Things to know about a (dis)similarity measure

Lluís A. Belanche and Jorge Orozco belanche@1si.upc.edu, jorozco@lsi.upc.edu

Soft Computing Research Group
Computer Science School
Technical University of Catalonia Barcelona, Spain
15th International Conference on Knowledge-Based and Intelligent Information \& Engineering Systems

12, 13 \& 14 September 2011, Kaiserslautern, Germany

Contents

1. The notions of similarity and dissimilarity
2. Definition and properties
3. Equivalences
4. Dualities
5. A gentle example of application
6. Conclusions

Similarity and Dissimilarity

Intuitive notion?

1. Human beings use the notion of similarity and dissimilarity for problem solving, inductive reasoning, ...
2. Computer Science: related to Artificial Intelligence, Case Based Reasoning, Data Mining, Information Retrieval, Pattern Matching, Neural Networks, ...

Similarity and Dissimilarity

Some particular thoughts

- Metric dissimilarities have been deeply studied but they are tied to a particular transitivity
- Particularly, Euclidean distances are used due to our natural understanding of Euclidean spaces.
- Not all metrics are Euclidean and many interesting dissimilarities are non-metric.
- What about similarities?

Similarity and Dissimilarity

The two sides of the same coin

- We argue that every property of a similarity should have a correspondence with one property of a dissimilarity and vice versa.
- The present work intends to make a further effort in their unification:

1. definition of similarity and dissimilarity and a set of fundamental properties and transformations
2. how these transformations alter the properties

Similarity and Dissimilarity

Definition

Definition 1 A similarity measure is an upper bounded, exhaustive and total function $s: X \times X \rightarrow I_{s} \subset \mathbb{R}$ with $\left|I_{s}\right|>1$ (therefore I_{s} is upper bounded and $\sup I_{s}$ exists).

Definition 2 A dissimilarity measure is a lower bounded, exhaustive and total function $d: X \times X \rightarrow I_{d} \subset \mathbb{R}$ with $\left|I_{d}\right|>1$ (therefore I_{d} is lower bounded and inf I_{d} exists).

Similarity and Dissimilarity

Properties

Reflexivity: $s(x, x)=\sup I_{s} \in I_{s}$ and $d(x, x)=$ ínf $I_{d} \in I_{d}$.

Strong Reflexivity: $s(x, y)=\sup I_{s} \Leftrightarrow x=y$ and $d(x, y)=$ inf $I_{d} \Leftrightarrow x=y$.

Symmetry: $s(x, y)=s(y, x)$ and $d(x, y)=d(y, x)$.

Boundedness: A similarity s is lower bounded when inf I_{s} exists. Conversely, a dissimilarity d is upper bounded whensup I_{d} exists.

Closedness: A lower bounded s is closed if ínf $I_{s} \in I_{s}$. An upper bounded d, is closed if $\sup I_{d} \in I_{d}$.

Complementarity

Transitivity

Similarity and Dissimilarity

Transitivity (I)

Definition 3 (Transitivity operator). Let I be a non-empty subset of \mathbb{R}, and let e be a fixed element of I. A transitivity operator is a function $\tau: I \times I \rightarrow I$ satisfying, for all $x, y, z \in I$:

1. $\tau(x, e)=x$ (null element)
2. $y \leq z \Rightarrow \tau(x, y) \leq \tau(x, z)$ (non-decreasing monotonicity)
3. $\tau(x, y)=\tau(y, x)$ (symmetry)
4. $\tau(x, \tau(y, z))=\tau(\tau(x, y), z)$ (associativity)

Similarity and Dissimilarity

Transitivity (II)

- For similarity functions, $e=\sup I$ (and then I is I_{s})
- For dissimilarity functions, $e=$ inf I (and then I is I_{d}).

This definition reduces to that of uninorms when $I=[0,1]$.

Similarity and Dissimilarity

Transitivity (and III)

Transitivity: A similarity s defined on X is called τ_{s}-transitive if there is a transitivity operator τ_{s} such that the following inequality holds:

$$
s(x, y) \geq \tau_{s}(s(x, z), s(z, y)) \forall x, y, z \in X
$$

A dissimilarity d defined on X is called τ_{d}-transitive if there is a transitivity operator τ_{d} such that the following inequality holds:

$$
d(x, y) \leq \tau_{d}(d(x, z), d(z, y)) \forall x, y, z \in X
$$

Similarity and Dissimilarity

Equivalences (I)

1. Consider the set of all ordered pairs of elements of X and denote it $X \times X$.
2. Every similarity s induces a preorder relation in $X \times X$.
3. This preorder is "to belong to a class of equivalence with less or equal similarity value".

Formally, given X, s, we consider the preorder \preceq given by

$$
(x, y) \preceq\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow s(x, y) \leq s\left(x^{\prime}, y^{\prime}\right), \forall(x, y),\left(x^{\prime}, y^{\prime}\right) \in X \times X
$$

(analogously for dissimilarities)

Similarity and Dissimilarity

Equivalences (II)

Definition 4 Two similarities (or two dissimilarities) defined in the same reference set X are equivalent if they induce the same preorder.
(note equivalence is an equivalence relation)
An equivalence function \bar{f} is such that $\bar{f} \circ s$ is a similarity equivalent to s.
(analogously, $\bar{f} \circ d$ is a dissimilarity equivalent to d).

Similarity and Dissimilarity

Equivalences (III)

Theorem 1 Let s_{1} be a transitive similarity and d_{1} a transitive dissimilarity. Denote by $\tau_{s_{1}}$ and $\tau_{d_{1}}$ their respective transitivity operators. Let \bar{f} be an equivalence function. Then:

1. The equivalent similarity $s_{2}=\bar{f} \circ s_{1}$ is $\tau_{s_{2}}$-transitive, where

$$
\tau_{s_{2}}(a, b)=\bar{f}\left(\tau_{s_{1}}\left(\bar{f}^{-1}(a), \bar{f}^{-1}(b)\right)\right) \forall a, b \in I_{s_{2}}
$$

2. The equivalent dissimilarity $d_{2}=\bar{f} \circ d_{1}$ is $\tau_{d_{2}}$-transitive, where

$$
\tau_{d_{2}}(a, b)=\bar{f}\left(\tau_{d_{1}}\left(\bar{f}^{-1}(a), \bar{f}^{-1}(b)\right)\right) \forall a, b \in I_{d_{2}}
$$

Similarity and Dissimilarity

Transformations

Definition 5 A $[0,1]$-transformation function \widehat{n} is a decreasing bijection on [0,1] (implying that $\widehat{n}(0)=1, \widehat{n}(1)=0$, continuity and the existence of an inverse). A transformation function \hat{n} is involutive if $\widehat{n}^{-1}=\hat{n}$.

Definition 6 A transformation function \hat{f} is the composition of two equivalence functions and a [0,1]-transformation function:

$$
\hat{f}=\bar{f}_{1}^{*} \circ \hat{n} \circ \bar{f}_{2}^{*}-1
$$

Similarity and Dissimilarity

Duality

Definition 7 Consider s and d and a transformation function $\widehat{f}: I_{s} \rightarrow I_{d}$. We say that s and d are dual by \hat{f} if $d=\hat{f} \circ s$ or, equivalently, if $s=\hat{f}^{-1} \circ d$. This relationship is written as a triple $\prec s, d, \hat{f} \succ$.

Theorem 2 Given a dual triple $\prec s, d, \widehat{f} \succ$,

1. d is strongly reflexive if and only if s is strongly reflexive.
2. d is closed if and only if s is closed.
3. d has (unitary) complement if and only if s has (unitary) complement.
4. d is τ_{d}-transitive only if s is τ_{s}-transitive, where

$$
\tau_{d}(x, y)=\widehat{f}\left(\tau_{s}\left(\hat{f}^{-1}(x), \widehat{f}^{-1}(y)\right)\right) \forall x, y \in I_{d}
$$

Similarity and Dissimilarity

Example 1 (I)

Consider the function $d(x, y)=e^{|x-y|}-1$. This is a strong reflexive and unbounded dissimilarity with codomain $I_{d}=[0,+\infty)$.

- It can be expressed as the composition of $\bar{f}(z)=e^{z}-1$ and $d^{\prime}(x, y)=$ $|x-y|$.
- Thus, it is τ_{d}-transitive with $\tau_{d}(a, b)=a b+a+b$.
- Consequently,

$$
d(x, y)=d(x, z)+d(z, y)+d(x, z) \cdot(z, y), \forall x, y, z \in \mathbb{R}
$$

Similarity and Dissimilarity

Example 1 (II)

To see this, use that d^{\prime} is d^{\prime}-transitive with $d^{\prime}(a, b)=a+b$ and Theorem 1 :

$$
\begin{aligned}
\tau_{d}(a, b)= & \bar{f}\left(\bar{f}^{-1}(a), \bar{f}^{-1}(b)\right)=e^{\ln (1+a)+\ln (1+b)}-1 \\
& =(1+a)(1+b)-1=a b+a+b
\end{aligned}
$$

Similarity and Dissimilarity

Example 2 (I)

1. Consider a dissimilarity function between two binary trees, to measure differences between nodes but the structure of the tree.
2. Consider a simple tree coding function D that assigns a unique value for each tree. This value is first coded as a binary number of length $2^{h}-1$, being h the height of the tree.
3. The reading of the code as a natural number is the tree code.

Note that D is not a bijection, since there are numbers that do not code a valid binary tree.

Similarity and Dissimilarity

Example 2 (and II)

Consider now the following dissimilarity function, where A and B are binary trees. The symbol \oslash represents the empty tree with value 0 .

$$
d(A, B)=\left\{\begin{array}{cl}
\max \left(\frac{D(A)}{D(B)}, \frac{D(B)}{D(A)}\right) & \text { if } A \neq \oslash \text { and } B \neq \oslash \\
1 & \text { if } A=\oslash \text { and } B=\oslash \\
D(A) & \text { if } A \neq \oslash \text { and } B=\oslash \\
D(B) & \text { if } A=\oslash \text { and } B \neq \oslash
\end{array}\right.
$$

Similarity and Dissimilarity

Example 2 (III)

- This d is strong reflexive and unbounded dissimilarity with $I_{d}=[1, \infty)$.
- If we impose a limit to the height of the trees, then d is also upper bounded and closed.
- It is transitive with the product operator:
for any three trees $A, B, C, d(A, B) \leq d(A, C) \cdot d(C, B)$.

Similarity and Dissimilarity

Example 2 (and IV)

If we apply the (equivalence) function $\bar{f}(z)=\log z$ to d we receive a dissimilarity $d^{\prime}=\bar{f} \circ d$, where the properties of d are kept in d^{\prime}.

The transitivity operator is changed using Theorem 1 , to $\tau_{d^{\prime}}(a, b)=a+b$.

We obtain a metric dissimilarity over trees fully equivalent to the initial choice of d.

Similarity and Dissimilarity

Conclusions

- A (new?) standard definition of similarity and dissimilarity? not quite
- Establish some operative grounds on the definition of these widely used concepts
- Keep the framework flexible, but not too much! Cannot fit all tastes
- Where do similarities and dissimilarities come from?

