
Probabilistic Tools in Algorithms

Josep Díaz Maria J. Serna Conrado Martínez
U. Politècnica de Catalunya

RA-MIRI 2023–2024

What is probability?

Probability: useful concept to simulate and explain real world.
Any English speaking person understands the words likely and
unlikely.

But in everyday life, do we consciously think in terms of
probability?

What is probability?

Probability: useful concept to simulate and explain real world.
Any English speaking person understands the words likely and
unlikely.

But in everyday life, do we consciously think in terms of
probability?

What is probability?

Probability: useful concept to simulate and explain real world.
Any English speaking person understands the words likely and
unlikely.

But in everyday life, do we consciously think in terms of
probability?

What is probability?

Probability: useful concept to simulate and explain real world.
Any English speaking person understands the words likely and
unlikely.

But in everyday life, do we consciously think in terms of
probability?

What is probability?

As far as we know, many phenomena in nature seem to be
generated by random choices, but it is difficult to simulate truly
unpredictable random experiments:

Flipping a coin or tossing a dice are deterministic experiments;
Given the initial angle of the coin, the spin, humidity, etc. we
can predict the outcome of flipping a coin.

In the same way, in today’s computers, the random generation
functions are deterministic and simulate randomness =⇒
pseudorandom number generators.

What is probability?

As far as we know, many phenomena in nature seem to be
generated by random choices, but it is difficult to simulate truly
unpredictable random experiments:

Flipping a coin or tossing a dice are deterministic experiments;
Given the initial angle of the coin, the spin, humidity, etc. we
can predict the outcome of flipping a coin.

In the same way, in today’s computers, the random generation
functions are deterministic and simulate randomness =⇒
pseudorandom number generators.

What is probability?

As far as we know, many phenomena in nature seem to be
generated by random choices, but it is difficult to simulate truly
unpredictable random experiments:

Flipping a coin or tossing a dice are deterministic experiments;
Given the initial angle of the coin, the spin, humidity, etc. we
can predict the outcome of flipping a coin.

In the same way, in today’s computers, the random generation
functions are deterministic and simulate randomness =⇒
pseudorandom number generators.

Probability and computers

The most basic method is the linear congruential generator:
from a seed integer x0 ∈ N, produce a sequence of
pseudo-random values

xn+1 = (ax0 + b) mod m,

for a,b constants and m a large integer.
In C/C++ rand(), m is a 32-bit integer, a = 22695477,b = 1
A computer deterministically generates pseudorandom
numbers.

How would you generate a vector with a sequence of
pseudorandom bits?

for (int i = 0; i < n; ++i)
bit[i] = rand() % 2;

Some applications of probability in CS

Algorithm design: Making algorithms run faster by
introducing probability choices, against “bad” inputs.
Data structures: when implementing most of the used data
structures, e.g. dictionaries, the use of probability helps to
speed up search and reduce space.
Learning theory: in learning theory one assumes the data
is generated according to specific probability distributions.
Studying and design mechanisms for large complex
networks: The design of algorithms for Internet, WWW,
Facebook, etc, is based in the design realistic probabilistic
models for those huge networks.

Some applications of probability in CS

Algorithm design: Making algorithms run faster by
introducing probability choices, against “bad” inputs.
Data structures: when implementing most of the used data
structures, e.g. dictionaries, the use of probability helps to
speed up search and reduce space.
Learning theory: in learning theory one assumes the data
is generated according to specific probability distributions.
Studying and design mechanisms for large complex
networks: The design of algorithms for Internet, WWW,
Facebook, etc, is based in the design realistic probabilistic
models for those huge networks.

Some applications of probability in CS

Algorithm design: Making algorithms run faster by
introducing probability choices, against “bad” inputs.
Data structures: when implementing most of the used data
structures, e.g. dictionaries, the use of probability helps to
speed up search and reduce space.
Learning theory: in learning theory one assumes the data
is generated according to specific probability distributions.
Studying and design mechanisms for large complex
networks: The design of algorithms for Internet, WWW,
Facebook, etc, is based in the design realistic probabilistic
models for those huge networks.

Some applications of probability in CS

Algorithm design: Making algorithms run faster by
introducing probability choices, against “bad” inputs.
Data structures: when implementing most of the used data
structures, e.g. dictionaries, the use of probability helps to
speed up search and reduce space.
Learning theory: in learning theory one assumes the data
is generated according to specific probability distributions.
Studying and design mechanisms for large complex
networks: The design of algorithms for Internet, WWW,
Facebook, etc, is based in the design realistic probabilistic
models for those huge networks.

Some applications of probability in CS

Data science: To design efficient algorithm for huge data
set, usually we do keep a relevant sample, rather than
keep all the data.
Cryptography: Randomness and number theory, are
essential for cryptography and crypto-hashing.
Data compression: improving data compression algorithms
passes through analysing and modelling the underlying
probability distribution of the data, and evaluating its
information-theoretic contents.
Percolation & Diffusion: Probabilistic ad-hoc graph models
and techniques have played an important role in
modellizing diffusion process such as epidemics or the
spreading of rumors and news, helping to stop or mitigated
massive infections, including e-infections or to boost the
spreading of information.

Some applications of probability in CS

Data science: To design efficient algorithm for huge data
set, usually we do keep a relevant sample, rather than
keep all the data.
Cryptography: Randomness and number theory, are
essential for cryptography and crypto-hashing.
Data compression: improving data compression algorithms
passes through analysing and modelling the underlying
probability distribution of the data, and evaluating its
information-theoretic contents.
Percolation & Diffusion: Probabilistic ad-hoc graph models
and techniques have played an important role in
modellizing diffusion process such as epidemics or the
spreading of rumors and news, helping to stop or mitigated
massive infections, including e-infections or to boost the
spreading of information.

Some applications of probability in CS

Data science: To design efficient algorithm for huge data
set, usually we do keep a relevant sample, rather than
keep all the data.
Cryptography: Randomness and number theory, are
essential for cryptography and crypto-hashing.
Data compression: improving data compression algorithms
passes through analysing and modelling the underlying
probability distribution of the data, and evaluating its
information-theoretic contents.
Percolation & Diffusion: Probabilistic ad-hoc graph models
and techniques have played an important role in
modellizing diffusion process such as epidemics or the
spreading of rumors and news, helping to stop or mitigated
massive infections, including e-infections or to boost the
spreading of information.

Some applications of probability in CS

Data science: To design efficient algorithm for huge data
set, usually we do keep a relevant sample, rather than
keep all the data.
Cryptography: Randomness and number theory, are
essential for cryptography and crypto-hashing.
Data compression: improving data compression algorithms
passes through analysing and modelling the underlying
probability distribution of the data, and evaluating its
information-theoretic contents.
Percolation & Diffusion: Probabilistic ad-hoc graph models
and techniques have played an important role in
modellizing diffusion process such as epidemics or the
spreading of rumors and news, helping to stop or mitigated
massive infections, including e-infections or to boost the
spreading of information.

Probabilistic analysis

Given a deterministic algorithm, it happens that a few
“instances” may bias the complexity outcome of the algorithm,
which for most of the instances seem to work well, for example,
Quicksort.
In this case, we can perform a probabilistic analysis of the
deterministic algorithm as follows:
Fix a probability distribution on the set of inputs, parametrized
by input size. Often the distribution is the uniform, but not
always.
We see the number of steps as a random variable T(n) and
compute its expected value µ = E[T(n)].
We also need to prove concentration, that is, with high
probability, T(n) is “close” to µ.

Probabilistic analysis

Given a deterministic algorithm, it happens that a few
“instances” may bias the complexity outcome of the algorithm,
which for most of the instances seem to work well, for example,
Quicksort.
In this case, we can perform a probabilistic analysis of the
deterministic algorithm as follows:
Fix a probability distribution on the set of inputs, parametrized
by input size. Often the distribution is the uniform, but not
always.
We see the number of steps as a random variable T(n) and
compute its expected value µ = E[T(n)].
We also need to prove concentration, that is, with high
probability, T(n) is “close” to µ.

Probabilistic analysis

Given a deterministic algorithm, it happens that a few
“instances” may bias the complexity outcome of the algorithm,
which for most of the instances seem to work well, for example,
Quicksort.
In this case, we can perform a probabilistic analysis of the
deterministic algorithm as follows:
Fix a probability distribution on the set of inputs, parametrized
by input size. Often the distribution is the uniform, but not
always.
We see the number of steps as a random variable T(n) and
compute its expected value µ = E[T(n)].
We also need to prove concentration, that is, with high
probability, T(n) is “close” to µ.

Probabilistic analysis

Given a deterministic algorithm, it happens that a few
“instances” may bias the complexity outcome of the algorithm,
which for most of the instances seem to work well, for example,
Quicksort.
In this case, we can perform a probabilistic analysis of the
deterministic algorithm as follows:
Fix a probability distribution on the set of inputs, parametrized
by input size. Often the distribution is the uniform, but not
always.
We see the number of steps as a random variable T(n) and
compute its expected value µ = E[T(n)].
We also need to prove concentration, that is, with high
probability, T(n) is “close” to µ.

Probabilistic analysis

Given a deterministic algorithm, it happens that a few
“instances” may bias the complexity outcome of the algorithm,
which for most of the instances seem to work well, for example,
Quicksort.
In this case, we can perform a probabilistic analysis of the
deterministic algorithm as follows:
Fix a probability distribution on the set of inputs, parametrized
by input size. Often the distribution is the uniform, but not
always.
We see the number of steps as a random variable T(n) and
compute its expected value µ = E[T(n)].
We also need to prove concentration, that is, with high
probability, T(n) is “close” to µ.

Randomized algorithms

We can design a randomized algorithm, where the algorithm
takes random choices and continues the computation
according to the output of the random choices.
In this case, we must perform a probabilistic analysis of the
complexity, the worst-case complexity is pointless!

Randomized algorithms

We can design a randomized algorithm, where the algorithm
takes random choices and continues the computation
according to the output of the random choices.
In this case, we must perform a probabilistic analysis of the
complexity, the worst-case complexity is pointless!

Randomized algorithms

There are two main types of probabilistic algorithms:
Monte Carlo: Always halt in finite time, but may output the
wrong answer. If the answer is binary (yes/not) the error
can be in one direction, one-side error, or the error could
be in both answers two-side error. In Monte Carlo
algorithms it is important to bound the error probability.
Las Vegas: The output is always correct but the running
time may be unbounded.

It is easy to convert a Las Vegas algorithm into a Monte Carlo,
how?. The contrary is not always true.

In this course we will be working mainly with Monte Carlo
algorithms.

Randomized algorithms

There are two main types of probabilistic algorithms:
Monte Carlo: Always halt in finite time, but may output the
wrong answer. If the answer is binary (yes/not) the error
can be in one direction, one-side error, or the error could
be in both answers two-side error. In Monte Carlo
algorithms it is important to bound the error probability.
Las Vegas: The output is always correct but the running
time may be unbounded.

It is easy to convert a Las Vegas algorithm into a Monte Carlo,
how?. The contrary is not always true.

In this course we will be working mainly with Monte Carlo
algorithms.

Randomized algorithms

There are two main types of probabilistic algorithms:
Monte Carlo: Always halt in finite time, but may output the
wrong answer. If the answer is binary (yes/not) the error
can be in one direction, one-side error, or the error could
be in both answers two-side error. In Monte Carlo
algorithms it is important to bound the error probability.
Las Vegas: The output is always correct but the running
time may be unbounded.

It is easy to convert a Las Vegas algorithm into a Monte Carlo,
how?. The contrary is not always true.

In this course we will be working mainly with Monte Carlo
algorithms.

Randomized algorithms

There are two main types of probabilistic algorithms:
Monte Carlo: Always halt in finite time, but may output the
wrong answer. If the answer is binary (yes/not) the error
can be in one direction, one-side error, or the error could
be in both answers two-side error. In Monte Carlo
algorithms it is important to bound the error probability.
Las Vegas: The output is always correct but the running
time may be unbounded.

It is easy to convert a Las Vegas algorithm into a Monte Carlo,
how?. The contrary is not always true.

In this course we will be working mainly with Monte Carlo
algorithms.

Randomized algorithms

There are two main types of probabilistic algorithms:
Monte Carlo: Always halt in finite time, but may output the
wrong answer. If the answer is binary (yes/not) the error
can be in one direction, one-side error, or the error could
be in both answers two-side error. In Monte Carlo
algorithms it is important to bound the error probability.
Las Vegas: The output is always correct but the running
time may be unbounded.

It is easy to convert a Las Vegas algorithm into a Monte Carlo,
how?. The contrary is not always true.

In this course we will be working mainly with Monte Carlo
algorithms.

A randomized sorting algorithm

What do you know about QuickSort?
General deterministic sorting algorithm
Runs in time O(n2)

Average time is Θ(n logn) when the input follows the
uniform distribution.

We want to keep the input deterministic and devise a
randomized algorithm that sorts in expected Θ(n logn) time.

A randomized sorting algorithm

What do you know about QuickSort?
General deterministic sorting algorithm
Runs in time O(n2)

Average time is Θ(n logn) when the input follows the
uniform distribution.

We want to keep the input deterministic and devise a
randomized algorithm that sorts in expected Θ(n logn) time.

A randomized sorting algorithm

What do you know about QuickSort?
General deterministic sorting algorithm
Runs in time O(n2)

Average time is Θ(n logn) when the input follows the
uniform distribution.

We want to keep the input deterministic and devise a
randomized algorithm that sorts in expected Θ(n logn) time.

A randomized sorting algorithm

procedure RAND-QUICKSORT(A[0..n− 1])
Compute Π a uniform random permutation of

[n] ≡ {1, . . . ,n}
Rearrange A according to Π
. Average cost is O(n logn) but uses no extra space
for i := 0 to n− 1 do
j := P[i]
while j < i do
j := P[j]

end while
A[i] :=: A[j]

end for
QUICKSORT(A)

end procedure

The algorithm reaches our goal, if we can compute a random
permutation within the right (expected) time.

Generating a permutation uniformly at random

A permutation Π over [n] defines a re-ordering of the elements,
formally a bijective function Π : [n]→ [n].

The number of different permutations is n!

Considering the experiment of generating a uniformly random
permutation, we get the probability space Ω = {π1,π2, . . . ,πn!},
that is, |Ω| = n!

Generating a permutation uniformly at random (u.a.r.) means,
for each n, generate a particular permutation π with probability

1
|Ω|

=
1
n!

Randomized algorithm to generate u.a.r. a
permutation

Fisher-Yates Algorithm (also known as Knuth’s algorithm)

procedure RANDOM-PERM(n)
for i := 0 to n− 1 do
π[i] := i

end for
for i := n− 1 downto 1 do
j := RAND(i+ 1)
π[j] :=: π[i] . x :=: y swaps x and y

end for
end procedure

Rand(i) returns a random integer in [0, i− 1].

Fisher-Yates algorithm

The algorithm considers the items in the array one at a
time from the end and swaps each element with an
element in the array from that point to the beginning. This
has cost O(n)
Notice that each element has an equal probability, namely
1/n, of being chosen as the last element in the array
(including the element that starts out in that position).
Applying this analysis recursively, we see that the output
permutation has probability

1
n

1
n− 1

. . .
1
2
=

1
n!

That is, each permutation is equally likely.
Lemma Random-Perm (n) produces a u.a.r. permutation of [n]
in Θ(n) steps.

Fisher-Yates algorithm

The algorithm considers the items in the array one at a
time from the end and swaps each element with an
element in the array from that point to the beginning. This
has cost O(n)
Notice that each element has an equal probability, namely
1/n, of being chosen as the last element in the array
(including the element that starts out in that position).
Applying this analysis recursively, we see that the output
permutation has probability

1
n

1
n− 1

. . .
1
2
=

1
n!

That is, each permutation is equally likely.
Lemma Random-Perm (n) produces a u.a.r. permutation of [n]
in Θ(n) steps.

The 100 prisoners problem

Here’s a popular formulation of this problem, first proposed by
P.B. Miltersen in 2003:

The director of a prison offers 100 death row prisoners, who
are numbered from 1 to 100, a last chance. A room con-
tains a cupboard with 100 drawers. The director randomly
puts one prisoner’s number in each closed drawer. The pris-
oners enter the room, one after another. Each prisoner may
open and look into 50 drawers in any order. The drawers are
closed again afterwards. If, during this search, every pris-
oner finds his number in one of the drawers, all prisoners
are pardoned. If just one prisoner does not find his number,
all prisoners die.
Before the first prisoner enters the room, the prisoners may
discuss strategy—but may not communicate once the first
prisoner enters to look in the drawers.

What is the prisoners’ best strategy? Are they doomed to die?

The 100 prisoners problem

Consider the first prisoner. As the permutation of numbers in
the drawers is random, the probability of finding his/her number
is clearly 1/2. As prisoners cannot communicate, it seems that
the probability that all them find their respective numbers is

1
2100 ≈ 8 · 10−31,

an extremely tiny number and the situation looks hopeless. . .

The 100 prisoners problem

But the analysis above only applies if each prisoner makes his
choices at random (or the director changed the permutation for
every prisoner). However, the permutation of numbers in the
cupboard remains fixed through the process and the prisoners
can devise and agree on a strategy that improves their chances
of survival.

The 100 prisoners problem

For example, suppose that all prisoners with numbers 1 to 50
open the drawers 1 to 50 and the prisoners with numbers 51 to
100 open drawers 51 to 100. If the random permutation is such
that all numbers 1 to 50 are (in some order) in the drawers 1 to
50—and hence the numbers 51 to 100 are in the drawers 51 to
100 the prisoners succeed. There are 50! · 50! permutations for
which the prisoners’s strategy succeeds, but the probability of
survival (50! · 50!)/100! ≈ 10−29 is still too low (albeit > 1/2100,
it is now 12.56 times larger).

The 100 prisoners problem

The prisoners can do much better though. Each prisoner opens
the drawer labeled with his number. If the number there is his
number, done. Otherwise, opens the drawer indicated by the
number just seen. This step is repeated until the prisoner finds
his number or has opened 50 drawers (and everyone is then
executed).

Recall that a permutation is a set of cycles. If the number of a
prisoner belongs to a cycle of length 6 50 that prisoner will find
his number using the procedure described above. If the number
belongs to a cycle of length > 50 then that prisoner might not
find his number and then the whole pack of 100 prisoners is
executed.

The 100 prisoners problem

The 100 prisoners problem

A permutation of 100 numbers can contain at most one cycle of
length > 50. We can then claim the following: if all cycles in the
random permutation are of length 6 50 then the prisoners
survive. If the random permutation contains one cycle of length
` > 50 then all the prisoners die, because at least one of the
prisoners in the cycle of length ` won’t find his number after
opening 50 drawers.

The 100 prisoners problem

Then

P[all die] = P[random permutation contains cycle of length > 50]

=

100∑
`=51

P[random permutation contains cycle of length `]

The 100 prisoners problem

Consider a permutation with a largest cycle of length ` > 50. All
other cycles must be of length < 50.
The ` numbers in the largest cycle can be arranged in (`− 1)!
different ways (fix the smallest and then add the other `− 1
numbers in any way). The other (100 − `) numbers not in the
largest cycle can be arranged in any way: there are (100 − `)!
such ways. And there are

(100
`

)
ways to choose the numbers

which make up the largest cycle.

P[random permutation contains cycle of length `] =
1

100!
·
(

100
`

)
· (`− 1)! · (100 − `)! =

1
`

The 100 prisoners problem

Then, with Hn :=
∑

16k6n 1/k (the nth harmonic number)

P[all die] = H100 −H50 ≈ 0.6881721793

But that means that the probability that all survive “skyrockets”
to 1 − (H100 −H50) ≈ 0.3118278207 !!
In 2006 Eugene Curtin and Max Warshauer proved that the
cycle-following strategy is actually optimal.

