The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.
- Observe that the number of states is finite.

Markov-Chains: An important tool for CS

- One of the simplest forms of stochastic dynamics.
- Allows to model stochastic temporal dependencies
- Applications in many areas
 - Surfing the web
 - Design of randomizes algorithms
 - Random walks
 - Machine Learning (Markov Decision Processes)
 - Computer Vision (Markov Random Fields)
 - etc. etc.

Formal definition of Markov Chains

C Definition

A finite, time-discrete Markov Chain, with finite state $S = \{1, 2, \dots, k\}$ is a stochastic process $\{X_t\}$ s.t. for all $i, j \in S$, and for all $t \ge 0$,

$$\mathbb{P}[X_{t+1} = j | X_0 = i_0, X_1 = i_1, \dots, X_t = i] = \mathbb{P}[X_{t+1} = j | X_t = i]$$

We can abstract the time and consider only the probability of moving from state i to state j, as $\mathbb{P}[X_{t+1} = j \,|\, X_t = i]$

Formal definition of Markov Chains

C Definition

A finite, time-discrete Markov Chain, with finite state $S = \{1, 2, ..., k\}$ is a stochastic process $\{X_t\}$ s.t. for all $i, j \in S$, and for all $t \ge 0$,

$$\mathbb{P}[X_{t+1} = j \mid X_0 = i_0, X_1 = i_1, \dots, X_t = i] = \mathbb{P}[X_{t+1} = j \mid X_t = i].$$

We can abstract the time and consider only the probability of moving from state i to state j, as $\mathbb{P}[X_{t+1} = j | X_t = i]$

For $\nu, u \in S$, let $p_{u,\nu}$ be the probability of going from $u \rightsquigarrow \nu$ in 1 step i.e. $p_{u,\nu} = \mathbb{P}[X_{s+1} = \nu | X_s = u]$.

 $P = (p_{u,v})_{u,v \in S}$ is a matrix describing the transition probabilities of the MC P is called the transition matrix

For $\nu, u \in S$, let $p_{u,\nu}$ be the probability of going from $u \rightsquigarrow \nu$ in 1 step i.e. $p_{u,\nu} = \mathbb{P}[X_{s+1} = \nu | X_s = u]$.

 $\mathsf{P}=(\mathfrak{p}_{u,\nu})_{u,\nu\in S}$ is a matrix describing the transition probabilities of the MC

P is called the transition matrix

For $\nu, u \in S$, let $p_{u,\nu}$ be the probability of going from $u \rightsquigarrow \nu$ in 1 step i.e. $p_{u,\nu} = \mathbb{P}[X_{s+1} = \nu | X_s = u]$.

$$\begin{split} P &= (p_{u,\nu})_{u,\nu\in S} \text{ is a matrix describing the transition} \\ \text{probabilities of the MC} \\ P \text{ is called the transition matrix} \end{split}$$

For $\nu, u \in S$, let $p_{u,\nu}$ be the probability of going from $u \rightsquigarrow \nu$ in 1 step i.e. $p_{u,\nu} = \mathbb{P}[X_{s+1} = \nu | X_s = u]$.

$$\begin{split} P &= (p_{u,\nu})_{u,\nu \in S} \text{ is a matrix describing the transition} \\ \text{probabilities of the MC} \\ P \text{ is called the transition matrix} \end{split}$$

Gambler's Ruin: MC digraph

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 p you loose your 1€ bet.
- You start with an initial amount of i ∈ and keep playing until you loose all your money or you arrive to have n ∈.
- We have a state for each possible amount of money you can accumulate S = {0, 1, ..., n}.

Gambler's Ruin: MC digraph

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 p you loose your 1€ bet.
- You start with an initial amount of i ∈ and keep playing until you loose all your money or you arrive to have n ∈.
- We have a state for each possible amount of money you can accumulate S = {0, 1, ..., n}.

Transition matrix: Example

Notice the entry (u, v) in P denotes the probability of going from $u \rightarrow v$ in one step.

Notice, in a MC the transition matrix is stochastic, so sum of transitions out of any state must be 1 = sum of the elements of any row of the transition matrix must be 1

Longer transition probabilities

For $\nu, u \in S$, let $p_{u,\nu}^{(t)}$ be the probability of going from $u \rightsquigarrow \nu$ in exactly t steps i.e. $p_{u,\nu}^{(t)} = \mathbb{P}[X_{s+t} = \nu | X_s = u]$.

Formally for $s \ge 0$ and t > 1, $p_{u,v}^{(t)} = \mathbb{P}[X_{s+t} = v | X_s = u]$.

Notice that $p_{u,v} = p_{u,v}^{(1)}$; we shall use $P^{(t)}$ for the matrix whose entries are the values $p_{u,v}^{(t)}$, and $P^{(1)} = P$.

How can we relate $P^{(t)}$ with P?

The powers of the transition matrix

In ex. $\mathbb{P}[X_1 = C|X_0 = A] = P_{A,C}^{(1)} = 1/3$. $\mathbb{P}[X_2 = C|X_0 = A] = P_{AB}^{(1)}P_{BC}^{(1)} + P_{AC}^{(1)}P_{CC}^{(1)} = 1/3 + 1/6 = P_{A,C}^{(2)}$

In general, assume a MC with k states and transition matrix P, let $u, v \in S$:

- What is the $\mathbb{P}[X_1 = u | X_0 = v]$, i.e. $= P_{v,u}$?
- What is the $\mathbb{P}[X_2 = u | X_0 = v] = P_{v,u}^{(2)}$?

The powers of the transition matrix

Use Law Total Probability+ Markov property:

$$P_{\nu,u}^{(2)} = \mathbb{P}[X_2 = u | X_0 = \nu] = \sum_{w=1}^{m} \mathbb{P}[X_1 = w | X_0 = \nu] \mathbb{P}[X_2 = u | X_1 = w]$$
$$= \sum_{w=1}^{m} P_{\nu,w} P_{w,u}.$$

The powers of the transition matrix In general

$$p_{\nu,u}^{(t)} = \mathbb{P}[X_t = u | X_0 = \nu]$$

= $\sum_{w=1}^{m} \mathbb{P}[X_{t-1} = w | X_0 = \nu] \mathbb{P}[X_t = u | X_{t-1} = w]$
= $\sum_{w=1}^{m} P_{\nu,w}^{(t-1)} P_{w,u}.$

- Lemma

Given the transition matrix P of a MC, then for any t > 1,

$$\mathsf{P}^{(\mathsf{t})} = \mathsf{P}^{(\mathsf{t}-1)} \cdot \mathsf{P}$$

With the convention $P^{(0)} = I$ (the identity matrix), we have

$$\mathsf{P}^{(\mathsf{t})}=\mathsf{P}^{\mathsf{t}},$$

for any $t \ge 0$.

Distributions at time t

To fix the initial state, we consider a random variable X_0 , assigning to S an initial distribution π_0 , which is a row vector indicating at t = 0 the probability of being in the corresponding state.

For example, in the MC:

we may consider,

 $\begin{array}{ccc} A & B & C \\ (0 & 0.3 & 0.6) = \pi_0 \end{array}$

Distributions at time t

Starting with an initial distribution π_0 , we can compute the state distribution π_t (on S) at time t,

For a state v,

$$\begin{aligned} \pi_t[\nu] &= \mathbb{P}[X_t = \nu] \\ &= \sum_{u \in S} \mathbb{P}[X_0 = u] \mathbb{P}[X_t = \nu | X_0 = u] \\ &= \sum_{u \in S} \pi_0[u] P_{\nu,u}^{(t)}. \end{aligned}$$

where $\pi_t[y]$ is the probability at step t the system is in state y.

Therefore, $\pi_t = \pi_0 P^t$ and $\pi_{s+t} = \pi_s P^t$.

Gambler's Ruin: Exercise

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 p you loose your 1€ bet.
- You start with an initial amount of i ∈ and keep playing until you loose all your money or you arrive to have n ∈.
- We have a state for each possible amount of money you can accumulate S = {0, 1, ..., n}.
- Which is the initial distribution π_0 ?
- And, the state distribution at time t = 3?

Gambler's Ruin: Exercise

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 p you loose your 1€ bet.
- You start with an initial amount of i ∈ and keep playing until you loose all your money or you arrive to have n ∈.
- We have a state for each possible amount of money you can accumulate S = {0, 1, ..., n}.
- Which is the initial distribution π_0 ?
- And, the state distribution at time t = 3?

Example MC: Writing a research paper

Recall that Markov Chains are given either by a weighted digraph, where the edge weights are the transition probabilities, or by the $|S| \times |S|$ transition probability matrix P,

Example: Writing a paper $S = \{r, w, e, s\}$

	r		е	
r	/0.5	0.3	0	0.2 0.2 0.3 0.5
w	0.2	0.5	0.1	0.2
e	0.1	0.3	0.3	0.3
S	0 /	0.2	0.3	0.5/

More on the Markovian property

Notice the memoryless property does not mean that X_{t+1} is independent from $X_0, X_1, \ldots, X_{t-1}$.

(For instance notice that intuitively we have: $\mathbb{P}[Thinking at t+1] < \mathbb{P}[Thinking at t | Thinking at t-1]).$

But, the dependencies of X_t on $X_0,\ldots,X_{t-1},$ are all captured by $X_{t-1}.$

Example of writing a paper

 $\mathbb{P}[X_2 = s | X_0 = r]$ is the probability that, at t = 2, we are in state s, starting in state r.

$$\begin{pmatrix} 0.5 & 0.3 & 0 & 0.2 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0.2 & 0.3 & 0.5 \end{pmatrix} \begin{pmatrix} 0.5 & 0.3 & 0 & 0.2 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0.2 & 0.3 & 0.5 \end{pmatrix} = \begin{pmatrix} 0.31 & 0.34 & 0.09 & 0.26 \\ 0.21 & 0.38 & 0.14 & 0.27 \\ 0.14 & 0.33 & 0.21 & 0.32 \\ 0.07 & 0.29 & 0.26 & 0.38 \end{pmatrix}^{r} w_{e}^{r}$$

 $\mathbb{P}[X_1 = s | X_0 = r] = 0.07.$

Distribution on states

Recall π_t is the prob. distribution at time t over S.

For our example of writing a paper, if t = 0 (after waking up):

$$\begin{pmatrix} 0.2 & 0 & 0.3 & 0.5 \end{pmatrix} \begin{pmatrix} 0.5 & 0.3 & 0 & 0.2 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0.2 & 0.3 & 0.5 \end{pmatrix} = \begin{pmatrix} 0.13 & 0.25 & 0.24 & 0.38 \end{pmatrix} = \pi_1$$

Therefore, we have $\pi_t = \pi_0 \times P^t$ and $\pi_{k+t} = \pi_k \times P^t$ Notice $\pi_t = (\pi_t[r], \pi_t[w], \pi_t[e], \pi_t[s])$ An Example of MC analysis: The 2-SAT problem

Section 7.1 of [MU].

Given a Boolean formula ϕ , on

- a set X of n Boolean variables,
- defined by m clauses $C_1, \ldots C_m$, where each clause is the disjunction of exactly 2 literals, (x_i or \bar{x}_i), on different variables.
- $\phi = \text{conjunction of the } m$ clauses.

The 2-SAT problem is to find an assignment $A^*:X\to \{0,1\},$ which satisfies $\varphi,$

i.e, to find an A^* s.t. $A^*(\phi) = 1$.

Notice that if |X| = n, then $m \leq \binom{2n}{2} = O(n^2)$.

In general k-SAT \in NP-complete, for $k \ge 3$. But 2-SAT \in P.

A randomized algorithm for 2-SAT

```
Given a n variable 2-SAT formula \phi, \{C_i\}_{i=1}^m
for 1 \leq i \leq n do
   A(x_i) := 1
end for
t := 0
while t \leq 2cn^2 and some clause is unsatisfied do
    Pick and unsatisfied clause C<sub>i</sub>
    Choose u.a.r. one of the 2 variables in C<sub>i</sub> and flip its value
    if \phi is satisfied then
        return A
    end if
end while
return \phi is unsatisfiable
```

An example: unsat formula

$$\begin{split} & \text{If } \varphi = (x_1 \vee x_2) \wedge (\bar{x}_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee x_2) \wedge (x_1 \vee \bar{x}_2) \\ & \text{does not has a } \mathcal{A}^* \models \varphi. \end{split}$$

t	x_1	x2	sel clause
1	1	1	2
	1	0	3

 $\boldsymbol{\varphi}$ is unsat eventually the algorithm will stop after reaching the maximum number of steps.

An example: unsat formula

$$\begin{split} & \text{If } \varphi = (x_1 \vee x_2) \wedge (\bar{x}_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee x_2) \wedge (x_1 \vee \bar{x}_2) \\ & \text{does not has a } \mathcal{A}^* \models \varphi. \end{split}$$

t	x ₁	x ₂	sel clause
1	1	1	2
2	- 1	0	3

 $\boldsymbol{\varphi}$ is unsat eventually the algorithm will stop after reaching the maximum number of steps.

$$\begin{split} \text{If } \varphi &= (x_1 \lor x_2) \land (\bar{x}_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \\ \text{does not has a } \mathcal{A}^* \models \varphi. \end{split}$$

t	x_1	x2	sel clause
1	1	1	2
2	1	0	3
3	0	0	1

$$\begin{split} & \text{If } \varphi = (x_1 \vee x_2) \wedge (\bar{x}_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee x_2) \wedge (x_1 \vee \bar{x}_2) \\ & \text{does not has a } \mathcal{A}^* \models \varphi. \end{split}$$

t	x_1	x2	sel clause
1	1	1	2
2	1	0	3
3	0	0	1

$$\begin{split} & \text{If } \varphi = (x_1 \vee x_2) \wedge (\bar{x}_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee x_2) \wedge (x_1 \vee \bar{x}_2) \\ & \text{does not has a } \mathcal{A}^* \models \varphi. \end{split}$$

t	x ₁	x2	sel clause
1	1	1	2
2	1	0	3
2 3	0	0	1
-		-	-

$$\begin{split} & \text{If } \varphi = (x_1 \vee x_2) \wedge (\bar{x}_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee x_2) \wedge (x_1 \vee \bar{x}_2) \\ & \text{does not has a } \mathcal{A}^* \models \varphi. \end{split}$$

t	x ₁	x2	sel clause
1	1	1	2
2	1	0	3
3	0	0	1
÷	÷	÷	:

If $\varphi = (x_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2) \wedge (\bar{x}_4 \vee \bar{x}_3) \wedge (x_4 \vee \bar{x}_1)$

t	x ₁	x2	x3	x4	sel clause
1	1	1	1	1	2
	0	-1	-1	-1	1

If $\varphi = (x_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2) \wedge (\bar{x}_4 \vee \bar{x}_3) \wedge (x_4 \vee \bar{x}_1)$

t 1	x ₁ 1	x ₂ 1	x ₃ 1	x ₄ 1	sel clause 2
2	0	-1	-1	-1	1

If $\varphi = (x_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2) \wedge (\bar{x}_4 \vee \bar{x}_3) \wedge (x_4 \vee \bar{x}_1)$

t	x_1	x2	x3	x4	sel clause
1	1	1	1	1	2
2	0	1	1	1	1
	0	0	1	1	4

If $\varphi = (x_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2) \wedge (\bar{x}_4 \vee \bar{x}_3) \wedge (x_4 \vee \bar{x}_1)$

t	x ₁	x2	x3	x4	sel clause
1	1	1	1	1	2
2	0	1	1	1	1
3	0	0	1	1	4

If $\varphi = (x_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2) \wedge (\bar{x}_4 \vee \bar{x}_3) \wedge (x_4 \vee \bar{x}_1)$

t	x ₁	x2	x3	x4	sel clause
1	1	1	1	1	2
2	0	1	1	1	1
3	0	0	1	1	4
	0	0	-1	0	

If $\varphi = (x_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2) \wedge (\bar{x}_4 \vee \bar{x}_3) \wedge (x_4 \vee \bar{x}_1)$

t	x ₁	x2	χ_3	x4	sel clause
1	1	1	1	1	2
2	0	1	1	1	1
3	0	0	1	1	4
4	0	0	1	0	

If
$$\varphi = (x_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2) \wedge (\bar{x}_4 \vee \bar{x}_3) \wedge (x_4 \vee \bar{x}_1)$$

t	x ₁	x2	x3	x4	sel clause
1	1	1	1	1	2
2	0	1	1	1	1
3	0	0	1	1	4
4	0	0	1	0	_

If
$$\varphi = (x_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2) \wedge (\bar{x}_4 \vee \bar{x}_3) \wedge (x_4 \vee \bar{x}_1)$$

t	x ₁	x2	χ_3	x4	sel clause
1	1	1	1	1	2
2	0	1	1	1	1
3	0	0	1	1	4
4	0	0	1	0	_

Analysis for 2-SAT algorithm

Given $\varphi, |X| = n, \{C_j\}_{i=1}^m$

assume that there is A^* such that $\varphi(A^*) = 1$

Let A_i be the assignment at the i-th iteration.

- Let $X_i = |\{x_j \in X | A_i(x_j) = A^*(x_j)\}.$
- Notice $0 \leq X_i \leq n$. Moreover, when $X_i = n$, we found A^* .
- Analysis: Starting from X_i < n, how long to get X_i = n?

• Note that
$$\mathbb{P}[X_{i+1} = 1 | X_i = 0] = 1$$
.

Analysis for 2-SAT algorithm

- As A* satisfies φ and A_i no, there is a clause C_j that A* satisfies but A_i not.
- So A^* and A_i disagree in the value of at least one variable.
- It is also possible to flip the value of a variable in C_j in which A and A* agree.

Therefore,

For $1 \le k \le n-1$, $\mathbb{P}[X_{i+1} = k+1 | X_i = k] \ge 1/2$ and $\mathbb{P}[X_{i+1} = k-1 | X_i = k] \le 1/2$.

Analysis for 2-SAT

The process X_0, X_1, \ldots is not necessarily a MC,

- The probability that X_{i+1} > X_i depends on whether A_i and A* disagree in 1 or 2 variables in the selected unsatisfied clause C.
- If A^* makes true both literals in C, $\mathbb{P}[X_{i+1} = k+1 | X_i = k] = 1$, otherwise $\mathbb{P}[X_{i+1} = k+1 | X_i = k] = 1/2$
- This difference might depend on the clauses and variables selected in the past, so the transition probabilities are not memoryless.
- X_t is not a Markov chain. Can we bound the process by a MC?.

Analysis for 2-SAT

The process X_0, X_1, \ldots is not necessarily a MC,

- The probability that X_{i+1} > X_i depends on whether A_i and A* disagree in 1 or 2 variables in the selected unsatisfied clause C.
- If A^* makes true both literals in C, $\mathbb{P}[X_{i+1} = k+1 | X_i = k] = 1$, otherwise $\mathbb{P}[X_{i+1} = k+1 | X_i = k] = 1/2$
- This difference might depend on the clauses and variables selected in the past, so the transition probabilities are not memoryless.
- X_t is not a Markov chain. Can we bound the process by a MC?.

Analysis for 2-SAT

Define a MC $Y_0, Y_1, Y_2, ...$ which is a pessimistic version of process $X_0, X_1, ...$, in the sense that Y_i measures exactly the same quantity than X_i but the probability of change (up or down) will be exactly 1/2.

$$\begin{array}{l} Y_0 = X_0 \text{ and } \mathbb{P}[Y_{i+1} = 1 \mid Y_i = 0] = 1; \\ \hline \\ \text{For } 1 \leqslant k \leqslant n-1, \mathbb{P}[Y_{i+1} = k+1 \mid Y_i = k] = 1/2; \\ \hline \\ \mathbb{P}[Y_{i+1} = k-1 \mid Y_i = k] = 1/2. \end{array}$$

The time to reach n from $j \ge 0$ in $\{Y_i\}_{i=0}^n$ is \ge that in $\{X_i\}_{i=0}^n$.

Lemma

If a 2-CNF ϕ on n variables has a satisfying assignment A^{*}, the 2-SAT algorithm finds one in expected time $\leq n^2$.

Proof

- Let h_j be the expected time, for process Y, to go from state j to state n.
- It suffices to prove that, when Y starts in state j the time to arrives to n is ≤ 2cn².
- We devise a recurrence to bound h

- Proof (cont'd)
 - $h_n = 0$ and $h_1 = h_0 + 1$;
 - \blacksquare We want a general recurrence on $h_j,$ for $1 \leqslant j < n$
 - $\label{eq:constant} \begin{tabular}{ll} \begin{tabular}{ll} \hline line \\ j \rightarrow n \mbox{ in } Y. \end{tabular}$
 - With probability 1/2, $Z_j = Z_{j-1} + 1$ and, with probability 1/2, $Z_j = Z_{j+1} + 1$.

• So
$$h_j = \mathbb{E}[Z_j]$$
.

$$\begin{split} \mathbb{E}[Z_j] &= \mathbb{E}\left[\frac{Z_{j-1}+1}{2} + \frac{Z_{j+1}+1}{2}\right] = \frac{\mathbb{E}[Z_{j-1}]+1}{2} + \frac{\mathbb{E}[Z_{j+1}]+1}{2}.\\ \text{So, } h_j &= \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1. \end{split}$$

- Proof (cont'd)

From the previous bound we get $h_j = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1$.

The recurrence has the n+1 equations,

$$\begin{split} &h_n = 0 \\ &h_0 = h_1 + 1 \\ &h_j = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1 \qquad 0 \leqslant j \leqslant n-1 \end{split}$$

Let us prove, by induction that

 $h_j = h_{j+1} + 2j + 1.$

 $\label{eq:proposition} \hline For \ 0 \leqslant j \leqslant n-1, \ h_j = h_{j+1} + 2j+1.$

```
Proof (of Proposition) 
Base case: If j = 0, 2j + 1 = 1, and we were given h_0 = h_1 + 1.
```

$$\label{eq:proposition} \hline For \ 0 \leqslant j \leqslant n-1, \ h_j = h_{j+1} + 2j+1.$$

Proof of Proposition (cont'd)

IH: for $j=k-1,\ h_{k-1}=h_k+2(k-1)+1.$ Now consider j=k. By the "middle case" of our system of equations,

$$\begin{split} h_k &= \frac{h_{k-1} + h_{k+1}}{2} + 1 \\ &= \frac{h_k + 2(k-1) + 1}{2} + \frac{h_{k+1}}{2} + 1 \qquad \text{by IH} \\ &= \frac{h_k}{2} + \frac{h_{k+1}}{2} + \frac{2k+1}{2} \end{split}$$

Subtracting $\frac{h_k}{2}$ from each side, we get the result.

Error probability for 2-SAT algorithm

- Theorem

The 2-SAT algorithm gives the correct answer NO if ϕ is not satisfiable. Otherwise, with probability $\ge 1 - \frac{1}{2^c}$ the algorithm returns a satisfying assignment.

Error probability for 2-SAT algorithm

- ⊂ Proof
 - Let ϕ be satisfiable (otherwise the theorem holds).
 - Break the 2cn² iterations into c blocks of 2n² iterations.
 - For each block i, define a r.v. Z = number of iterations from the start of the i-block until a solution is found.
 - Using Markov's inequality:

$$\mathbb{P}\Big[Z>2n^2\Big]\leqslant \frac{n^2}{2n^2}=\frac{1}{2}.$$

Therefore, the probability that the algorithm fails to find a satisfying assignment after c segments (no block includes a solution) is at most ¹/_{2c}.