Averaging of kernel functions

Lluís A. Belanche and Alessandra Tosi

belanche@lsi.upc.edu, atosi@lsi.upc.edu

Soft Computing Research Group Computer Science School Technical University of Catalonia Barcelona, Spain

European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning

Bruges (Belgium), 25 - 27 April 2012

Motivation

Kernels generally (and informally) seen as similarity measures

- 1. Similarities and kernels are two-place symmetric functions ...
- 2. Are all kernels similarities? No (boundedness, transitivity, ...)
- 3. Are all similarities kernels? No (PSD)

We deal with averaging kernels as (if they were) similarities

The notion of similarity

- 1. Human beings use the notion of *similarity* for problem solving: inductive reasoning, analogical thinking...
- 2. Computer Science: Case Based Reasoning, Data Mining, Information Retrieval, Pattern Matching, Neural Networks, SVMs, ...

The notion of similarity

- 1. For atomic elements the exist many similarity measures
- 2. For vectors of elements, a way is needed to *combine* the *partial* similarities s_k for each variable k to get a meaningful value
- 3. The combination has an important semantic role and it is not a trivial choice.
- 4. Intuition says "combine by averaging"

Characterization of kernels

Probably the simplest characterization for a symmetric function $K : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ being a kernel is via the matrix it generates on finite subsets:

Definition 1 In the real case, the symmetric matrix $A_{n \times n}$ is positive semidefinite (PSD) if and only if, for all vectors $z \in \mathbb{R}^n, z'Az \ge 0$.

Theorem 1 The function $K : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is a kernel in \mathcal{H} if and only if for any positive $p \in \mathbb{N}$ and every choice of finite subsets $\{x_1, x_2, ..., x_p\} \subset \mathcal{H}$, the associated matrix $K_{p \times p} = (k_{ij})$, where $k_{ij} = K(x_i, x_j)$ is a symmetric PSD matrix.

The concept of an A-average

To capture the notion of *averaging*, we adopt the concept of an *Aaverage*, defined as:

Definition 2 Let [a,b] be a non-empty real interval. Call $A(x_1,...,x_n)$ the A-average of $x_1,...,x_n \in [a,b]$ to every n-place real function A fulfilling:

Axiom A1. A is continuous, symmetric and strictly increasing in each x_i .

Axiom A2. A(x, ..., x) = x.

Axiom A3. For any $k \le n$: $A(x_1, \ldots, x_n) = A(\underbrace{y_k, \ldots, y_k}_k, x_{i_{k+1}}, \ldots, x_{i_n})$ k times

where $y_k = A(x_{i_1}, ..., x_{i_k})$ and $(i_1, ..., i_n)$ is a permutation of (1, ..., n).

The concept of an A-average

Some derived properties: $\min x_i \leq A(x_1, \ldots, x_n) \leq \max x_i$

Theorem 2 Let $f : [a, b] \longrightarrow \mathbb{R}$ be a continuous, strictly monotone mapping. Let g be the inverse function of f. Then,

$$A(x_1, ..., x_n) \equiv g\left(\frac{1}{n}\sum_{i=1}^n f(x_i)\right)$$

is a well-defined A-average for all $n \in \mathbb{N}$ and $x_i \in [a, b]$.

The concept of an A-average

An important class of A-averages is formed by choosing $f(z) = z^q$:

$$M_q(x_1, ..., x_n) = \left(\frac{1}{n} \sum_{i=1}^n (x_i)^q\right)^{\frac{1}{q}}, \ q \in \mathbb{R}$$

These are usually called *generalized or quasi-linear means*:

- *arithmetic* mean for q = 1
- geometric mean for q = 0
- *harmonic* mean for q = -1
- root mean square or RMS mean for q = 2

A-averages as kernel aggregators

- The arithmetic average (function M_1) is a valid kernel aggregator.
- The *product* of kernels is also a kernel. However, the product is not an average.
- Is there any other generalized mean guaranteeing the kernel property?

A-averages as kernel aggregators

Notation

It is convenient to express the *aggregation* of m kernels in terms of their PSD matrices:

for k = 1, ..., m, let $A_k = (a_{ij}^k)$ represent a $n \times n$ PSD real matrix.

Given $f : \mathbb{R}^m \to \mathbb{R}$, define the $n \times n$ real matrix $\overline{A} = (f(a_{ij}^1, \dots, a_{ij}^m))$.

A-averages as kernel aggregators

FitzGerald, Micchelli and Pinkus (1995)

Theorem 3 Let $f : \mathbb{R}^m \longrightarrow \mathbb{R}$. Then a matrix \overline{A} generated by f as above is PSD if and only if:

1. f is a real entire function

2. f is of the form

 $f(\mathbf{x}) = \sum_{\alpha \in \mathbb{Z}_{+}^{m}} c_{\alpha} \mathbf{x}^{\alpha}, \ \mathbf{x} \in \mathbb{R}^{m}, \text{ where } c_{\alpha} \geq 0 \text{ for all } \alpha \in \mathbb{Z}_{+}^{m}.$

Some implications and application examples

Generalized means The matrix \overline{A} is in general not PSD because M_q is not a real entire function. Indeed, the partial derivatives

$$\frac{\partial M_q(x_1, \dots, x_m)}{\partial x_i} = (x_i)^{q-1} \left(\frac{1}{m} \sum_{j=1}^m (x_j)^q \right)^{\frac{1}{q}-1}, \quad i = 1, \dots, m$$

are never defined in $\mathbf{0} \in \mathbb{R}^n$ (except for q = 1).

Hyperbolic sine mean A real entire A-average can be defined as:

$$M_{\sinh}(x_1, x_2) := \operatorname{arcsinh}\left(\frac{\sinh(x_1) + \sinh(x_2)}{2}\right)$$

However, its Taylor expansion has negative coefficients:

$$M_{\sinh}(x_1, x_2) = \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{16}x_1^3 - \frac{1}{16}x_1^2x_2 - \frac{1}{16}x_1x_2^2 + \frac{1}{16}x_2^3 + O(x_1, x_2)^4$$

Generalized means as kernel generators

- A different perspective is obtained if we look at the generalized means as a way to generate new kernels.
- It turns out that the harmonic (M_{-1}) , geometric (M_0) and inverse RMS (M_{-2}) means generate valid kernels within their domains.
- Remarkable, since this is *not* true for the arithmetic mean.

Generalized means as kernel generators

Theorem 4 The following functions are PSD kernels.

(i)
$$k_{geom} := M_0(x, y) = \sqrt{xy}$$
 (the geometric kernel)

(ii)
$$k_{harm} := M_{-1}(x, y) = \frac{2xy}{x+y}$$
 (the harmonic kernel)

(iii)
$$k_{\text{IRMS}} := M_{-2}(x, y) = \left(\frac{x^{-2} + y^{-2}}{2}\right)^{-\frac{1}{2}} = \frac{\sqrt{2}xy}{\sqrt{x^2 + y^2}}$$
 (the IRMS kernel)

Conclusions

- 1. We have proven that the only feasible average for kernel learning is the arithmetic average.
- 2. Is this a negative result? Yes and no.
- 3. For the wide family M_q of generalized means, defining $Q = \{q \in \mathbb{R} | M_q \text{ is a kernel}\}$, we have proven that $\{-2, -1, 0\} \subset Q$ (and certainly $1 \notin Q$). What exactly Q is remains an open question.