
Probabilistic Techniques in Data Stream
Analysis

Conrado Martínez
U. Politècnica de Catalunya

RA-MIRI 2023–2024

Part

1 Introduction

Introduction

A data stream is a (very long) sequence

Z = z1, z2, z3, . . . , zN

of elements drawn from a (very large) domain U (zi ∈ U)
The goal: to compute f(Z), but . . .

Introduction

A data stream is a (very long) sequence

Z = z1, z2, z3, . . . , zN

of elements drawn from a (very large) domain U (zi ∈ U)
The goal: to compute f(Z), but . . .

Introduction

. . . under rather stringent constraints (data stream model)
a single pass over the data stream
extremely short time spent on each single data item
a limited amount M of auxiliary memory, M� N; ideally
M = Θ(1) or M = Θ(logN)

no statistical hypothesis about the data

Introduction

. . . under rather stringent constraints (data stream model)
a single pass over the data stream
extremely short time spent on each single data item
a limited amount M of auxiliary memory, M� N; ideally
M = Θ(1) or M = Θ(logN)

no statistical hypothesis about the data

Introduction

. . . under rather stringent constraints (data stream model)
a single pass over the data stream
extremely short time spent on each single data item
a limited amount M of auxiliary memory, M� N; ideally
M = Θ(1) or M = Θ(logN)

no statistical hypothesis about the data

Introduction

. . . under rather stringent constraints (data stream model)
a single pass over the data stream
extremely short time spent on each single data item
a limited amount M of auxiliary memory, M� N; ideally
M = Θ(1) or M = Θ(logN)

no statistical hypothesis about the data

Introduction

There are a wide range of applications for the data stream
model

Network traffic analysis⇒ DoS/DDoS attacks, worms, . . .
Database query optimization
Information retrieval⇒ similarity index
Data mining
Recommedation systems
and many more . . .

Introduction

There are a wide range of applications for the data stream
model

Network traffic analysis⇒ DoS/DDoS attacks, worms, . . .
Database query optimization
Information retrieval⇒ similarity index
Data mining
Recommedation systems
and many more . . .

Introduction

There are a wide range of applications for the data stream
model

Network traffic analysis⇒ DoS/DDoS attacks, worms, . . .
Database query optimization
Information retrieval⇒ similarity index
Data mining
Recommedation systems
and many more . . .

Introduction

There are a wide range of applications for the data stream
model

Network traffic analysis⇒ DoS/DDoS attacks, worms, . . .
Database query optimization
Information retrieval⇒ similarity index
Data mining
Recommedation systems
and many more . . .

Introduction

There are a wide range of applications for the data stream
model

Network traffic analysis⇒ DoS/DDoS attacks, worms, . . .
Database query optimization
Information retrieval⇒ similarity index
Data mining
Recommedation systems
and many more . . .

Introduction

There are a wide range of applications for the data stream
model

Network traffic analysis⇒ DoS/DDoS attacks, worms, . . .
Database query optimization
Information retrieval⇒ similarity index
Data mining
Recommedation systems
and many more . . .

Introduction

We’ll often look at Z as a multiset {x1 ◦ f1, . . . , xn ◦ fn}, where

fi = frequency of the i-th distinct element xi

Some fundamental problems in data stream analysis:
Number of distinct elements: card(Z) = n 6 N

Random samples of distinct elements

Frequency moments Fp =
∑

16i6n f
P
i

(N.B. n = F0,N = F1)

(Number of) Elements xi such that fi > k (k-elephants) or
fi < k (k-mice)
(Number of) Elements xi such that fi/N > c, 0 < c < 1
(c-icebergs, a.k.a. heavy hitters)
The k most frequent elements (top-k elements)

Introduction

We’ll often look at Z as a multiset {x1 ◦ f1, . . . , xn ◦ fn}, where

fi = frequency of the i-th distinct element xi

Some fundamental problems in data stream analysis:
Number of distinct elements: card(Z) = n 6 N

Random samples of distinct elements

Frequency moments Fp =
∑

16i6n f
P
i

(N.B. n = F0,N = F1)

(Number of) Elements xi such that fi > k (k-elephants) or
fi < k (k-mice)
(Number of) Elements xi such that fi/N > c, 0 < c < 1
(c-icebergs, a.k.a. heavy hitters)
The k most frequent elements (top-k elements)

Introduction

We’ll often look at Z as a multiset {x1 ◦ f1, . . . , xn ◦ fn}, where

fi = frequency of the i-th distinct element xi

Some fundamental problems in data stream analysis:
Number of distinct elements: card(Z) = n 6 N

Random samples of distinct elements

Frequency moments Fp =
∑

16i6n f
P
i

(N.B. n = F0,N = F1)

(Number of) Elements xi such that fi > k (k-elephants) or
fi < k (k-mice)
(Number of) Elements xi such that fi/N > c, 0 < c < 1
(c-icebergs, a.k.a. heavy hitters)
The k most frequent elements (top-k elements)

Introduction

We’ll often look at Z as a multiset {x1 ◦ f1, . . . , xn ◦ fn}, where

fi = frequency of the i-th distinct element xi

Some fundamental problems in data stream analysis:
Number of distinct elements: card(Z) = n 6 N

Random samples of distinct elements

Frequency moments Fp =
∑

16i6n f
P
i

(N.B. n = F0,N = F1)

(Number of) Elements xi such that fi > k (k-elephants) or
fi < k (k-mice)
(Number of) Elements xi such that fi/N > c, 0 < c < 1
(c-icebergs, a.k.a. heavy hitters)
The k most frequent elements (top-k elements)

Introduction

We’ll often look at Z as a multiset {x1 ◦ f1, . . . , xn ◦ fn}, where

fi = frequency of the i-th distinct element xi

Some fundamental problems in data stream analysis:
Number of distinct elements: card(Z) = n 6 N

Random samples of distinct elements

Frequency moments Fp =
∑

16i6n f
P
i

(N.B. n = F0,N = F1)

(Number of) Elements xi such that fi > k (k-elephants) or
fi < k (k-mice)
(Number of) Elements xi such that fi/N > c, 0 < c < 1
(c-icebergs, a.k.a. heavy hitters)
The k most frequent elements (top-k elements)

Introduction

We’ll often look at Z as a multiset {x1 ◦ f1, . . . , xn ◦ fn}, where

fi = frequency of the i-th distinct element xi

Some fundamental problems in data stream analysis:
Number of distinct elements: card(Z) = n 6 N

Random samples of distinct elements

Frequency moments Fp =
∑

16i6n f
P
i

(N.B. n = F0,N = F1)

(Number of) Elements xi such that fi > k (k-elephants) or
fi < k (k-mice)
(Number of) Elements xi such that fi/N > c, 0 < c < 1
(c-icebergs, a.k.a. heavy hitters)
The k most frequent elements (top-k elements)

Introduction

Very limited available memory⇒ exact solution too costly or
unfeasible
⇒ Randomized algorithms⇒ estimation q̂ of the quantity of
interest q = f(Z)

q̂ must be an unbiased estimator

E[q̂] = q

The estimator must accurate, for example, it must have a
small standard error

SE [q̂] :=

√
V[q̂]
E[q̂]

< ε,

e.g., ε = 0.01 (1%)

Introduction

Very limited available memory⇒ exact solution too costly or
unfeasible
⇒ Randomized algorithms⇒ estimation q̂ of the quantity of
interest q = f(Z)

q̂ must be an unbiased estimator

E[q̂] = q

The estimator must accurate, for example, it must have a
small standard error

SE [q̂] :=

√
V[q̂]
E[q̂]

< ε,

e.g., ε = 0.01 (1%)

Part I

Cardinality Estimation

2 Probabilistic Counting

3 LogLog & HyperLogLog

4 Order Statistics

5 Recordinality

Part I

Cardinality Estimation

2 Probabilistic Counting

3 LogLog & HyperLogLog

4 Order Statistics

5 Recordinality

Probabilistic Counting

G.N. Martin

In late 70s G. Nigel Martin invented probabilistic counting to
optimize database query performance

To correct the bias that he systematically found in his
experiments, he introduced a “fudge” factor in the estimator

Probabilistic Counting

Ph. Flajolet

When Philippe Flajolet learnt about the algorithm, he put it on a
solid scientific ground, with a detailed mathematical analysis
which delivered the exact value of the correction factor and a
tight upper bound on the standard error

Probabilistic Counting

First idea: every element is hashed to a real value in (0, 1)
⇒ reproductible randomness
The “multiset” Z is mapped by the hash function
h : U→ (0, 1) to a multiset

Z ′ = h(Z) = {y1 ◦ f1, . . . ,yn ◦ fn},

with yi = hash(xi), fi = frequency of xi in Z

The set of distinct∗ elements Y = {y1, . . . ,yn} is a set of n
random numbers, independent and uniformly drawn from
(0, 1)

Probabilistic Counting

First idea: every element is hashed to a real value in (0, 1)
⇒ reproductible randomness
The “multiset” Z is mapped by the hash function
h : U→ (0, 1) to a multiset

Z ′ = h(Z) = {y1 ◦ f1, . . . ,yn ◦ fn},

with yi = hash(xi), fi = frequency of xi in Z

The set of distinct∗ elements Y = {y1, . . . ,yn} is a set of n
random numbers, independent and uniformly drawn from
(0, 1)

Probabilistic Counting

First idea: every element is hashed to a real value in (0, 1)
⇒ reproductible randomness
The “multiset” Z is mapped by the hash function
h : U→ (0, 1) to a multiset

Z ′ = h(Z) = {y1 ◦ f1, . . . ,yn ◦ fn},

with yi = hash(xi), fi = frequency of xi in Z

The set of distinct∗ elements Y = {y1, . . . ,yn} is a set of n
random numbers, independent and uniformly drawn from
(0, 1)

∗We’ll neglect the probability of collisions, i.e., h(xi) = h(xj) for some xi 6= xj;
this is reasonable if h(x) has enough bits

Probabilistic Counting

Flajolet & Martin (JCSS, 1985) proposed to find, among the set
of hash values, the length of the largest prefix (in binary)
0.0R−11 . . . such that all shorter prefixes with the same pattern
0.0p−11 . . ., p 6 R, also appear

The value R is an observable which can be easily be computed
using a small auxiliary memory and it is insensitive to
repetitions← the observable is a function of Y, not of the fi’s

Probabilistic Counting

For a set of n random numbers in (0, 1)→

E[R] ≈ log2 n

However E
[
2R
]
6∼ n, there is a significant bias and we need

φ such that
E
[
φ · 2R

]
∼ n

Probabilistic Counting

For a set of n random numbers in (0, 1)→

E[R] ≈ log2 n

However E
[
2R
]
6∼ n, there is a significant bias and we need

φ such that
E
[
φ · 2R

]
∼ n

Probabilistic Counting

procedure PROBABILISTICCOUNTING(Z)
bmap← 〈0, 0, . . . , 0〉
for z ∈ Z do
y← hash(z)
p← lenght of the largest prefix 0.0p−11 . . . in y
bmap[p]← 1

end for
R← largest p such that bmap[i] = 1 for all 1 6 i 6 p

. φ is the correction factor: E
[
φ · 2R

]
= n

return Z := φ · 2R
end procedure

A very precise mathematical analysis gives:

φ−1 =
eγ
√

2
3

∏
k>1

(
(4k+ 1)(2k+ 1)

2k(4k+ 3)

)(−1)ν(k)

≈ 0.77351 . . .

Stochastic averaging

The standard error of Z := φ · 2R, despite constant, is too
large: SE [Z] > 1
Second idea: repeat several times to reduce variance and
improve precision
Problem: using m hash functions to generate m streams is
too costly and it’s very difficult to guarantee independence
between the hash values

Stochastic averaging

The standard error of Z := φ · 2R, despite constant, is too
large: SE [Z] > 1
Second idea: repeat several times to reduce variance and
improve precision
Problem: using m hash functions to generate m streams is
too costly and it’s very difficult to guarantee independence
between the hash values

Stochastic averaging

The standard error of Z := φ · 2R, despite constant, is too
large: SE [Z] > 1
Second idea: repeat several times to reduce variance and
improve precision
Problem: using m hash functions to generate m streams is
too costly and it’s very difficult to guarantee independence
between the hash values

Stochastic averaging

Use the first log2m bits of each hash value to “redirect” it
(the remaining bits) to one of the m substreams→
stochastic averaging
Obtain m observables R1, R2, . . . , Rm, one from each
substream
Each Ri gives an estimation for the cardinality of the i-th
substream, namely, Ri estimates n/m; the mean value
R = 1/m

∑
Ri also estimates n/m

Stochastic averaging

Use the first log2m bits of each hash value to “redirect” it
(the remaining bits) to one of the m substreams→
stochastic averaging
Obtain m observables R1, R2, . . . , Rm, one from each
substream
Each Ri gives an estimation for the cardinality of the i-th
substream, namely, Ri estimates n/m; the mean value
R = 1/m

∑
Ri also estimates n/m

Stochastic averaging

Use the first log2m bits of each hash value to “redirect” it
(the remaining bits) to one of the m substreams→
stochastic averaging
Obtain m observables R1, R2, . . . , Rm, one from each
substream
Each Ri gives an estimation for the cardinality of the i-th
substream, namely, Ri estimates n/m; the mean value
R = 1/m

∑
Ri also estimates n/m

Stochastic averaging

There are many different options to compute an estimator from
the m observables

Sum of estimators:

Z1 := φ1(2R1 + . . . + 2Rm)

Arithmetic mean of observables (as proposed by Flajolet &
Martin):

Z2 := m · φ2 · 2
1
m

∑
16i6m Ri

Stochastic averaging

Harmonic mean (keep tuned):

Z3 := φ3 ·
m2

2−R1 + 2−R2 + . . . + 2−Rm

Since 2−Ri ≈ m/n, the second factor gives ≈ m2/(m2/n) = n

Stochastic averaging

All the strategies above yield a standard error of the form

c√
m

+ l.o.t.

Larger memory⇒ improved precision!
In probabilistic counting the authors used the arithmetic
mean of observables

SE [ZProbCount] ≈
0.78√
m

Stochastic averaging

All the strategies above yield a standard error of the form

c√
m

+ l.o.t.

Larger memory⇒ improved precision!
In probabilistic counting the authors used the arithmetic
mean of observables

SE [ZProbCount] ≈
0.78√
m

Part I

Cardinality Estimation

2 Probabilistic Counting

3 LogLog & HyperLogLog

4 Order Statistics

5 Recordinality

LogLog & HyperLogLog

M. Durand

Durand & Flajolet (2003) realized that the bitmaps
(Θ(logn) bits) used by Probabilistic Counting can be
avoided and propose as observable the largest R such that
the pattern 0.0R−11 appears
The new observable is similar to that of Probabilistic
Counting but not equal: R(LogLog) > R(ProbCount)

Observed patterns: 0.1101. . . , 0.010. . . , 0.0011 . . . ,
0.00001. . .
R(LogLog) = 5, R(ProbCount) = 3

Example

LogLog & HyperLogLog

M. Durand

Durand & Flajolet (2003) realized that the bitmaps
(Θ(logn) bits) used by Probabilistic Counting can be
avoided and propose as observable the largest R such that
the pattern 0.0R−11 appears
The new observable is similar to that of Probabilistic
Counting but not equal: R(LogLog) > R(ProbCount)

Observed patterns: 0.1101. . . , 0.010. . . , 0.0011 . . . ,
0.00001. . .
R(LogLog) = 5, R(ProbCount) = 3

Example

LogLog & HyperLogLog

M. Durand

Durand & Flajolet (2003) realized that the bitmaps
(Θ(logn) bits) used by Probabilistic Counting can be
avoided and propose as observable the largest R such that
the pattern 0.0R−11 appears
The new observable is similar to that of Probabilistic
Counting but not equal: R(LogLog) > R(ProbCount)

Observed patterns: 0.1101. . . , 0.010. . . , 0.0011 . . . ,
0.00001. . .
R(LogLog) = 5, R(ProbCount) = 3

Example

LogLog & HyperLogLog

The new observable is simpler to obtain: keep updated the
largest R seen so far: R := max{R,p}⇒ only Θ(log logn)
bits needed, since E[R] = Θ(logn)!
We have E[R] ∼ log2 n, but E

[
2R
]
= +∞, stochastic

averaging comes to rescue!
For LogLog, Durand & Flajolet propose

ZLogLog := αm ·m · 2
1
m

∑
16i6m Ri

LogLog & HyperLogLog

The new observable is simpler to obtain: keep updated the
largest R seen so far: R := max{R,p}⇒ only Θ(log logn)
bits needed, since E[R] = Θ(logn)!
We have E[R] ∼ log2 n, but E

[
2R
]
= +∞, stochastic

averaging comes to rescue!
For LogLog, Durand & Flajolet propose

ZLogLog := αm ·m · 2
1
m

∑
16i6m Ri

LogLog & HyperLogLog

The new observable is simpler to obtain: keep updated the
largest R seen so far: R := max{R,p}⇒ only Θ(log logn)
bits needed, since E[R] = Θ(logn)!
We have E[R] ∼ log2 n, but E

[
2R
]
= +∞, stochastic

averaging comes to rescue!
For LogLog, Durand & Flajolet propose

ZLogLog := αm ·m · 2
1
m

∑
16i6m Ri

LogLog & HyperLogLog

The mathematical analysis gives for the correcting factor

αm =

(
Γ(−1/m)

1 − 21/m

ln 2

)−m

that guarantees that E[Z] = n+ l.o.t. (asymptotically
unbiased) and the standard error is

SE
[
ZLogLog

]
≈ 1.30√

m

Only m counters of size log2 log2(n/m) bits needed:
Ex.: m = 2048 = 211 counters, 5 bits each (1.25 Kbyte in
total), are enough to give precise cardinality estimations for
n up to 227 ≈ 108, with an standard error less than 4%

LogLog & HyperLogLog

The mathematical analysis gives for the correcting factor

αm =

(
Γ(−1/m)

1 − 21/m

ln 2

)−m

that guarantees that E[Z] = n+ l.o.t. (asymptotically
unbiased) and the standard error is

SE
[
ZLogLog

]
≈ 1.30√

m

Only m counters of size log2 log2(n/m) bits needed:
Ex.: m = 2048 = 211 counters, 5 bits each (1.25 Kbyte in
total), are enough to give precise cardinality estimations for
n up to 227 ≈ 108, with an standard error less than 4%

LogLog & HyperLogLog

É. Fusy O. Gandouet F. Meunier

Flajolet, Fusy, Gandouet & Meunier conceived in 2007 the
best algorithm known (cif. Flajolet’s keynote speech in ITC
Paris 2009)
Briefly: HyperLogLog combines the LogLog observables
Ri using the harmonic mean instead of the arithmetic mean

SE
[
ZHyperLogLog

]
≈ 1.03√

m

LogLog & HyperLogLog

É. Fusy O. Gandouet F. Meunier

Flajolet, Fusy, Gandouet & Meunier conceived in 2007 the
best algorithm known (cif. Flajolet’s keynote speech in ITC
Paris 2009)
Briefly: HyperLogLog combines the LogLog observables
Ri using the harmonic mean instead of the arithmetic mean

SE
[
ZHyperLogLog

]
≈ 1.03√

m

LogLog & HyperLogLog

P. Chassaing L. Gérin

The idea of HyperLogLog stems from the analytical study
of Chassaing & Gérin (2006) to show the optimal way to
combine observables, but in their study the observables
were the k-th order statistics of each substream (next!)
They proved that the optimal way to combine them is to
use the harmonic mean

LogLog & HyperLogLog

P. Chassaing L. Gérin

The idea of HyperLogLog stems from the analytical study
of Chassaing & Gérin (2006) to show the optimal way to
combine observables, but in their study the observables
were the k-th order statistics of each substream (next!)
They proved that the optimal way to combine them is to
use the harmonic mean

Part I

Cardinality Estimation

2 Probabilistic Counting

3 LogLog & HyperLogLog

4 Order Statistics

5 Recordinality

Order Statistics

Bar-Yossef, Kumar & Sivakumar (2002); Bar-Yossef,
Jayram, Kumar, Sivakumar & Trevisan (2002) have
proposed to use the k-th order statistic Y(k) to estimate
cardinality (KMV algorithm); for a set of n random
numbers, independent and uniformly distributed in (0, 1)

E
[
Y(k)

]
=

k

n+ 1
⇒ E

[
k− 1
Y(k)

]
= n

Giroire (2005, 2009) also proposes several estimators
combining order statistics via stochastic averaging

Order Statistics

Bar-Yossef, Kumar & Sivakumar (2002); Bar-Yossef,
Jayram, Kumar, Sivakumar & Trevisan (2002) have
proposed to use the k-th order statistic Y(k) to estimate
cardinality (KMV algorithm); for a set of n random
numbers, independent and uniformly distributed in (0, 1)

E
[
Y(k)

]
=

k

n+ 1
⇒ E

[
k− 1
Y(k)

]
= n

Giroire (2005, 2009) also proposes several estimators
combining order statistics via stochastic averaging

Order Statistics

J. Lumbroso

The minimum of the set (k = 1) does not allow a feasible
estimator, but again stochastic averaging comes to rescue
Lumbroso uses the mean of m minima, one for each
substream

ZMinCount :=
m(m− 1)

M1 + . . . +Mm
,

where Mi is the minimum hash value of the i-th substream

Order Statistics

J. Lumbroso

The minimum of the set (k = 1) does not allow a feasible
estimator, but again stochastic averaging comes to rescue
Lumbroso uses the mean of m minima, one for each
substream

ZMinCount :=
m(m− 1)

M1 + . . . +Mm
,

where Mi is the minimum hash value of the i-th substream

Order Statistics

MinCount is an unbiased estimator with standard error
1/
√
m− 2

Lumbroso also succeeds to compute the probability
distribution of ZMinCount and the small corrections needed
to estimate small cardinalities (too few elements hashing to
one particular substream)

Order Statistics

MinCount is an unbiased estimator with standard error
1/
√
m− 2

Lumbroso also succeeds to compute the probability
distribution of ZMinCount and the small corrections needed
to estimate small cardinalities (too few elements hashing to
one particular substream)

Part I

Cardinality Estimation

2 Probabilistic Counting

3 LogLog & HyperLogLog

4 Order Statistics

5 Recordinality

Recordinality

A. Helmi A. Viola

RECORDINALITY (Helmi, Lumbroso, M., Viola, 2012) is the
most recent proposed estimator (already 10 years ago!),
loosely related to order statistics, but based in completely
different principles and it exhibits several unique features
Some of the ideas where very useful to develop Affirmative
Sampling, stay tuned!

Recordinality

A. Helmi A. Viola

RECORDINALITY (Helmi, Lumbroso, M., Viola, 2012) is the
most recent proposed estimator (already 10 years ago!),
loosely related to order statistics, but based in completely
different principles and it exhibits several unique features
Some of the ideas where very useful to develop Affirmative
Sampling, stay tuned!

Recordinality

Given the data stream Z = z1, . . . , zN, consider the substream

Zu = x1, . . . , xn

with xi the i-th distinct element in Z in order of appearence

Z = 3, 14, 1, 593, 26, 53, 5, 8979, 3, 23, 8, 46, 26, 433, 8, 3, 2, 8
Zu = 3, 14, 1, 593, 26, 53, 5, 8979, 23, 8, 46, 433, 2

Example

Introduction

Applying a hash function h on Zu allows us to see the data
stream as a permutation Pu:

Z = 3, 14, 1, 593, 26, 53, 5, 8979, 3, 23, 8, 46, 26, 433, 8, 3, 2, 8
Zu = 3, 14, 1, 593, 26, 53, 5, 8979, 23, 8, 46, 433, 2
Pu = 3, 6, 1, 12, 8, 10, 4, 13, 7, 5, 9, 11, 2

To simplify this example take h(x) = x

Example

Recordinality

RECORDINALITY counts the number of records (more
generally, k-records) in the sequence of hash values
It depends in the underlying permutation of the first
occurrences of distinct values, very different from the other
estimators
If we assume that the first occurrences of distinct values
form a random permutation then there’s no need for hash
values!

Recordinality

RECORDINALITY counts the number of records (more
generally, k-records) in the sequence of hash values
It depends in the underlying permutation of the first
occurrences of distinct values, very different from the other
estimators
If we assume that the first occurrences of distinct values
form a random permutation then there’s no need for hash
values!

Recordinality

RECORDINALITY counts the number of records (more
generally, k-records) in the sequence of hash values
It depends in the underlying permutation of the first
occurrences of distinct values, very different from the other
estimators
If we assume that the first occurrences of distinct values
form a random permutation then there’s no need for hash
values!

Recordinality

σ(i) is a record of the permutation σ if σ(i) > σ(j) for all
j < i

This notion is generalized to k-records: σ(i) is a k-record if
there are at most k− 1 elements σ(j) larger than σ(i) for
j < i; in other words, σ(i) is among the k largest elements
in σ(1), . . . ,σ(i)

This example permutation contains six 2-records

Pu = 3, 6, 1, 12, 8, 10, 4, 13, 7, 5, 9, 11, 2

Example

Recordinality

σ(i) is a record of the permutation σ if σ(i) > σ(j) for all
j < i

This notion is generalized to k-records: σ(i) is a k-record if
there are at most k− 1 elements σ(j) larger than σ(i) for
j < i; in other words, σ(i) is among the k largest elements
in σ(1), . . . ,σ(i)

This example permutation contains six 2-records

Pu = 3, 6, 1, 12, 8, 10, 4, 13, 7, 5, 9, 11, 2

Example

Recordinality

σ(i) is a record of the permutation σ if σ(i) > σ(j) for all
j < i

This notion is generalized to k-records: σ(i) is a k-record if
there are at most k− 1 elements σ(j) larger than σ(i) for
j < i; in other words, σ(i) is among the k largest elements
in σ(1), . . . ,σ(i)

This example permutation contains six 2-records

Pu = 3, 6, 1, 12, 8, 10, 4, 13, 7, 5, 9, 11, 2

Example

Recordinality

procedure RECORDINALITY(Z, k)
fill S with the first k distinct elements (hash values)
of the stream Z

R← k
for all z ∈ Z do
y← h(z)
if y > min{h(x) | x ∈ S} ∧ z 6∈ S then
z∗ ← the element in S with min. hash value
R← R+ 1; S← S ∪ {z} \ z∗

end if
end for
return Z = k

(
1 + 1

k

)R−k+1
− 1

end procedure

Memory: k hash values (k logn bits) + 1 counter (log logn bits)

Analysis of k-Records

The behavior of R = Rn, the number of k-records in a random
permutation of size n, is very well understood1

E[R] = k(Hn −Hk + 1) = k ln(n/k) +O(1)

Likewise

V[R] = k(Hn −Hk) − k
2(H

(2)
n −H

(2)
k) = k ln(n/k) +O(1)

and we also know exact and asymptotic estimates for P[R = j].

1Hn = 1 + 1/2 + 1/3 + · · ·+ 1/n ∼ lnn+ O(1) denotes the n-th harmonic
number, and H(2)

n = 1 + 1/4 + 1/9 + · · ·+ 1/n2 6 π2/6.

The Estimator for Recordinality

Let us assume for the moment that k 6 R 6 n. If R < k then we
are sure that n = R. Otherwise, since E[R] = k ln(n/k) +O(1)
we can take

Z = exp(φ · R)

for some correcting factor φ to be determined and such that
E[Z] is (asymptotically?) n. Our knowledge of the probability
distribution of R furnishes the exact form for Z.

The Estimator for Recordinality

Let R be the number of k-records seen while processing
the data stream Z. Then

Z := k

(
1 +

1
k

)R−k+1

− 1

is an unbiased estimator of the cardinality (number of
distinct elements) of Z, that is,

E[Z] = n

Theorem

Recordinality in Practice

100 200 300 400 500

0.6

0.8

1.0

1.2

1.4

1.6

1.8

100 200 300 400 500

0.9

1.0

1.1

1.2

1.3

Two plots showing the accuracy of 500 estimates of the number of distinct elements
contained in Shakespeare’s A Midsummer Night’s Dream. Left: k = 64. Right:
k = 256. Above the top and below the bottom line: 5% of the estimates. Area within
centermost lines: 70% estimates. Gray rectangle: area within one standard deviation
from the mean.

Recordinality in Practice

k RECORDINALITY Adaptive Sampling k-th Order Statistic HYPERLOGLOG
Avg. Error Avg. Error Avg. Error Avg. Error

4 2737 1.04 3047 0.70 4050 0.89 2926 0.61
8 2811 0.73 3014 0.41 3495 0.44 3147 0.42

16 3040 0.54 3012 0.31 3219 0.28 2981 0.26
32 3010 0.34 3078 0.20 3159 0.18 3001 0.18
64 3020 0.22 3020 0.15 3071 0.12 3011 0.13

128 3042 0.14 3032 0.11 3070 0.10 3031 0.09
256 3044 0.08 3027 0.07 3037 0.06 3025 0.06
512 3043 0.04 3043 0.05 3046 0.04 2975 0.08

Table: Estimating the number of distinct elements in Shakespeare’s A
Midsummer Night’s Dream (n = 3031). Normalized average and the
empirical standard deviation divided by n. 10 000 simulations.

Recordinality in Practice

k RECORDINALITY Adaptive Sampling k-th Order Statistic HYPERLOGLOG
Avg. Error Avg. Error Avg. Error Avg. Error

4 43658 1.19 59474 0.94 81724 1.30 44302 0.42
8 35230 0.52 47432 0.38 57028 0.41 52905 0.39

16 57723 0.98 49889 0.29 52990 0.23 51522 0.27
32 48686 0.45 49480 0.23 50556 0.18 48009 0.16
64 47617 0.34 50524 0.14 51146 0.13 49345 0.14

128 50097 0.17 50452 0.09 50947 0.08 51531 0.10
256 51742 0.11 50857 0.06 50348 0.06 49287 0.06
512 49496 0.09 49920 0.06 50084 0.04 49916 0.04

Table: Experiments for a random stream containg n = 50 000 distinct
elements—here 25 000 simulations were run.

Part II

Distinct Sampling and Applications

6 Adaptive Sampling

7 Affirmative Sampling

8 Sampling and Similarity Estimation

Drawing Random Samples

In a random sample from the data stream (e.g., using the
reservoir method) each distinct element xj appears with
relative frequency in the sample equal to its relative
frequency fj/N in the data stream⇒ needle-on-a-haystack
Elements of low frequency will seldom be sampled, and we
cannot keep exact counts as we don’t know if the sampled
elements have been “monitorized” from the beginning

Drawing Random Samples

In a random sample from the data stream (e.g., using the
reservoir method) each distinct element xj appears with
relative frequency in the sample equal to its relative
frequency fj/N in the data stream⇒ needle-on-a-haystack
Elements of low frequency will seldom be sampled, and we
cannot keep exact counts as we don’t know if the sampled
elements have been “monitorized” from the beginning

Drawing Random Samples

The distinct sampling problem is to draw a random sample
of distinct elements and it has many applications in data
stream analysis
For example, to estimate the number of k-elephants or
k-mice in the stream we can draw a random sample of S
distinct elements, together with their frequency counts
Let SP be the number of mice (or elephants) in the sample,
and nP the number of mice (or elephants) in the data
stream. Then

E
[
SP
S

]
=
nP
n

Drawing Random Samples

The distinct sampling problem is to draw a random sample
of distinct elements and it has many applications in data
stream analysis
For example, to estimate the number of k-elephants or
k-mice in the stream we can draw a random sample of S
distinct elements, together with their frequency counts
Let SP be the number of mice (or elephants) in the sample,
and nP the number of mice (or elephants) in the data
stream. Then

E
[
SP
S

]
=
nP
n

Drawing Random Samples

The distinct sampling problem is to draw a random sample
of distinct elements and it has many applications in data
stream analysis
For example, to estimate the number of k-elephants or
k-mice in the stream we can draw a random sample of S
distinct elements, together with their frequency counts
Let SP be the number of mice (or elephants) in the sample,
and nP the number of mice (or elephants) in the data
stream. Then

E
[
SP
S

]
=
nP
n

Drawing Random Samples

Let P some property.
n = # of distinct elements in Z

nP = # of distinct elements in Z that satisfy P
S = size of the sample⇐ in general, a r.v., assume
2 6 S 6 n

SP = # of elements in the sample that satisfy P

1 E
[
SP
S

]
= nP

n

2 V
[
SP
S

]
∼
np
n ·

(
1 −

np
n

)
· E
[1
S

]
Theorem

Drawing Random Samples

Let P some property.
n = # of distinct elements in Z

nP = # of distinct elements in Z that satisfy P
S = size of the sample⇐ in general, a r.v., assume
2 6 S 6 n

SP = # of elements in the sample that satisfy P

1 E
[
SP
S

]
= nP

n

2 V
[
SP
S

]
∼
np
n ·

(
1 −

np
n

)
· E
[1
S

]
Theorem

Part II

Distinct Sampling and Applications

6 Adaptive Sampling

7 Affirmative Sampling

8 Sampling and Similarity Estimation

Adaptive Sampling

M. Wegman G. Louchard

Adaptive sampling (Wegman, 1980; Flajolet, 1990;
Louchard, 1997) is the first algorithm proposed specifically
for distinct sampling
It also gives an estimation of the cardinality, as the size S
of the returned sample is itself a random variable, but it is
always bounded by a fixed constant maxS

Adaptive Sampling

procedure ADAPTIVESAMPLING(Z, maxS)
S← ∅; p← 0
for z ∈ Z do

if hash(z) = 0p . . . ∧ z 6∈ S then
S← S ∪ {z}
if |S| > maxS then
p← p+ 1
S← S \ {z ∈ S |h(z) = 0p−11 . . .} . Filter S

end if
end if

end for
return S

end procedure

The set S is a random sample (because we can assume hash
values behave as random uniform numbers) of S = |S| distinct
elements; if n is large enough, maxS/2 6 E[S] 6 maxS

Adaptive Sampling

At the end of the algorithm, S is the number of distinct elemnts
with hash value starting .0p ≡ the number of strings in the
subtree rooted at 0p in a binary trie for n random binary strings.
There are 2p subtrees rooted at depth p

S = |S| ≈ n/2p ⇒ E[2p · S] ≈ n

Part II

Distinct Sampling and Applications

6 Adaptive Sampling

7 Affirmative Sampling

8 Sampling and Similarity Estimation

Distinct Sampling in Recordinality and Order Statistics

Recordinality and KMV collect the elements with the k
largest (smallest) hash values
Such k elements constitute a random sample of k distinct
elements, because hash values behave as random
numbers; but the value k is fixed in advance and might be
too small for the sample to be representative
Recordinality can be easily adapted to collect random
samples of expected size Θ(logn) or Θ(nα), with
0 < α < 1 and without prior knowledge of n! ⇒ Affirmative
Sampling⇒ variable-size samples, growing with n, better
precision in inferences about the full data stream

Distinct Sampling in Recordinality and Order Statistics

Recordinality and KMV collect the elements with the k
largest (smallest) hash values
Such k elements constitute a random sample of k distinct
elements, because hash values behave as random
numbers; but the value k is fixed in advance and might be
too small for the sample to be representative
Recordinality can be easily adapted to collect random
samples of expected size Θ(logn) or Θ(nα), with
0 < α < 1 and without prior knowledge of n! ⇒ Affirmative
Sampling⇒ variable-size samples, growing with n, better
precision in inferences about the full data stream

Distinct Sampling in Recordinality and Order Statistics

Recordinality and KMV collect the elements with the k
largest (smallest) hash values
Such k elements constitute a random sample of k distinct
elements, because hash values behave as random
numbers; but the value k is fixed in advance and might be
too small for the sample to be representative
Recordinality can be easily adapted to collect random
samples of expected size Θ(logn) or Θ(nα), with
0 < α < 1 and without prior knowledge of n! ⇒ Affirmative
Sampling⇒ variable-size samples, growing with n, better
precision in inferences about the full data stream

Affirmative Sampling

Early ideas date back to the original paper on Recordinality
(2012); developed and analyzed in detail in (Lumbroso, M.,
2019)
The larger the cardinality (n) the larger the samples⇒
samples better represent diversity
All distinct elements have the same opportunity to be
sampled, and if sampled they can be “monitorized” from
their first appearance

Affirmative Sampling

procedure AFFIRMATIVESAMPLING(k,Z)
fill S with the first k distinct elements
(and hash values) of the stream Z

for z ∈ Z do
if z ∈ S then

Update z stats; continue
end if
if HASH(z) > k-th largest hash value in S then

S← S ∪ {z}
else if HASH(()z) > min hash value in S then

. replace elem of min. hash in S with z
S← S \ {elem. with min. hash in S} ∪ {z}

end if
end for
return S

end procedure

Affirmative Sampling

The size S of the sample S is a random variable = the
number of k-records in a random permutation of size n⇒
E[S] = k ln(n/k) + O(1)
The sample does not contain the k-records, but the S
elements with the largest hash values seen so far⇒ S is a
random sample
If x ∈ S then x has been added to S in its very first
occurrence and it has remained in S ever since⇒ can
collect exact stats (e.g. frequency counts) for x

Affirmative Sampling

We also understand fairly well F = number of times an
element substitutes another in the sample (not a k-record,
but larger than some k-record):

E[F] = k ln2(n/k) + l.o.t.

Expected cost CN,n of Affirmative Sampling

E[CN,n] = Θ(N+ (E[S] + E[F]) logE[S])

= Θ(N+ (log2 n) · (log logn))

using appropriate data structures for the sample S

Part II

Distinct Sampling and Applications

6 Adaptive Sampling

7 Affirmative Sampling

8 Sampling and Similarity Estimation

Similarity Estimation

Consider two data streams ZA and ZB. Let A and B denote
their respective sets of distinct elements. Similarity between the
two sets is often measured by their Jaccard index

J(A,B) =
|A ∩ B|
|A ∪ B|

The containment index measures how much “A ⊆ B” and it is
given by

c(A,B) =
|A ∩ B|
|A|

Similarity Estimation

We can estimate similarity and containment from random
samples SA and SB of the two streams. If the samples are
drawn using Affirmative Sampling then

1 E
[
J(S ′A,S ′B)

]
= J(A,B) = |A∩B|

|A∪B|

2 V
[
J(S ′A,S ′B)

]
∼
J(A,B)·(1−J(A,B))
k ln(|A∪B|/k)

Theorem

Similarity Estimation

Estimating the size of the intersection

We can estimate the size of the intersection with:

Z1 =
|SA ∩ SB|

|SA|
·

(
k

(
1 +

1
k

)|SA|−k+1

− 1

)

Z2 =
|SA ∩ SB|

|SA|
· |SA|− 1

1 −MSA

, MSA = min{h(z) | z ∈ SA}

E[Z1] = E[Z2] = |A ∩ B|

N.B. No need to “filter” the samples

Other similarity measures

Jaccard’s index |A∩B|
|A∪B|

Otsuka-Ochiai (a.k.a. Cosine) |A∩B|√
|A|·|B|

Sørensen-Dice 2 |A∩B|
|A|+|B|

Kulczynski 1 |A∩B|
|A4B|

Kulczynski 2 1
2

(
|A∩B|
|A|

+
|A∩B|
|B|

)
Simpson |A∩B|

min(|A|,|B|)

Braun-Blanquet |A∩B|
max(|A|,|B|)

Correlation cos2(A,B) = |A∩B|2
|A|·|B|

.

Other similarity measures

The same proof that works for Jaccard’s similarity also works
for containment and many other similarity measures:

1 E[c(SA,SB)] = c(A,B) = |A ∩ B|/|A|
2 If σ is any of Jaccard, Simpson, Braun-Blanquet,

Kulczynski 2, correlation or Sørensen-Dice:

E
[
σ(S ′A,S ′B)

]
= σ(A,B)

3 We conjecture this also holds (asymptotically) for cosine
and Kulczynski 1 and maybe others

To Know More

[1] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar,
and Luca Trevisan.
Counting Distinct Elements in a Data Stream.
Randomization and Approximation Techniques
(RANDOM), pages 1–10. 2002.

[2] Andrei Broder.
On the resemblance and containment of documents.
Proc. Compression and Complexity of Sequences
(SEQUENCES), pages 21–29. 1997.

[3] Marianne Durand and Philippe Flajolet.
LogLog Counting of Large Cardinalities.
Proc. European Symposium on Algorithms (ESA), volume
2832 of Lecture Notes in Computer Science, pages
605–617, 2003.

To Know More

[4] Philippe Chassaing and Lucas Gerin.
Efficient Estimation of the Cardinality of Large Data Sets.
Proc. Int. Col. Mathematics and Computer Science
(MathInfo), pages 419–422, 2007.

[5] Philippe Flajolet.
On adaptive sampling.
Computing, 34:391–400, 1990.

[6] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric
Meunier.
HyperLoglog: the analysis of a near-optimal cardinality
estimation algorithm.
Proceedings of Int. Conf. Analysis of Algorithms (AofA),
pages 127–146, 2007.

To Know More

[7] Philippe Flajolet and G. Nigel Martin.
Probabilistic Counting Algorithms for Data Base
Applications.
Journal of Computer and System Sciences,
31(2):182–209, 1985.

[8] A. Helmi, J. Lumbroso, C. Martínez, and A. Viola.
Counting distinct elements in data streams: the random
permutation viewpoint.
Proc. of Int. Conf. Analysis of Algorithms (AofA), pages
323–338, 2012.

[9] Jérémie Lumbroso.
An optimal cardinality estimation algorithm based on order
statistics and its full analysis.
In Proc. Analysis of Algorithms (AofA), pages 489–504,
2010.

To Know More

[10] Jérémie Lumbroso.
How Flajolet Processed Stream with Coin Flips.
arXiv:1805.00612v1 [cs.DS] 2 May 2018.
December 2013.

[11] M. Monenizadeh and D. Woodruff.
1-Pass Relative-Error Lp-Sampling with Applications.
In Proc. Symp. Discrete Algorithms (SODA), pages
1143–1160, 2010.

[12] S. Muthu Muthukrishnan.
Data streams: Algorithms and applications.
Foundations and Trends in Theoretical Computer Science,
1(2):117–236, 2005.

	Introduction
	Cardinality Estimation
	Probabilistic Counting
	LogLog & HyperLogLog
	Order Statistics
	Recordinality

	Distinct Sampling and Applications
	Adaptive Sampling
	Affirmative Sampling
	Sampling and Similarity Estimation

