Similarity Networks for Heterogeneous Data

Lluís A. Belanche Technical University of Catalonia, Barcelona (Spain)

Jerónimo Hernández University of the Basque Country, Donostia (Spain) belanche@lsi.upc.edu jeronimo.hernandez@ehu.es

Contribution

A two-layer neural network is developed in which the neuron model computes a user-defined *similarity function* between inputs and weights.

The model is capable of dealing directly with variables of potentially different nature (continuous, ordinal, categorical); there is also provision for missing values.

The network is trained using a fast two-stage procedure involving only one parameter.

The network achieves superior performance on a

Similarity Neural Networks

A Similarity neural network (SNN) is a feed-forward architecture, with a hidden layer composed of S-neurons and a standard output layer.

$$\Phi_k(\mathbf{x}) = \sum_{i=1}^h w_{ki} \phi_i(\mathbf{x}) + w_{k0}, \ k = 1, \dots, m$$

where h > 0 is the number of hidden S-neurons, m is the number of outputs and $W = (w_{ki})$ is the weight matrix.

The SNN can be naturally seen as a generalization of the RBF.

Experimental comparison

The SNN is compared to:

1. a standard RBF neural network (RBFNN)

2. a SVM using the RBF kernel

The values of the different parameters (s_0 for the SNN, number of clusters and RBF width for the RBFNN, and cost and RBF width for the SVM) are optimized using a grid search.

Data set	C/R	Size	Variables	Missing?
Horse colic	С	368	21 (6N, 7C, 8O)	28%
Credit approval	C	690	15 (9N, 6C)	5%
Voting records	C	435	16 (16N)	5.3%
Servo data	R	167	4 (2C, 2N)	none

set of challenging problems with respect to both RBF nets and RBF-kernel SVMs.

The *interpretability* is greatly enhanced:

- 1. the output is a linear combination of the set of similarities of the input to a subset of prototypes
- 2. the similarities are user-defined; both input and weight vectors are expressed in the original variables

Basic Concepts

A similarity measure s is a symmetric function expressing how "like" two observations are.

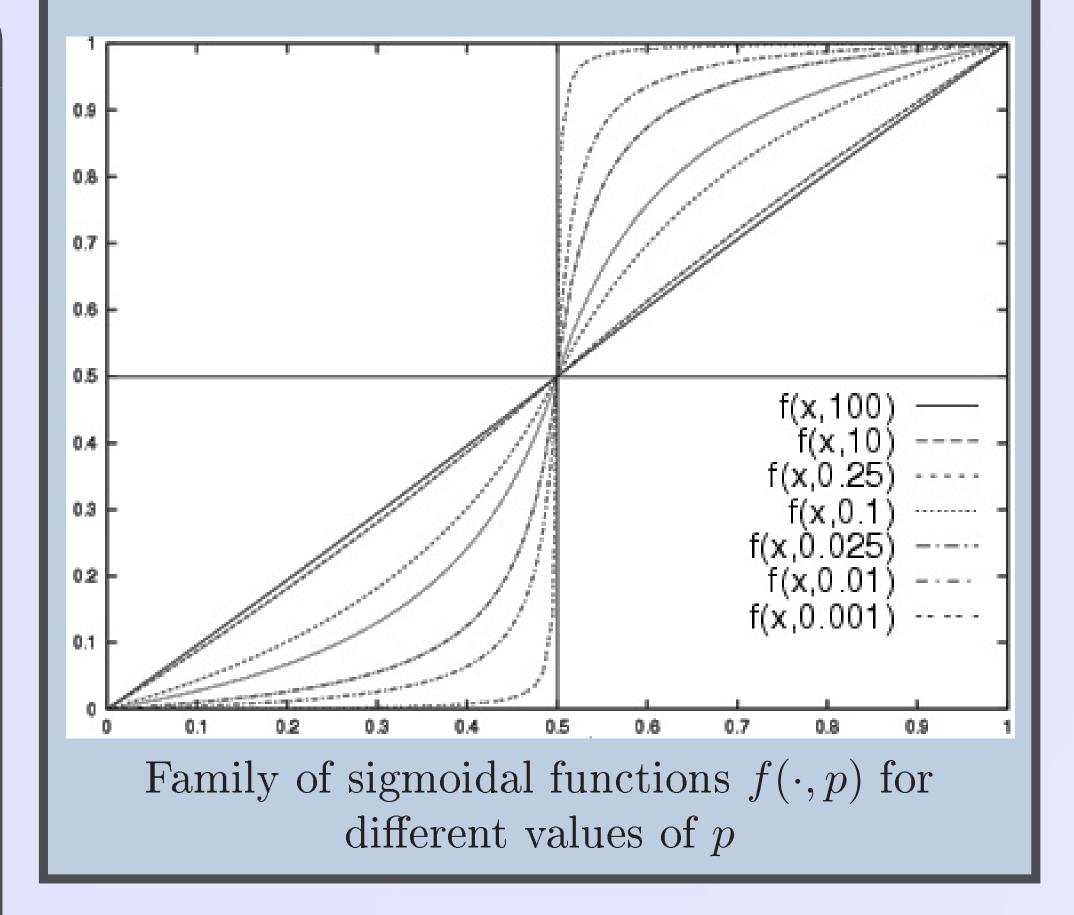
The idea is to use specific similarity measures for different types of variables, defined in the common codomain $I_s = [0, 1]$.

We use s_{ijk} to mean $s_k(x_{ik}, x_{jk})$, the similarity of observations $\mathbf{x}_i, \mathbf{x}_j$ according to variable k. We use \mathcal{X} to denote a missing value. A *neuron model* can be devised that is both similarity-based and handles data heterogeneity and missing values:

 $\phi_i(\mathbf{x}) = f(s(\mathbf{x}, \mu_i), p_i)$

where $s(\mathbf{x}, \mu_i) = \frac{1}{n} \sum_{k=1}^{n} s_k(x_k, \mu_{ik})$

This S-neuron adds a non-linear *activation* function to the linearly aggregated similarities:



C/R stands for Classification/Regression. Legend for variable types: (N)ominal, (C)ontinuous, (O)rdinal

The resampling method consists in five repetitions of two-fold cross-validation $(5 \times 2 \text{ CV})$.

A paired *F*-test can be computed to assess potential statistical significance in the differences in performance. This test is difficult to satisfy.

Highlights

The SNN obtains:

- Better MSEs in all the problems
- Enhanced interpretability
- Full control of the modeling by means of user-defined similarities

We rescale all the similarities as $\hat{s}_{ijk} = \frac{s_{ijk}}{s_{..k}}$. Then a normalization function $n : (0, +\infty) \rightarrow (0, 1)$ is applied:

 $n(x) = \frac{x^a}{x^a + 1}$

where a controls the shape of the function. The similarity between two elements x_{ik}, x_{jk} is now computed as:

$$s_{ijk} = \begin{cases} n\left(\frac{s(x_{ik}, x_{jk})}{s_{..k}}\right) & x_{ik}, x_{jk} \neq \mathcal{X} \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

Similarity-based clustering

In a clustering task the examples are grouped attending to some similarity measure.

We have developed a new version of the LEADER algorithm. Given $s_0 \in I_s$, the LEADER2 is guar-

Neural Network Training

Training can be solved efficiently in a two-stage procedure:

- 1. The first layer weights are a subset of the examples in the sample dataset: the cluster *leaders* returned by the LEADER2 clustering algorithm.
- 2. The second layer weights are found by solving a regularized least-squares problem.

Results

• Possibility of adding prior knowledge

- Only one hyper-parameter (which is an intuitive one)
- Extensible to other data types

Name	Type	Value
age	BINARY	Adult
rectal temperature	REAL	38.48
peripheral pulse	ORDINAL	normal
mucous membranes	NOMINAL	normal pink
peristals is	ORDINAL	normal
abdominal distension	ORDINAL	none
nasogastric reflux pH	REAL	1.12
rectal examination	NOMINAL	decreased

Acknowledgements

This research has been funded by the Spanish Government project TIN2009-13895-C02-01.

anteed to fulfill a number of properties:

- 1. For any example, the similarity to its leader is at least s_0 .
- 2. The similarity between any two leaders is *lower* than s_0 .
- 3. If two examples are repeated in the dataset, they will have the *same* leader.
- 4. The similarity of any example to its leader is *higher* than that with any other leader.

	Horse colic		Credit approval		Voting records		Servo
Method	error($\%$)	MSE	$\operatorname{error}(\%)$	MSE	$\operatorname{error}(\%)$	MSE	MSE
SNN	16.74	0.128	14.09	0.110	4.60	0.039	0.933
RBF	20.06	0.153	14.81	0.116	4.64	0.064	0.997
SVM	19.94	-	16.06	-	6.53	-	2.230

Results in terms of average 5×2 CV and mean square errors (MSE)

ſ		Horse colic		Credit approval		Voting records		Servo
	Method	$F_{\%}$	F_{MSE}	$F_{\%}$	F_{MSE}	$F_{\%}$	F_{MSE}	F_{MSE}
ſ	RBF	3.053	12.786	1.337	2.884	0.805	1.036	0.786
	SVM	2.584	-	3.276	-	2.298	-	14.386

Results of the F statistic against the SNN, both for average 5×2 CV $(F_{\%})$ and mean square errors (F_{MSE}) . Significant results (> 4.74) are boldfaced