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What the talk i1s about

. Introduction to kernel functions

. Modelling with standard kernels; examples with the SVM

. Non-standard kernels (non-numeric/non-vectorial data)

. Other kernel-based modelling algorithms

. Examples in real application domains



VWhat the talk is NOT about

. Reproducing Kernel Hilbert Spaces

. T he Representer theorem

. Statistical Learning T heory

. VC-dimension and friends

. General kernel classes (invariances, universality, ...)



Introduction to kernel functions

Preliminaries
Suppose we have an i.i.d. sample of N labelled observations
S = {(zn,tn) }n=1... N, Where z, € R% ¢, € {0,1}

In order to generalize to new inputs x*, we want to choose t* s.t. (x*,t*)
IS in some sense similar to the training examples.

We need a measure of similarity for the inputs and the outputs:

s:RdXRd%R

s(x, ) =xla = <a:,:13’>

where (-,-) denotes inner product in R<,



Introduction to kernel functions

Preliminaries
We extend it by means of a mapping function:

b X —H
as

kE: XXX —=R

k(z,2) = (¢(2),$(2))),,

where H is a dot product space (aka the feature space).



Introduction to kernel functions

Preliminaries

A kernel function implicitly defines a map ¢ : X — H from an input space
of objects X into some Hilbert space H (the feature space).

The “kernel trick” consists in performing the mapping and the inner
product simultaneously by defining its associated kernel function:

input space feature space

O
S ()
O @)
O
O X
X
X

©)

k(z,2) = (¢(2), (2, , .2’ € X,



Introduction to kernel functions

Characterization of kernels
A symmetric function k is called positive semi-definite in X if:
for every N € N, and every choice z1,--- ,xy € X,
the matrix K = (k;;), where k;; = k(x;,x;) is positive semi-definite.
Theorem 1 k admits the existence of a map ¢ . X — H S.t.
H is a Hilbert space and k(x,x') = (¢(x), p(x))4

if and only if k is a positive semi-definite symmetric function in X.



Characterization of kernels

On positive semi-definiteness

There are many equivalent characterizations of the PSD property for real
symmetric matrices. Here are some:

1. Ay is PSD if and only if all of its eigenvalues are non-negative.

2. Anxn is PSD if and only if the determinants of all of its leading
principal minors are non-negative.

3. Anyn is PSD if and only if there is a PSD matrix B such that BB = A
(this matrix B is unique and called the square root of A).

4. Anyn is PSD if and only if, Ve e RY, ¢f'Ac > 0.



Introduction to kernel functions

Back to the drawing board

k(z,2) = (¢(2), 4(z)),,

Ve € RY,

N N N N N

> 3 ey = 3 3 eieg (6020, 602, = <z (@), S cj¢<mj>> > 0
i=1;=1 i=1j=1 i=1 j=1 2

1. Which holds for all choices of ¢(-)

2. Generalizes dot product (think about the case ¢(x) = x)



Introduction to kernel functions

An example: the general linear kernel

If Ayxq is @ PSD matrix, then the function k : R¢ x R — R given by
k(xz,x") = ! Az’ is a kernel.

Proof. Since A is PSD we can write it in the form A = BB!. For every
N € N, and every choice z1, -,z € RY, we form the matrix K = (k;;),
where k;; = k(x;, ;) = «! Az;. Then for every c € RV:

N N
> ciciki; Z Z C;CjT TA:B] Z Z CZC](BTJ?,L)T(BTZBJ)
1=17=1 1=1 7= 1=1 7=

2
> 0. Note that ¢(z) = B! 2.

N
3 (BT xy)

1=1




Introduction to kernel functions

Properties of kernels

Kernels share important properties with dot products:

1. Symmetry
k(z,z') = k(z, x)

2. Cauchy-Schwarz inequality

k(x,z")| < \/k(zx, w)\/k(m’,m’)

3. Definiteness

k(z,2) = ||¢(x)[|* >0



Introduction to kernel functions

Construction of kernels

Inner products: finite (sums), infinite countable (series) or infinite
uncountable (integrals)

Sums, products, direct sums and tensor products

Multiplication by positive coefficient

Limits of point-wise convergent sequences of kernels

Composition with certain analytic functions

Normalization



Introduction to kernel functions

Example 1: polynomial combinations

1. If k is a kernel and p is a polynomial of degree m with positive coef-
ficients, then the function

kp(z, 2") = p(k(z,z'))

is also a kernel.

2. The special case where k is linear and p(z) = (az +b)",a > 0,b > 0
leads to the so-called polynomial kernel



Introduction to kernel functions

Example 1: polynomial combinations

Consider the kernel family:

{ki(w, @) = o (x,2") + ai)ﬁi / Bi €N,a; > 0,a; >0}

For any q > 0 € N,
q
Z ki(xaw/)
i=0

iIs a kernel.



Introduction to kernel functions

Example 1: polynomial combinations

Consider the particular case a; = 0,8; = ¢ and «; = fj‘—,z for some real
a > 0, and take the Ilimit ¢ — oo.

The obtained series is convergent for all a and the resulting kernel is:

- o0
Assume that z, 2’ € R; then exp(azz’) = (¢(z), ¢(z')) with ¢(z) = ( O‘—,z) |
=0

and therefore we have designed a feature space of infinite dimension! ’



Introduction to kernel functions

Example 2: user-defined kernel

Suppose we have designed a ‘“kernel” on objects x, &’ in X = [-1,+1]¢
from a set of descriptors f; : X — R as the function:

S i) i)
k(z, ') = = (1)
\/9 — (x, ")

where ¢ is the number of object descriptors and 6 is a free parameter.

Under what conditions does (1) define a kernel?



Introduction to kernel functions

Example 2: user-defined kernel

Being an inner product, the numerator is immediately a kernel. Since the
denominator must be positive, we conclude that 6 > d. Now define

f(z) = 0 >d

1
VO — 2z’

©.@)
Theorem 2 Let k be a PSD kernel and f(z) = > anz"™ with an, > 0 and
n=0

radius of convergence R; if |k(-,-)| < R, then fok is a PSD kernel.

n

We find a, = (279(2n+1)/2y=1 17 (24 — 1), which is positive for all § > 0.
i=1

T herefore both the denominator and numerator are kernels and so is their

product, for 6 > d.



Introduction to kernel functions

Normalization

If £ is a kernel, then so is:

b (2. 2') = k(x,x)
| \/k(w,w)\/k(m’,w’)

Moreover,

kn(x,2)| <1 and kn(z,x) = 1.



Introduction to kernel functions

The polynomial kernel
= Suppose we take k(u,v) = (u,v)? ,u,v € R? (a simple choice).

= What is the underlying mapping ¢ here?

—=> Answer: this choice of kernel corresponds to a map ¢ leading into the space
spanned by all products of exactly D dimensions of R<.

m Let us take, for instance, u,v € R?, and take D = 2:

k(u,v) = (u,v)* = K( s ) ( v )>r

= (u1v1 + uov2)? = (u1v1)? + 2uiviugve + (usv2)?

= ufvi + (V2u1u2) (V201v2) + u5v3

u? v3
— < \/§fu,:1u2 , \/5’1):1’02 > — <¢(u)7¢('v)>

Uus )

= Therefore, ¢ : R? — R3 with ¢(x) = (22, V2z172,23)T



Introduction to kernel functions

T he Gaussian kernel

We say that a kernel k : R% x R? 5 R is:

Translation invariant if it has the form k(x,x’) = T(x — '), where T :
RY — R is a differentiable function.

Radial if it has the form k(x,x’) = t(||x — z’||), where t : [0,00) — [0, c0)
is a differentiable function. Radial kernels fulfill k(x,x) = t(0).

Consider the function t(z) = exp(—~2z2),~ > 0. The resulting radial kernel
is known as the Gaussian kernel:

k(z,x') = exp(—||z — 2'||?)

Note that some people call it the RBF kernel par excellence!



Modelling with the SVM using standard kernels
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2D artificial data (2 sinusoids), size N = 200 per class



Modelling with the SVM using standard kernels

linear

Linear kernel (C =1), k(x,2’) =0,5(x,x’), 46 SVs



Modelling with the SVM using standard kernels

poly.2

Quadratic kernel (C = 1), k(x,2') = (0,5 (x,z’) + 1)2, 41 SVs



Modelling with the SVM using standard kernels

poly.2

Quadratic kernel (C = 50), k(x,z’) = (0,5 (x,z’) + 1)2, 32 SVs



Modelling with the SVM using standard kernels

poly.3

Cubic kernel (C = 1), k(z,2’) = (0,5 (z,z’) + 1)3, 30 SVs



Modelling with the SVM using standard kernels

poly.3

Cubic kernel (C = 50), k(x,z') = (0,5(x,z’) + 1)3, 10 SVs



Modelling with the SVM using standard kernels

RBF

RBF Gaussian kernel (C = 1), k(x,2') = exp(—0,5||z — '||?), 29 SVs



Modelling with the SVM using standard kernels

RBF

RBF Gaussian kernel (C = 50), k(z,z') = exp(—2||x — «'||2), 18 SVs



Modelling with the SVM using standard kernels

1.0

0.6

0.2

A really nice looking function: $"24 N(0,0.032) in [—20 : 20]

X



Modelling with the SVM using standard kernels
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With this choice of the 'epsilon’ and 'gamma’ parameters, the SVM
underfits the data (blue line)



Modelling with the SVM using standard kernels
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Modelling with the SVM using standard kernels
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With this choice of the ’epsilon’ and 'gamma’ parameters, the SVM has
a very decent fit (red line)



Non-standard kernels

Kernels on sets (bitstrings)

Graph kernels

Generative kernels

Convolution kernels

Tree kernels

String kernels (text)

. and many others (functional data, categorical data, ...)



Non-standard kernels

Set kernels

Consider a feature space with one feature for every subset A C {1,---,d}
of the input features. For € R%, the feature A is given by ¢ 4(x) = ] z;.

iCA
The all-subsets kernel is defined by the mapping

¢ x— (Pa(®))ac(1,..a)

and then

k(w,z') = (p(x), () = > pa(@)pa(a)
Ag{l’... 7d}

d

= > I izl =[] (1 + zp)

AC{1,- ,d}i€A i=1



Non-standard kernels

The Jensen-Shannon divergence kernel

Generative kernels are adequate when a statistical model for the data is
available:

m T he Jensen-Shannon divergence gives a measure of whether two sam-
ples are drawn from the same source distribution

m [t can be interpreted as the average distance between each probability
distribution and the average distribution

P+ P

E(P, P’)=exp<—fy{H< >—%(H(P)—|—H(P’))}>,7>O

where P, P’ are two probability distributions with support in X and H
IS Shannon's entropy.



Non-standard Kkernels

Bitstrings/Sets

Theorem 3 Let o, o' € {0,1}¢. The Jaccard Coefficient, the fraction of
1 — 1 matches, is a valid kernel.

Proof. For every N € N, and every choice x1,---,xy € {0, 1}d, we form

d
the matrix K = (k;;), where k;; = k(z;, ;) =3 > wgpzi = %<5’3z‘>wj>
k=1

Then we have, for any ¢ € R¥V:

N 1 1/ N N Ll 2
S aeg () = 53 e 3 oay) =31 S a0
i=1j=1 i=1 =1 i=1




Non-standard kernels

The Spectrum (aka n-Gram) kernel
m Let > be a finite alphabet
m An n-Gram is a block of n adjacent characters from alphabet >
m The number of distinct n-Grams in a text x is < |X|"
Define k(x,2') = Y. |scx|-|s € x|

sexn

Example: Protein aababc with alphabet > = {a,b,c}, n = 2:

aa ab ac ba bb bc ...
1 2 0 1 0 1 ...



Non-standard kernels

The Spectrum (aka n-Gram) kernel

= Notice that ¢(x) = <|S = ’B|>sezn

= \While the feature space is large (even for fairly small n), the feature
vectors are sparse; it has been shown that this kernel can be computed

in O(|x| 4+ |’|) time and memory

m Given kK > 1, the k-spectrum of an input sequence x is the set of all
the contiguous subsequences of length k£ that & contains



Non-standard kernels

Kernels from graphs

Consider a graph G = (V, E), where the set of vertices V are the data points and F is
the set of edges.

The idea is to compute a (base) similarity matrix By |xv| whose entries are the weights
of the edges and consider B2 = BBT.

Examples:
m protein-protein interactions

m people-to-people interactions

If the graph G is unweighted then the (i,5) element of B? is the number of common
friends between data points 7 and j (or the number of paths of length 2 between 7 and

j4) and it can be thought of as a measure of their similarity.



Non-standard kernels

Kernels from graphs

Note:
1. The entries of B may be real-valued numbers (similarities)
2. Higher powers of B measure higher order similarities
3. Only the even powers are guaranteed to be psd
Consider, for a given X € (0,1):
=1
Z E)\kBk = exp(A\B)
k=0

If B=UAUT is the spectral decomposition of B, then B?2 = (UNUT)(UANUT) = UN?UT.

In general, we have B* = UAN*UT and therefore

K = exp(AB) = U exp(A\)UT

is an example of a diffusion kernel.



Other kernel-based modelling algorithms

m SVMs for classification, regression and novely detection

m Relevance Vector Machine and Gaussian Processes
m Kernel Nearest Neighbours

m Clustering (Spectral Clustering, Kernel k-means)

m Kernel Discriminant Analysis (KFDA)

m Kernel Principal Components Analysis (KPCA)

m Kernel Canonical Correlation Analysis (KCCA)

s Kernel Independent Component Analysis (KICA)

m Kernel Regression (Linear and Logistic)

. and many others



Other kernel-based modelling algorithims

Further characterization of kernels

A symmetric function k is called conditionally positive semi-definite in X
if for every N € N, and every choice x1,--- ,zy € &, the matrix K = (k;;),
where k;; = k(x;, ;) is conditionally positive semi-definite.

A real symmetric matrix Ayyn is CPSD if and only if, for every ¢ € RY

N
such that > ¢; =0, cl'Ac > 0.

=1

It turns out that it suffices for a kernel to be CPSD! Since the class of
CPSD kernels is larger than that of PSD kernels, a larger set of learning
algorithms are prone to kernelization.



Other kernel-based modelling algorithms

What is “kernelizing” ?

m If an algorithm is distance-based, the idea is:

1. substitute ||x; — x;|| by the feature space counterpart ||¢(x;) —

o(x) ||

2. replace it by \/—k(wi,wj), where k is any CPSD kernel

m If an algorithm is inner product-based, the idea is:
1. substitute <a:z-, a:j> by the feature space counterpart <q5(w7;), gb(a;j)>H

2. replace it by k(azi,azj), where k is any PSD kernel.



Other kernel-based modelling algorithims

First example: nearest neighbours

KNN classifies new examples by finding the k closest examples in the
sample and taking a majority vote

k(w, 2)+k(x', @) — 2k(w, ') = (p(), p(®)) + (p(a), p(2') ) =2 ($(x), p(a"))

= llp(@)[? + 6(@)|? - 2 ($(2), 6(z")) = || $(a) — $(2)|? = d(, ')

m T his distance in feature space can be calculated using 3 calls to the
kernel function (or 1 if k£ is normalized), for k PSD

= Note that \/—k(m,x’) is also a distance, for £k CPSD



Other kernel-based modelling algorithms

Second example: kernel PCA

(Source: Wikipedia)



Other kernel-based modelling algorithims

Second example: kernel PCA

We are given a data set X = {x,},xy € R for n = 1,..., N which is

N
centered around the origin, i.e. > x, = 0.
i=1

N

The sample covariance matrix of the data is C = 1 > rnxl

. n.
=1

Z

The goal of PCA is to replace the original axes with the principal
components (PC) of the data



Other kernel-based modelling algorithms

Second example: kernel PCA

The PCs are the d orthogonal vectors (seen as projection directions)
leading to the maximum variance of projected data

These vectors correspond to the d (orthogonal) eigenvectors of C
ordered with decreasing eigenvalue A\ > A>... > ;>0

If we could define our principal components to be arbitrary manifolds
we could get higher variance and better separability

If we first map our data into a higher dimensional space where the
data falls neatly onto some hyperplane or where the data is separable
we can perform Standard PCA in that higher dimensional space



Other kernel-based modelling algorithms

Second example: kernel PCA

Tob ¢1A . Vi

« L1

Input space x projected into feature space ¢(x)
Left: Green lines indicate non-linear projections onto the first PC
Right: Green lines indicate linear projections onto the first PC

(from Pattern Recognition and Machine Learning, C. M. Bishop, Springer, 2006)



Other kernel-based modelling algorithms

Second example: kernel PCA

Kernel PCA allows us to perform PCA in this higher dimension using the
kernel trick, doing all our calculations in a lower dimension.

Recall the idea of mapping input data into some Hilbert space (called the
feature space) via a non-linear mapping ¢ : R% — #.

The new sample covariance matrix C' of the data is defined as

C= 1S slam)d(onT
— anl n n



Other kernel-based modelling algorithms

Second example: kernel PCA

. We are given a data set of d-dimensional vectors X = {x,} for n =

N
1,...,N which we center around the origin, as xn, < xn — % > Tm.
m=1

N
. Compute the sample covariance matrix of the data as C = ~ Y. TnT;,.
. Compute the eigenvalues/vectors (\n,vn) of C; pick a number [ < d.

. Let &, = Van,, where V = [vl; .. ;of].

. The result is the I-dimensional data sample X = {Z,} forn=1,...,N



Other kernel-based modelling algorithms

Second example: kernel PCA
Centered data is required to perform an effective PCA.

Although the {x,} were centered data, the {¢(xy)} are not guaranteed
to be centered in the feature spacel

We have to 'center’ the kernel matrix before doing Kernel PCA:

1 1 1
K+K-—1K - —K1+ —1Kl1
N N N2

where 1 is a N x N matrix of ones



Other kernel-based modelling algorithms

Second example: kernel PCA
. Same as step 1. for PCA.

. Choose a kernel function k. Compute the kernel matrix of the data

. Center the kernel matrix, as: K + K — 1K — +K1 + 1 1K1

. Compute the eigenvalues/vectors (\p,vn) of K; choose a number
[ < N. Set ajzvj/ )\j,jzl,...,l.

l
. Let &, = ( Z (a])mk(mn,wm)> . The result is the [-dimensional

data sample X = {z,} forn=1,...,. N



Examples in real application domains

Text Visualization

Example: the famous Reuters news articles dataset
m All articles with no Topic annotations are dropped

m The text of each article is converted to lowercase, whitespace is normalized to
single-spaces

= Only the first term from the Topic annotation list is retained (some articles have
several topics assigned)

m The resulting dataset is a list of pairs (Topic, News content)
= \We willl only use two topics for analysis: Crude Oil and Grain-related news
m [ he resulting dataset contains 875 news items on crude oil and grain

m [ he goal is to create a classifier for the news articles



Examples in real application domains

Text Visualization

m An example of a text about grain: ‘“u.s. grain carloadings totaled 26,108
cars in the week ended february 21, down 2.2 pct from the previous week but 22.8
pct above the corresponding week a year ago, the association of american railroads
reported. grain mill product loadings in the week totalled 11,382 cars, down 1.8
pct from the previous week but 7.6 pct above the same week a year earlier, the
association said. reuter”

m An example of a text about crude oil: “diamond shamrock corp said that
effective today it had cut its contract prices for crude oil by 1.50 dirs a barrel. the
reduction brings its posted price for west texas intermediate to 16.00 dlrs a barrel,
the copany said. "the price reduction today was made in the light of falling oil
product prices and a weak crude oil market,.2 company spokeswoman said. diamond
is the latest in a line of u.s. oil companies that have cut its contract, or posted,
prices over the last two days citing weak oil markets. reuter”



Examples in real application domains

Text Visualization

Kernel PCA (5 — spectrum kernel)

o grain | R
o crude qlil O%
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Examples in real application domains

Handling missing values in microbiology

m Modern modelling problems are difficult for a number of reasons,
including the challenge of dealing with a significant amount of missing
information

m Missing values almost always represent a serious problem because they
force to preprocess the dataset and a good deal of effort is normally
put in this part of the modelling

m In order to process such datasets with kernel methods, an imputation
procedure is then deeemed a necessary but demanding step.



Examples in real application domains

Handling missing values in microbiology

The study of fecal source pollution in waterbodies is a major problem
in ensuring the welfare of human populations

Microbial source tracking methods attempt to identify the source
of contamination, allowing for improved risk analysis and better water
management

The available dataset includes 148 observations about 10 chemical,
microbial, and eukaryotic markers of fecal pollution in water

All variables (except the class variable) are binary, i.e., they signal the
presence or absence of a particular marker



Examples in real application domains

Handling missing values in microbiology

Origin HF183 HF134 CF128 Humito Pomito Bomito ADO DEN
Human :50 0O :68 0 :81 0 :104 O :35 0 :83 0 :78 0O :56 0 :80
Cow :26 1 :40 1 :26 1:5 1:79 1:32 1:32 1:59 1 :34

Poultry:31 X:31 X:32 X:30 X:25 X:24 X:29 X:24 X:25
Pig :32
Summary (counts) table for the full dataset. The first column is the target class. The
symbol X denotes a missing value.

The percentage of missing values is around 19.8 %, and all the predictive variables
have percentages between 17 % and 23 %



Examples in real application domains

Handling missing values in microbiology

Theorem 4 [et the symbol X denote a missing element, for which only
equality is defined. Let k : X x X — R be a symmetric kernel in X and P a
probability mass function (PMF) in X. Then the function k% (z,y) given

by

(k(z,y),
glz) = > P(y)k(x,y"),
kX(a? Y) = 1 ver / /
! g(y) = ZXP(:E)k(fL‘,y),
e
G= Y P() > PW)K(E,y),
\ r'eX y'eX

is a kernel in X U{X}.

ifz,y7#= & ;
ifr =X and y = X;

if x =X and y += X,

ife =y=X



Examples in real application domains

Handling missing values in microbiology

For the particular case of binary variables =,y € {v1,v2}, a convenient
approach is to define the kernel:

kO/l('m? y) = ]I{:Izzy} (2)

where

To.— 1 if z is true
{z} 7Y 0 if 2 is false



Examples In real application domains

Handling missing values in microbiology

Consider now x,y € {0, 1}d. When we apply the Theorem to this kernel,
we obtain an extended multivariate kernel:

/

1 ife, =y, =1,
1 d Pi(x;), if z; 7 X and y; = &
Ri(z,y) = - > By, ifz; =X and y; #X;  (3)
=P 0)2+ (P(1)2, ifz =y =X,
\O, otherwise

This kernel is a generalization of the classical simple matching coefficient,
proposed by Sokal and Michener for numerical taxonomy



Examples in real application domains

Handling missing values in microbiology

Theorem 5 Let the symbol X denote a missing element, for which only
equality is defined. Let k : X x X — R be a symmetric kernel in X = {0, 1}¢.

Let c(x) be the set of completions of x. Given two vectors x,y € X, the
function

1
Ko(x,y) = k(x', v 4
2 = @] gy gy Y “

is a kernel in X U{X}.



Examples In real application domains

Handling missing values in microbiology

10x10cv for each class
Approach C' 10x10cv Human Cow Poultry Swine

1KE 2.0 79.3 95.4 64.5 75.2 69.4
2KE 1.6 78.2 92.6 62.8 71.8 74.2
1MI 1.0 79.9 92.7 66.4 69.4 30.2
2MlI 1.0 79.0 945 57.5 70.8 78.8

Mean 10x10cv accuracies for the four approaches to handle missing
values. Also shown are best cost parameter C' and detailed class
performance.

(Joint work with G. Nebot, T. Aluja and V. Kobayashi)



Examples in real application domains

Classification of DNA sequences

DNA sequences of promoter and non-promoters.

A promoter is a region of DNA that initiates or facilitates transcription
of a particular gene.

The dataset consists of 106 observations and 57 categorical variables
describing the DNA sequence, represented as the nucleotide at each
position: [A] adenine, [C] cytosine, [G] guanine, [T] thymine.

The response is a binary class: “4" for a promoter gene and “-" for
a non-promoter gene.



Examples in real application domains

Classification of DNA sequences

m A categorical variable takes discrete and unordered values, which are
commonly known as modalities.

m Some symbolic values are naturally ordered; in many cases no order
should be defined (the only meaningful relation is = / #).

The basic similarity measure (which is a valid kernel) for these variables
iIs the overlap. Let Tiky Tk be the modalities taken by two examples i, T,

then s(x;p, ) = H{xikzxjk}' where

T 1 — 1 if z is true
{z} 7Y 0 if z is false



Examples in real application domains

Classification of DNA sequences

The similarity between two multivariate categorical vectors is then pro-
portional to the number of variables in which they match.

Definition 6 (Overlap/Dirac kernel)
1 4

1=
Another kernel that can be used is the kernel:
Definition 7 (Gaussian Radial Basis Function kernel)

krer(@, @) = exp (—4||lz — 2/||?) ,v >0

In order to use this kernel, categorical variables with m modalities are
coded using a binary expansion representation.



Examples in real application domains

Classification of DNA sequences

Definition 8 (Univariate kernel k:gU))

U ha(Prz(z;)) if z; = z;

Definition 9 (Inverting function)

ha(2) = (1 — 29V o >0



Examples in real application domains

Classification of DNA sequences
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The family of inverting functions h,(z) for different values of «.




Examples in real application domains

Classification of DNA sequences

Definition 10 (Multivariate kernel k1)

d

Y U

k1(x;, ;) = exp (d > k§ )(%k,wjk)> , v>0
i=1

Theorem 11 The kernel matrix generated by the multivariate kernel k1
is positive semi-definite (PSD).



Examples in real application domains

Classification of DNA sequences

02 03 04

Testing error

|

{ |

Kernel types

Test error distributions on the PromoterGene problem.

(Joint work with M. Villegas)



Examples in real application domains

Classification of DNA sequences

Want more ... ? Since the data is categorical, we perform a Multiple
Correspondence Analysis (the analog of PCA for categorical data)
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1st factor

Projection of our data in the first two factors.
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Histogram of eigenvalues.



Examples In real application domains

Classification of DNA sequences

m Choose the RBF kernel with automatic adjustment of the variance

m (=5

s Gives a prediction (test) error of 14.3%



A personal view

Pros of SVMs over Neural Networks

. No local minima; few parameters to set

. Automatic selection of position and number of hidden units

. Capable of operating on any input space

. Built-in regularization

. Workable generalization bounds, via VC dimension theory

. Better interpretability (to some extent)



A personal view

Cons of SVMs over Neural Networks

. Hidden neurons must be centered at the training examples

. Only one hidden layer

. Needs similarities to be PSD

. Some kernels are computationally costly



A personal view

Conclusions

. Importance of designing kernels that do not constitute explicit inner
products between objects, and therefore fully exploit the kernel trick

. Possibility of learning the kernel function (or the kernel matrix) from
the training data

. Possibility of combining many different kernels and learn their coeffi-
cients from the training data (MKL)

. Need theoretical analyses on the implications of the kernel choice for
the success of kernel-based methods



