
Hashing

Conrado Martínez
U. Politècnica de Catalunya

RA-MIRI 2023–2024

Hashing

Hashing

Applications

Crypto-
graphic
Hash

Functions

Data
Stream
Analysis

Karp-
Rabin

Pattern
Matching

Data
Structures

Distributed
Hash
Tables
(P2P)

Bloom
Filters

Extensible
Hashing

Locally
Sentitive
Hashing
(LSH)

Hash
Functions

Universal
Hashing

Perfect
Hashing

Hash Tables

Open Ad-
dressing

Separate
Chaining

Coalesced
Hashing

Hashing

A hash function h maps the elements (keys) of a given domain
(or universe) U in a finite range 0..M− 1.
Hash functions must:

1 Be easy and fast to compute
2 Be represented with little memory
3 Spread the universe as evenly as possible

Ui = {x ∈ U |h(x) = i}, 0 6 i < M

|Ui| ≈
|U|

M

4 Give very different hash values to “similar” keys

Part

1 Universal Hashing

2 Hash Tables
Separate Chaining
Open Addressing
Cuckoo Hashing

3 Bloom Filters

Universal Hashing

M.N. Wegman

A class
H = {h |h : U→ [0..M− 1]}

of hash functions is universal iff, for all x,y ∈ U with x 6=
y we have

P[h(x) = h(y)] 6
1
M

,

where h is a hash function randomly drawn from H

Definition

Universal Hashing

A stronger property is pairwise independence (a.k.a. strong
universality). A class is strongly universal iff, for all x,y ∈ U with
x 6= y and any two values i, j ∈ [0..M− 1]

P[h(x) = i∧ h(y) = j] =
1
M2

Strong universality implies universality; moreover

P[h(x) = i] =
1
M

for any x and i.

Universal Hashing

Let H be a universal class and h ∈ H drawn at random. For
any fixed set of n keys S ⊆ U we have the following properties:

1 For any x ∈ S, the expected number of elements in S that
hash to h(x) is n/M.

2 The expected number of collisions is O(n2/M). If
M = Θ(n) then the expected number of collisions is O(n).

Universal Hashing

The big questions are:
Are there universal classes? Strongly universal classes?
If so, how complicated are its members? How much effort
does it take to compute and represent the functions in the
class?

Universal Hashing

In 1977 Carter and Wegman introduced the concept of
universal class of hash functions and gave the first construction.
Put the universe U into one-to-one correspondence with
[0..U− 1] (U = |U|) and let p be a prime > U.
The class

H = {ha,b |0 < a < p, 0 6 b < p}

is (strongly) universal, with

ha,b(x) = ((ax+ b) mod p) mod M

Universal Hashing

The ingredients we need are thus a BIG prime p; picking a
hash function at random from H amounts to choosing two
integers a and b at random.
Let r = dlog2(U+ 1)e. The prime number p and the numbers a
and b will need roughly r bits each. For instance, if our universe
are ASCII strings of length at most 30, U ≈ 25630 and r ≈ 240
bits; these are huge numbers and a fast primality test is a must
to have a practical scheme.

Universal Hashing

Suppose that ha,b has been picked at random and let x and y
be two distinct keys that collide

ha,b(x) = ha,b(y)

Therefore
ax+ b ≡ ay+ b+ λ ·M (mod p)

for some integer λ > 0, λ 6 p/M.

Universal Hashing

Since x 6= y, x− y 6= 0, hence x− y has an inverse
multiplicative in the ring Zp, denote it (x− y)−1.
Hence

ax ≡ ay+ λ ·M (mod p)
a(x− y) ≡ λ ·M (mod p)

a ≡ (x− y)−1 · λ ·M (mod p)

Universal Hashing

There are p− 1 possible choices for a and bp/Mc possible
values for λ; hence the probability of collision is

6
bp/Mc
p− 1

≈ 1
M

for sufficiently large p.

Universal Hashing

Notice that b plays no rôle in the universality of the family. We
might have choosen b = 0 or any other convenient fixed value.
However, picking b at random makes the class strongly
universal.

Part

1 Universal Hashing

2 Hash Tables
Separate Chaining
Open Addressing
Cuckoo Hashing

3 Bloom Filters

Hash Tables

A hash table (cat: taula de dispersió, esp: tabla de dispersión)
allows us to store a set of elements (or pairs 〈key, value〉)
using a hash function h : K =⇒ I, where I is the set of indices
or addresses into the table, e.g., I = [0..M− 1].

Ideally, the hash function h would map every element (their
keys) to a distinct address of the table, but this is hardly
possible in a general situation, and we should expect to find
collisions (different keys mapping to the same address) as soon
as the number of elements stored in the table is n = Ω(

√
M).

Hash Tables

If the hash function evenly “spreads” the keys, the hash table
will be useful as there will be a small number of keys mapping
to any given address of the table.

Given two distinct keys x and y, we say that they are
synonyms, also that they collide if h(x) = h(y).

A fundamental problem in the implementation of a dictionary
using a hash table is to design a collision resolution strategy.

Hash Tables
template <typename T> class Hash {
public:

int operator()(const T& x) const ;
};

template <typename Key, typename Value,
template <typename> class HashFunct = Hash>

class Dictionary {
public:

...
private:

struct node {
Key _k;
Value _v;
...

};
nat _M; // capacity of the table
nat _n; // number of elements (size) of the table
double _alpha_max; // max. load factor
HashFunct<Key> h;

// open addressing
vector<node> _Thash; // an array with pairs <key,value>

// separate chaining
// vector<list<node>> _Thash; // an array of lists of synonyms

int hash(const Key& k) {
return h(k) % _M;

}
};

Hash Functions

A good hash function h must enjoy the following properties
1 It is easy to compute
2 It must evenly spread the set of keys K: for all i, 0 6 i < M

#{k ∈ K |h(k) = i}

#{k ∈ K}
≈ 1
M

Hash Functions

In our implementation, the class Hash<T> overloads operator
() so that for an object h of the class Hash<T>, h(x) is the
result of “applying” h to the object x of class T. The operation
returns a positive integer.
The private method hash in class Dictionary computes

h(x) % _M
to obtain a valid position into the table, an index between 0 and
_M - 1.

Hash Functions

// specialization of the template for T = string
template <> class Hash<string> {
public:

int operator()(const string& x) const {

int s = 0;
for (int i = 0; i < x.length(); ++i)

s = s * 37 + x[i];
return s;

};

// specialization of the template for T = int
template <> class Hash<int> {
static long const MULT = 31415926;
public:

int operator()(const int& x) const {

long y = ((x * x * MULT) << 20) >> 4;
return y;

}
};

Other sophisticated hash functions use weighted sums or
non-linear transformations (e.g., they square the number
represented by the k central bits of the key).

Collision Resolution

Collision resolution strategies can be grouped into two main
families. By historical reasons (not very logically) they are
called

Open hashing: separate chaining, 2-way chaining,
coalesced hashing, . . .
Open addressing: linear probing, double hashing,
quadratic hashing, cuckoo hashing, . . .

Part

1 Universal Hashing

2 Hash Tables
Separate Chaining
Open Addressing
Cuckoo Hashing

3 Bloom Filters

Separate Chaining

In separate chaining, each slot in the hash table has a pointer
to a linked list of synonyms.
template <typename Key, typename Value,

template <typename> class HashFunct = Hash>
class Dictionary {

...
private:

struct node {
Key _k;
Value _v;
..-

};
vector<list<node>> _Thash; // array of linked lists of synonyms
int _M; // capacity of the table
int _n; // number of elements
double _alpha_max; // max. load factor

list<node>::const_iterator lookup_sep_chain(const Key& k, int i) const ;
void insert_sep_chain(const Key& k,

const Value& v);
void remove_sep_chain(const Key& k) ;

};

Separate Chaining

0

6

10

12

13

19

23

25

41730

0

2

5

7

1

3

4

6

8

9

10

11

12

M = 13

h (x) = x mod M

X = { 0, 4, 6, 10, 12, 13, 17, 19, 23, 25, 30}

Separate Chaining

For insertions, we access the apropriate linked list using the
hash function, and scan the list to find out whether the key was
already present or not. If present, we modify the associated
value; if not, a new node with the pair 〈key, value〉 is added to
the list.
Since the lists contain very few elements each, the simplest
and more efficient solution is to add elements to the front.
There is no need for double links, sentinels, etc. Sorting the
lists or using some other sophisticated data structure instead of
linked lists does not report real practical benefits.

Separate Chaining

Searching is also simple: access the apropriate linked list using
the hash function and sequentially scan it to locate the key or to
report unsuccessful search.

Separate Chaining

template <typename Key, typename Value,
template <typename> class HashFunct>

void Dictionary<Key,Value,HashFunct>::insert(const Key& k,
const Value& v) {

insert_sep_chain(k, v);
if (_n / _M > _alpha_max)

// the current load factor is too large, raise here an exception or
// resize the table and rehash

}

template <typename Key, typename Value,
template <typename> class HashFunct>

void Dictionary<Key,Value,HashFunct>::insert_sep_chain(
const Key& k, const Value& v) {

int i = hash(k);
list<node>::const_iterator p = lookup_sep_chain(k,i);
// insert as first item in the list
// if not present
if (p == _thash[i].end()) {

_thash[i].push_back(node(k, v));
++_n;

}
else

p -> _v = v;
}

Separate Chaining

template <typename Key, typename Value,
template <typename> class HashFunct>

void Dictionary<Key,Value,HashFunct>::lookup(const Key& k,
bool& exists, Value& v) const {
int i = hash(k);
list<node>::const_iterator p = lookup_sep_chain(k, i);
if (p == _thash[i].end())

exists = false;
else {

exists = true;
v = p -> _v;

}
}

template <typename Key, typename Value,
template <typename> class HashFunct>

list<Dictionary<Key,Value,HashFunct>::node >::const_iterator
Dictionary<Key,Value,HashFunct>::lookup_sep_chain(const Key& k,

int i) const {

list<node>::const_iterator p = _Thash[i].begin();
// sequential search in the i-th list of synonyms
while (p != _thash[i].end() and p -> _k != k)

++p;

return p;
}

The Cost of Separate Chaining

Let n be the number of elements stored in the hash table. On
average, each linked list contains α = n/M elements and the
cost of lookups (either successful or unsuccessful), of
insertions and of deletions will be proportional to α. If α is a
small constant value then the cost of all basic operations is, on
average, Θ(1). However, it can be shown that the expected
length of the largest synonym list is Θ(logn/ log logn).
The value α is called load factor, and the performance of the
hash table will be dependent on it.

The Cost of Separate Chaining

L
(i)
n : the number of elements hashing to the i-th list,

0 6 i < M, after the insertion of n items.
Standard assumption: the probability that the j-th inserted
item hashes to position i, 0 6 i < M, is 1/M

The random variables L(i)n , 0 6 i < M, are not
independent, but they are identically distributed

Set Ln := L
(0)
n . Let Yj = 1 iff the j-th inserted item goes to

list 0, and Yj = 0 otherwise.

Ln = Y1 + . . . + Yn
E[Ln] = E[Y1 + . . . + Yn] = E[Y1] + . . . + E[Yn]

= 1/M+ . . . + 1/M = n/M = α

The Cost of Separate Chaining

Cost of unsuccessful search Un ≈ cost of insertion of the
(n+ 1)-th item

E[Un] =
∑

06i<M

E[Un|search in list i] · P[search in list i]

=
1
M

∑
06i<M

E[Un|search in list i] =
1
M

∑
06i<M

(1 + E
[
L
(i)
n

]
)

= 1 + α

The Cost of Separate Chaining

Cost of succesful search of a random item Sn ≈ cost of
deletion of a random item

E[Sn] =
∑

06i<M:L
(i)
n >0

E[Sn|search in list i] · P[search in list i]

=
∑

06i<M:L
(i)
n >0

(∑
`>0

`+ 1
2 P

[
L
(i)
n = `

])
· L

(i)
n

n

=
∑

06i<M:L
(i)
n >0

1 + α

2
L
(i)
n

n

=
1 + α

2

∑
06i<M:L

(i)
n >0

L
(i)
n

n
=

1 + α

2

The Cost of Separate Chaining

The Poisson model: in order to avoid the dependence
between L(i)n we can consider a Poisson random model in
which “balls” (items) are thrown into “bins” (slots in the
hash table) at a rate α, then the length of each list
Li ∼ Poisson(α) is independent of all other

We have, for instance, E[Li] = α = E
[
L
(i)
n

]
In general we can make our computations in the easier
Poisson model then (rigorously) transfer these results to
the “exact model”

The Cost of Separate Chaining

Let L∗n = max{L(0)
n , . . . ,L(M−1)

n }. This random variable
gives the worst-case cost of search, insertions and
deletions
An important identity for positive discrete r.v.

E[X] =
∑
k>0

kP[X = k] =
∑
k>0

P[X > k]

The Cost of Separate Chaining

In th Poisson model, we have M i.i.d. Poisson r.v. Li, all
with parameter α = n/M, giving the length of the i-th list,
0 6 i < M

Then for L∗ = max06i<M{Li} we have

P[L∗ 6 k] =
∏
i

P[Li 6 k]

=

 ∑
06j6k

αje−α

j!

M

and

E[L∗] =
∑
k>0

1 −

 ∑
06j6k

αje−α

j!

M

But this path leads us nowhere.

The Cost of Separate Chaining

We will try a different way:
Compute (or give useful bounds) for the median of L∗, i.e.,
the value of j such that P[L∗ 6 j] = 1/2
Show that the expectation (mean) of L∗ is close to its
median, namely we show that

E[L∗]
j
→ 1

if n is large enough (and α = n/M is kept constant)

The Cost of Separate Chaining

For which value j do we have

P[L∗ 6 j] =
∏
i

P[Li 6 j] =

 ∑
06k6j

αke−α

k!

M = 1/2?

The summation ∑
06k6j

αk

k!
≈ eα −

αj+1

(j+ 1)!
,

hence

P[L∗ 6 j] ≈
(

1 −
αj+1

(j+ 1)!
e−α

)M

The Cost of Separate Chaining

We want j such that(
1 −

αj+1

(j+ 1)!
e−α

)M
=

1
2

Taking natural logs on both sides

M ln
(

1 −
αj+1e−α

(j+ 1)!

)
= − ln 2

Since ln(1 − x) ∼ x+ x2/2 +O(x3)(
αj+1e−α

(j+ 1)!
+ . . .

)
≈ − ln 2

M

The Cost of Separate Chaining

Hence
αj+1e−α

(j+ 1)!
= Θ(1/M)

α→ 1 implies (j+ 1)! = M
e ln 2 , that is, j = Γ (−1)(M/(e ln 2)).

For α < 1 we also have j = Θ(Γ (−1)(M)).
Since Γ (−1)(n) ∼ lnn/ ln lnn, and n = αM we have that
the median j of L∗ is j = Θ(logn/ log logn).

(see next slide for definitions and remarks)

The Cost of Separate Chaining

Note:

Γ (−1) = inverse of the Gamma function Γ(z)
Γ generalizes factorials to complex numbers
(Γ(z+ 1) = zΓ(z)).
Since lnn! ∼ n lnn− n+O(1) (Stirling’s approximation) we
can easily prove Γ (−1)(n) ∼ lnn/ ln lnn if n→∞.

For the rest of the proof (showing that the expected value of L∗

has the same order of growth as its median) you can check
Section 2.2 in [Gon81]

d-way Chaining

Azar, Broder, Karlin and Upfal [ABKU99] have shown the
following important result

Suppose n balls are sequentailly placed in m > n bins,
so that for each ball d > 2 random bins are chosen and
the ball is placed in the least full bin —with ties broken
arbitrarily. Then with high probability, as n → ∞, the
fullest bin contains

(1 + o(1)) ln lnn/ lnd+Θ(m/n)

balls.

Theorem

d-way Chaining

This result has many applications, not only for data structures
design. In the context of hashing, the hashing scheme
suggested by this result is very straightforward:

To insert an item x, compute i = h1(x) and j = h2(x) with
two (or in general d) independent hash functions and insert
x in the synonym list which is shorter, i.e., list i if Li 6 Lj
and vice-versa
To search (or delete) an item x compute i = h1(x) and
j = h2(x) and search for x in both lists (why? why not only
the shortest?) Clearly if x is present it must be in one of
these two lists

d-way Chaining

In d-way chaining we basically multiply by d the expected costs
of all operations, as compared to separate chaining, as we
need to evaluate d hash functions and search in that many lists.
We also need to keep the size of each list.
It is very easy to show that with d-way chaining the expected
length of each list is α = n/m like in ordinary separate chaining.
However:

the variance of each L(i)n is smaller than in separate
chaining
the expected longest list has length Θ(log logn), a huge
improvement w.r.t. the Θ(logn/ log logn) in separate
chaining

For those interested in the details (in particular the proof of the
result) check [ABKU99].

Part

1 Universal Hashing

2 Hash Tables
Separate Chaining
Open Addressing
Cuckoo Hashing

3 Bloom Filters

Open Addressing

In open addressing, synonyms are stored in the hash table.
Searches and insertions probe a sequence of positions until the
given key or an empty slot is found. The sequence of probes
starts in position i0 = h(k) and continues with i1, i2, . . . The
different open addressing strategies use different rules to define
the sequence of probes. The simplest one is linear probing:

i1 = i0 + 1, i2 = i1 + 1, . . . ,

taking modulo M in all cases.

Linear Probing

template <typename Key, typename Value,
template <typename> class HashFunct = Hash>

class Dictionary {
...

private:
struct node {

Key _k;
Value _v;
bool _free;
// constructor for class node
node(const Key& k, const Value& v, bool free = true);

};
vector<node> _Thash; // array of nodes
int _M; // capacity of the table
int _n; // number of elements
double _alpha_max; // max. load factor (must be < 1)

int lookup_linear_probing(const Key& k) const ;
void insert_linear_probing(const Key& k,

const Value& v);
void remove_linear_probing(const Key& k) ;
};

Linear Probing

0

2

5

7

1

3

4

6

8

9

10

11

12 occupied12

10

6

4

0

free

17

19

occupied

occupied

occupied

occupied

occupied

occupied

occupied

occupied

free

free

free

23

13

0

2

5

7

1

3

4

6

8

9

10

11

12 occupied12

10

6

4

0

free

17

19

occupied

occupied

occupied

occupied

occupied

occupied

occupied

occupied

free

23

13

25

30

occupied

occupied

0

2

5

7

1

3

4

6

8

9

10

11

12 12

10

4

0

6

M = 13

h (x) = x mod M

X = { 0, 4, 6, 10, 12, 13, 17, 19, 23, 25, 30}

(incremento 1)

+ {0, 4, 6, 10, 12} + {13, 17, 19, 23} + {25, 30}

Linear Probing

template <typename Key, typename Value,
template <typename> class HashFunct>

int Dictionary<Key,Value,HashFunct>::lookup(
const Key& k,
bool& exists, Value& v) const {

int i = lookup_linear_probing(k);
if (not _Thash[i]._free and _Thash[i]._k == k) {

exists = true; v = _Thash[i]. _v;
}
else

exists = false;
}

template <typename Key, typename Value,
template <typename> class HashFunct>

int Dictionary<Key,Value,HashFunct>::lookup_linear_probing(
const Key& k) const {

int i = hash(k);
int visited = 0; // this is only necessary if

// _n == _M, otherwise there is at least
// a free position

while (not _Thash[i]._free and _Thash[i]._k != k
and visited < _M) {

++visited;
i = (i + 1) % _M;

}
return i;

}

Deletions in Open Addressing

There is no general solution for true deletions in open
addressing tables. It is not enough to mark the position of the
element to be removed as “free”, since later searches might
report as not present some element which is stored in the table.

The general technique that can be used is lazy deletions. Each
slot can be free, occupied or deleted. Deleted slots can be
used to store there a new element, but they are not free and
searches must pass them over and continue.

Deletions in Linear Probing

For linear probing, we can do true deletions. The deletion
algorithm must continue probing the positions after the
removed element, and moving to the emptied slot any element
whose hash address is equal (or smaller in the cyclic order) to
the address of the emptied slot. Moving an element creates a
new emptied slot, and the procedure is repeated until an empty
slot is found. In our implementation we will use the function
displ(j, i) which gives us the distance between j e i in the
cyclic order: if j > i we must turn around position _M− 1 and
go back to position 0.
int displ(j, i, M) {

if (i >= j)
return i - j;

else
return M + (i - j);

}

Deletions in Linear Probing

// we assume _n < _M

template <typename Key, typename Value,
template <typename> class HashFunct>

int Dictionary<Key,Value,HashFunct>::remove_linear_probing(
const Key& k) const {

int i = lookup_linear_probing(k);
if (not _Thash[i]._free) {

// _Thash[i] is the element to remove
int free = i; i = (i + 1) % _M; int d = 1;
while (not _Thash[i]._free) {

int i_home = hash(_Thash[i]._k);
if (displ(i_home, i, _M) >= d) {

_Thash[free] = _Thash[i]; free = i; d = 0;
}
i = (i + 1) % _M; ++d;

}
_Thash[free]._free = true; --_n;

}
}

Other Open Addressing Schemes

As we have already mention different probe sequences give us
different open addressing strategies. In general, the sequence
of probes is given by

i0 = h(x),
ij = ij−1 ⊕ ∆(j, x),

where x⊕ y denotes x+ y (mod M).

Other Open Addressing Schemes

1 Linear Probing: ∆(j, x) = 1 (or a constant); ij = h(x)⊕ j
2 Quadratic Hashing: ∆(j, x) = a · j+ b;
ij = h(x)⊕ (Aj2 + Bj+ C); constants a and b must be
carefully choosen to guarantee that the probe sequence
will ultimately explore all the table if necessary

3 Double Hashing: ∆(j, x) = h2(x) for a second independent
hash function h2 such that h2(x) 6= 0; ij = h(x)⊕ j · h2(x)

4 Uniform Hashing: i0, i1, . . . is a random permutation of
{0, . . . ,M− 1}

5 Random Probing: i0, i1, . . . is a random sequence such
that 0 6 ik < M, for all k, and it contains every value in
{0, . . . ,M− 1} at least once

Other Open Addressing Schemes
Uniform Hashing and Random Probing are completely
impractical algorithms; they are interesting as idealizations
—they do not suffer from clustering

Linear Probing suffers primary clustering. There are only
M distinct probe sequences, the M circular permutations
of 0, 1 . . . ,M− 1
Quadratic Hashing and other methods with H(j, x) = f(j) (a
non-constant function only of j) behave almost as the
schemes with secondary clustering: two keys such that
h(x) = h(y) will probe exactly the same sequence of slots,
but if a key x probes ij in the j-th step and y probes i ′k in
the k-th step then ij+1 and i ′k+1 will be probably different
Double Hashing is even better and generalizations, they
exhibit secondary (more generally k-ary clustering) as they
depend on (k− 1) evaluations of independent hash
functions

Other Open Addressing Schemes

In linear probing two keys will have the same probe
sequence with probability 1/M; in an scheme with
secondaty clustering that probability drops to 1/M(M− 1)
The average performance of schemes with k-ary
clustering, k > 2, is close to that of uniform hashing (no
clustering)
Random probing also approximates well the performance
of uniform hashing

The Cost of Open Addressing

We will focus in the following parameters (we assume M is
fixed):

1 Un: number of probes in an unsuccessful search that
starts at a random slot in a table with n items

2 Sn,i: number of probes in the successful search of the i-th
inserted item when the table contains n items, 1 6 i 6 n

We will actually be more interested in Sn := Sn,Un where Un is
a random uniform value in {1, . . . ,n}, that is, Sn is the cost of a
successful search of a random item in a table with n items

The Cost of Open Addressing

The cost of the (n+ 1)-th insertion is given by Un

With the FCFS insertion policy (see next slides), an item
will be inserted where the unsuccessful search terminated
and never be moved from there, hence

Sn,i
D
= Ui−1

where D
= denotes equal distribution

The Cost of Open Addressing

Consider random probing. What is Un = E[Un]?
With one probe we land in an empty slot and we are done.
Probability is (1 − α). If the first place is occupated, probability
α, we probe a second slot, which is empty with probability
1 − α. And so on. Thus

Un = 1× (1 − α) + 2× α · (1 − α) + 3× α2 · (1 − α)

=
∑
k>0

kαk−1 · (1 − α) = (1 − α)
∑
k>0

d(αk)

dα

= (1 − α)
d

dα

∑
k>0

αk =
1

1 − α
.

The Cost of Open Addressing

And for the expected successful search we have

Sn = E[Sn] =
1
n

∑
16i6n

E[Sn,i] =
1
n

∑
16i6n

E[Ui−1] =
1
n

∑
16i6n

Ui−1

Using Euler-McLaurin

Sn =
1
αM

∑
16i6n

Ui−1 =
1
α

∫α
0

1
1 − β

dβ =
1
α

ln
(

1
1 − α

)

The Cost of Open Addressing

The actual expected costs of hashing with uniform hashing
(and thus of quadratic hashing, double hashing) are slightly
different from those of random probing, a few small corrections
must be introduced:

Un = 1/(1 − α) − α− ln(1 − α)

Sn = 1/α
∫α

0 U(β)dβ = 1 − α/2 − ln(1 − α) (∗)

The Cost of Open Addressing

The analysis of linear probing turns out to be more challenging
than one could think at first.

The average cost of unsuccessful search is

Un =
1
2

(
1 +

1
(1 − α)2

)
The average cost of successful search is

Sn =
1
α

∫α
0
U(β)dβ =

1
2

(
1 +

1
1 − α

)
(∗∗)

The Cost of Open Addressing

Comparison of experimental vs. theoretical expected cost of
successful search in linear probing and quadratic hashing

Insertion Policies in Open Addresing

The standard insertion policy in case of a collision is FCFS
(first-come-first-served): the item x that occupies an slot
remains there, and the colliding item y continues with its
probe sequence
But other policies are also possible and have been
proposed in the literature:

LCFS (last-come-first-served): y kicks out x, x continues
with its probe sequence
Ordered hashing: If x 6 y, x remains and y continues, and
the other way around otherwise
Robin Hood: the item farthest away from its home location
stays, the other continues, ties are resolved arbitrarily

Insertion Policies in Open Addresing

All these strategies lead to the same average successful
search cost as FCFS, but:

the variance is significantly reduced
most importantly, the expected worst case is reduced from
Θ(logn) to Θ(log logn)

Think for instance in linear probing. The length of clusters will
be the same for FCFS, LCFS, OH and RH, and the sum of the
distances of all items to their respective home locations also
changes but the distribution of distances to home location will
vastly differ—like in the two sums below

1 + 3 + 7 = 3 + 4 + 4

Insertion Policies in Open Addresing

Both ordered hashing and Robin Hood have the very nice
feature that, given a set X of items to be inserted the final
table is always the same, irrespective of the order in which
item are inserted.
This invariance with respect the prder of insertions notably
simplifies some analysis.
The unsuccessful search cost in OH and RH can be
greatly improved; no need to continue until an empty slot is
found (why?)
But the insertion cost is the same, we either stop at an
empty location or we kick out some item to insert the new
item, but then we must continue

Insertion Policies in Open Addresing

Comparison of the maximum expected cost of a successful
search in linear probing with FCFS (standard), LCFS and RH

Part

1 Universal Hashing

2 Hash Tables
Separate Chaining
Open Addressing
Cuckoo Hashing

3 Bloom Filters

Cuckoo Hashing

Rasmus Pagh Flemming F. Rodler

In cuckoo hashing we have two tables T1 and T2 of size M
each, and two hash functions h1,h2 : 0→M− 1.
The worst-case complexity of searches and deletions in a
cuckoo hash table is Θ(1). We can insert in such table n < M
items: the load factor α = n/2M must be strictly less than 1/2
in order to guarantee constant expected time for insetions.

Cuckoo Hashing

To insert a new item x, we probe slot T1[h1(x)], if it is empty, we
put x there and stop. Otherwise if y sits already in that slot, then
x kicks out y— x is put in T1[h1(x)] and y moves to T2[h2(y)].
If that slot in T2 is empty, we’re done, but if some z occupies
T2[h2(y)], then y is put in its second “nest” and z is kicked out to
T1[h1(z)], and so on.
These “kicks out” give the name to this strategy. If this
procedure succeeds to insert n keys then each key x can only
appear in one of its two nests: T1[h1(x)] or T2[h2(x)],
nowhere else!

Cuckoo Hashing

Cuckoo Hashing

// Representation of the dictionary with cuckoo hashing
struct node {

Key _k;
Value _v;
bool _free;

};
vector<node> _T1, _T2;
int _M, _n;
Hash<Key> _h1, _h2;
...

Cuckoo Hashing

void lookup(const Key& k, bool& exists, Value& v) const {
exists = false;
node& n1 = _T1[_h1(x)];
if (not n1._free and n1._key == k) {

exists = true; v = n1._v;
} else {

node& n2 = _T2[_h2(x)];
if (not n1._free and n1._key == k) {

exists = true; v = n2._v;
}

}
}

Only two probes are necessary in the worst-case! To delete we
localate with 6 2 probes the key to remove and mark the slot as
free.

Cuckoo Hashing

The insertion of an item x can fail because we enter in an
infinite loop of items each kicking out the next in the cycle
. . .
The solution to the problem: nuke the table! Draw two new
hash functions, and rehash everything again with the two
new functions.
This rehashing is clearly quite costly; moreover, we don’t
have a guarantee that the new functions will succeed
where the old failed!

We will see, however, that insertion has expected amortized
constant cost, or equivalently, that the expected cost of n
insertions is Θ(n)

Cuckoo Hashing

void insert(const Key& k, const Value& v) {
if (_n == _M - 1) { // resize and rehash, cannot insert >= _M items
}
// _n < _M - 1
if (‘‘k in the table’’) { // update v and return
}
node x = { k, v, false };
for (int i = 1; i <= MaxIter(_n, _M);++i) {

// we can take MaxIter = 2n, we should never see
// more than 2n vertices unles we’re in an infinite loop
swap(x, _T1[_h1(x._k)]);
if (x._free) return;
swap(x, _T2[_h2(x._k)]);
if (x._free) return;

}
// failure!! rehash and try again:
rehash(); insert(k,v);

}

Cuckoo Hashing

We say that an insertion is good if it does not run into a infinite
loop (our implementation protects from ∞-loops by bounding
the number of iterations).
A “high-level analysis” of the cost of insertions follows from:

1 The expected number of steps/iterations in a good
insertion is Θ(1)

2 The probability that the insertion of an item is not good is
O(1/n2)

Cuckoo Hashing

3 By the union bound, the probability that we fail to make n
consecutive good insertions is O(1/n)

4 The expected total cost of making n good
insertions—conditioned on the event that we can make
them—is n×Θ(1) = Θ(n)

Cuckoo Hashing

1 The expected number of times we need to rehash a set of
n items until we can insert all with good insertions is given
by a geometric r.v. with probability of success 1 −O(1/n):

E[# rehashes] =
1

1 −O(1/n)
= 1 +O(1/n)

2 Each rehash plus the attempt to insert with good insertions
the n items has expected cost Θ(n)

3 By Wald’s lemma, the expected cost of the insertion will be

E[#rehashes]×E[cost of rehash] = (1+O(1/n))×O(n) = O(n)

Cuckoo Hashing
To prove facts #1 (good insertion needs expected O(1) time)
and #2 (probability of a good insertion is 1 −O(1/n2)) we
formulate the problem in graph theoretic terms.

Cuckoo Hashing

Cuckoo graph:
Vertices: V = {v1,i, v2,i |0 6 i < M} =
the set of 2M slots in the tables
Edges: If T1[j] is occupied by x then there’s an edge
(v1,j, v2,h2(x)), where v`,j is the vertex associated to T`[j]; x
is the label of the edge. If T2[k] is occupied by y then there
is an edge (v2,k, v1,h1(y)) with label y.

This is a labeled directed “bipartite” multigraph—all edges go
from v1,j to v2,k or from v2,k to v1,j.

Cuckoo Hashing

Consider the connected components of the cuckoo graph. A
component can be either a tree (no cycles), unicyclic (exactly
one cycle–with trees “hanging”) or complex (two or more
cycles). Trees with k nodes have exactly k− 1 edges, unicycles
have exactly k edges and complex components have > k
edges.

Fact 1: An insertion that creates a complex component is
not good =⇒ if the cuckoo graph contains no complex
components then all insertions were good
Fact 2: the expected time of a good insertion is bounded
by the expected diameter of the component in which we
make the insertion (also by the size)

Cuckoo Hashing

Then we convert the analysis to that of the cuckoo graph as a
random bipartite graph with 2M vertices and n = (1 − ε)M
edges—each item gives us an edge.
This is a very “sparse” graph, but if the density n/M grew to 1/2
there will be an complex component with very high probability
(a similar thing happens in random Erdös-Renyi graphs).

Cuckoo Hashing
The most detailed analysis of the cuckoo graph has been made
by Drmota and Kutzelnigg (2012). They prove, among many
other things:

1 The probability that the cuckoo graph contains no complex
component is

1 − h(ε)
1
M

+O(1/M2)

We do not reproduce their explicit formula for h(ε) here
(h(ε)→∞ as ε→ 0)

2 The expected number of steps in n good insertions is

6 n ·min
(

4,
ln(1/ε)
1 − ε

)
+O(1)

These two results prove the two Facts that we needed for our
analysis

Cuckoo Hashing

Several variants of Cuckoo hashing have appeared in the
literature, for instance, using d > 2 tables and d hash
functions. With such d-Cuckoo Hashing higher load factor,
approaching 1 can be achieved
An interesting variant puts all items in one single table, all
the d > 2 hash functions map keys into the range 0..M− 1;
the load factor n/M must be below some threshold αd.
We need to now which function was used to put the item at
an occupied location—easily using log2 d bits.

Part

1 Universal Hashing

2 Hash Tables
Separate Chaining
Open Addressing
Cuckoo Hashing

3 Bloom Filters

Bloom Filters

A Bloom Filter is a probabilistic data structure representing a
set of items; it supports:

Addition of items: F := F ∪ {x}

Fast lookup: x ∈ F?
Bloom filters do require very little memory and are specially
well suited for unsuccessful search (when x 6∈ F)

Bloom Filters

The price to pay for the reduced memory consumption and
very fast lookup is the non-null probability of false positives.
If x ∈ F then a lookup in the filter will always return true; but
if x 6∈ F then there is some probability that we get a positive
answer from the filter.
In other words, if the filter says x 6∈ F we are sure that’s the
case, but if the filter says x ∈ F there is some probability
that this is an error.

Bloom Filters

template <class T>
class BloomFilter {
public:

// creates a Bloom filter to store at most nmax items
// with an upper bound ’fp’ for false positives
BloomFilter(int nmax, double fp = 0.05);

void insert(const T& x);
bool contains(const T& x) const;
private:

...
}

Bloom Filters

template <class T>
class HashFunction {
public:

HashFunction(int M);
int operator()(const T& x) const;

...
};

template <class T>
class BloomFilter {

...
private:

bitvector F;
vector<HashFunction<T> > h;
int M, k;
...

};

template <class T>
BloomFilter::BloomFilter(int nmax, double fp = 0.05) {

// compute here M and k to achieve the guarantee on false
// positives
F = bitvector(M, 0);
for (int i = 0; i < k; ++i)

h.push_back(HashFunction<T>(M));
}

Bloom Filters

template <class T>
void BloomFilter::insert(const T& x) {

for (int i = 0; i < k; ++i)
F[h[i](x)] = 1;

}

template <class T>
void BloomFilter::contains(const T& x) {

for (int i = 0; i < k; ++i)
if (F[h[i](x)] == 0)

return false;
return true; // might be a false positive!

}

Bloom Filters

Probability that the j-th bit is not updated in an insertion

k−1∏
i=0

P[hi(x) 6= j] =
(

1 −
1
M

)k
Probability that the j-th bit is not updated after n insertions

n∏
`=1

P[F[j] is not updated in `-th insertion] =((
1 −

1
M

)k)n
=

(
1 −

1
M

)k·n

Bloom Filters

Probability that F[j] = 1 after n insertions

1 −

(
1 −

1
M

)k·n
Probability that the k checked bits are set to 1 ≈ probability
of a false positive(

1 −

(
1 −

1
M

)k·n)k
≈
(

1 − e−kn/M
)k

if n = αM, for some α > 0(
1 −

a

x

)bx
→ e−ba, x→∞

Bloom Filters

The derivation above is the so-called classic model for
Bloom filters—but it i snot the formula that Bloom himslef
derived in his paper!
The approximation fails for small filters; correct formulas
have been derived by Bose et al. (2008) and Christensen
et al. (2010)
For the rest of the presentation we will take

P[x is a false positive] = P[x 6∈ F∧ F.contains(x) = true]

≈
(

1 − e−kn/M
)k

,

where x is drawn at random. Be careful! The formula does
not give the probability that the filter reports x as a positive,
conditioned to x being negative!

Bloom Filters

Fix n and M. The optimal value k∗ minimizes the
probability of false positive, thus

d

dk

[(
1 − e−kn/M

)k]
k=k∗

= 0

which gives

k∗ ≈ M
n

ln 2 ≈ 0.69
M

n

Call p the probability of a false positive. This probability is
a function of k, p = p(k); for the optimal choice k∗ we have

p(k∗) ≈
(

1 − e− ln 2
)M
n ln 2

=

(
1
2

)ln 2Mn
≈ 0.6185

M
n

Bloom Filters

Suppose that you want the probability of false positive
p∗ = p(k∗) to remain below some bound P

p∗ 6 P =⇒ lnp∗ = −
M

n
(ln 2)2 6 lnP

M

n
(ln 2)2 > − lnP = ln(1/P)

M

n
>

1
ln 2

log2(1/P) ≈ 1.44 log2(1/P)

M > 1.44 · n · log2(1/P)

Bloom Filters

If we want a Bloom filter for a database that will store about
n ≈ 108 elements and a false positive rate 6 5%, we need
a bitvector of size M > 624 · 106 bits (that’s around 74GB
of memory).
Despite this amount of memory is big, it is only a small
fraction of the size of the database itself: even if we store
only keys of 32 bytes each, the database occupies more
than 3TB.
The optimal number k∗ of hash functions for the example
above is 4.32 (=⇒ use 4 or 5 hash functions for optimal
performance)

Bloom Filters

template <class T>
BloomFilter::BloomFilter(int nmax, double fp = 0.05) {

// compute here M and k to achieve the guarantee on false
// positives
M = int(log(1/P)*nmax/log(2)*log(2));
k = int(log(2)* M/nmax);
...

}

References

Hash Tables & Cuckoo Hashing

[1] Y. Azar, A. Broder, A. Karlin and E. Upfal.
Ballanced Allocations
SIAM J. Computing, 29(1):180-200, 1999.

[2] Gaston H. Gonnet
Expected Length of the Longest Probe Sequence in Hash
Code Searching
Journal of the ACM, 28 (2): 289–304, 1981.

[3] Leo J. Guibas
The Analysis of Hashing Techniques That Exhibit k-ary
Clustering
Journal of the ACM, 25 (4): 544–555, 1978.

Hash Tables & Cuckoo Hashing

[1] Donald E. Knuth
The Art of Computer Programming. Volume 3: Sorting and
Searching (2nd ed)
Addison-Wesley, Reading, MA, 1998.

[2] Rasmus Pagh and Flemming F. Rodler
Cuckoo Hashing
Journal of Algorithms 51:122-144, 2004

Hash Tables & Cuckoo Hashing

[1] L. Devroye and P. Morin
Cucko hashing: further Analysis
Information Proc. Letters 86:215–219, 2003

[2] M. Drmota and R. Kutzelnigg
A precise analysis of Cuckoo Hashing
ACM Transactions on Algorithms 8(2):1–36, 2012

Universal Hashing

[1] L. Carter and M.N. Wegman.
Universal Classes of Hash Functions.
Journal of Computer and System Sciences, 18 (2):
143–154, 1979.

[2] R. Motwani and P. Raghavan.
Randomized Algorithms.
Cambridge University Press, 1995.

[3] O. Kaser and D. Lemire.
Strongly universal string hashing is fast.
Computer Journal (published on-line in 2013)

Bloom Filters

[1] M. Mitzenmacher and E. Upfal.
Probability and computing: Randomized algorithms and
probabilistic analysis.
Cambridge University Press, 2005.

[2] B.H. Bloom.
Space/Time Trade-offs in Hash Coding with Allowable
Errors.
Communications of the ACM 13 (7): 422–426, 1970.

[3] A. Broder and M. Mitzenmacher.
Network Applications of Bloom Filters: A Survey
Internet Mathematics 1 (4):485–509, 2003.

Bloom Filters

[1] P. Bose, H. Guo, E.Kranakis et al.
On the False-Positive Rate of Bloom Filters
Information Processing Letters 108 (4):210–213, 2004.

[2] K. Christensen, A. Roginsky and M. Jimeneo.
A New Analysis of the False-Positive Rate of a Bloom
Filter
Information Processing Letters 110 (21):944–949, 2010.

	Universal Hashing
	Hash Tables
	Separate Chaining
	Open Addressing
	Cuckoo Hashing

	Bloom Filters

