JINIVERSITAT POLITECNICA DE CATALUNYA

DEPARTAMENT DE LLENGUATGES I SISTEMES INFORMATICS

PROGRAMA DE DOCTORAT EN INTEL-LIGENCIA ARTIFICIAL

TESI DOCTORAL

Heterogeneous Neural Networks:
Theory and Applications

June 2000

Memoria presentada per en Lluis A.
Belanche Mufioz per a optar al titol
de Doctor en Informatica.

Directors: Julio José Valdés Ramos i Renato Alquézar Mancho

Chapter 6

Evolutionary Training of
Heterogeneous Networks

Los dioses seleccionan entre los hombres,
eliminan los peores y los mejores, y sélo
dejan envejecer a los raros mortales que han
vivido sin odio ni exceso, para que conduzcan
la generacion siguiente.

Aké Loba

A wide range of difficult problems or subproblems in Artificial Intelligence (AI) can be
cast in the form of a function optimization problem. Among the global searching methods,
Fvolutionary Algorithms have been shown to be adaptable and general tools that have often
outperformed traditional ad hoc methods. This Chapter is entirely devoted to Evolutionary
algorithms. It serves the twofold purpose of introducing the field at the level needed by their
use in this Thesis, and to explore how they can be used as effective neural weight optimizers.

6.1 Introduction

The quest for better and more general searching algorithms has never stopped. Since the
70’s. new and powerful evolutionary methods have emerged that are particularly well suited
for optimization —although this was not exactly their original purpose— mainly because of
their generality, robustness, and conceptual (though not necessarily analytical) simplicity.
In addition, the constant need for general-purpose optimization techniques has widen their
horizon and boosted their widespread use.

The term Lvolutionary Algorithms (EA) [Béack, 96] is very general and includes many
methods that have been (and are being) developed independently in the last 30 years. All of
them are based on techniques that mimic or are inspired in population genetics, and have the
added appeal of being easily realizable in parallel processes (both intuitively and physically).

167

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 168

Among them, the Breeder Genetic Algorithm (BGA) has been one of the last to emerge
[Miihlenbein and Schlierkamp-Voosen, 93]. Nevertheless, despite its promising initial results
when compared to other methods (evolutionary or not) it has not attracted a great deal of
attention, possibly because of the enormous impact of other, in a sense already classical,
Evolutionary Algorithms: Evolution Strategies (ES) and Genetic Algorithms (GA).

Evolutionary methods are immediate candidates for a learning algorithm oriented to neu-
ral network optimization (and, in particular, for heterogeneous neural networks). They are
generally free from restrictive assumptions on the nature of the search space, as continuity
requirements or existence of derivatives in the function computed by the network. The ar-
guments of this function may or may not be discrete, and may be ordered or unordered.
They also alleviate the problem of local minima -see (§2.1.8). Known drawbacks are stagna-
tion (premature convergence), epistasis (unwanted gen interactions) and high computational
demands. In return they have been shown to be generally robust and usually able to find
reasonably good solutions for a great variety of problems [Bick, Fogel and Michalewicz, 97].

In this Chapter, after introducing a generic evolutionary algorithm and two of its repre-
sentatives (the standard or canonical GA and the BGA), we show how they can be enhanced
to represent and manipulate heterogeneous information, in order to train a heterogeneous
neural network. For the BGA, this implies the extension of genetic operators. A set of exper-
iments is also carried out to investigate the use of the BGA for the weight optimization task in
neural network training. The obtained settings are used in the experiments of Chapter (§9).

The Chapter is developed as follows. In Section 2 the basics of an Evolutionary Algorithm
are outlined from a conceptual point of view. The two EA used in this Thesis (the GA and the
BGA) are then surveyed as particular cases, and extended to cope with the problem of HNN
training, the former in Section 3 and the latter in Section 4. The generic use of evolutionary
learning algorithms for this task was reviewed in (§2.1.8). An additional summary is included
specifically for the BGA, of which little use has been made to solve this particular problem.
The Chapter ends with the conclusions derived from the study of these two EA as feasible
candidates for neural network training.

6.2 Basics of an Evolutionary Algorithm

The term Evolutionary Algorithms refers to a big family of search methods based on concepts
taken from Darwinian evolution of species and natural selection of the fittest. Some concepts
from genetics are also present. Given a problem to be solved, usually in the form of a
function to be optimized, an EA maintains a population of individuals that represent potential
solutions to it. Each individual in the population is represented by a chromosome consisting
of a string of atomic elements called genes. Each gene contains (represents) a variable,
either for the problem or for the algorithm itself. The possible values of a gene are called
alleles and the gene’s position in the chromosome is called locus (pl. loci). There is also a
distinction between the genotype, the genetic material of an individual, and the phenotype, the
individual result of genotype development (that is, the born living thing). In EA the genotype
coincides with the chromosome, and the phenotype is simulated via a fitness function, a scalar

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 169

value —similar t6 a reinforcement— expressing how well an individual has come out of a
given genotype!. However, there are many differences with natural evolution, reviewed in
[Bick and Schwefel, 96).

The search process usually starts with a randomly generated population and evolves
over time in a quest for better and better individuals where, from generation to generation,
new populations are formed by application of three fundamental kinds of operators to the
individuals of a population, forming a characteristic three-step procedure:

1. Selection of the fittest individuals, yielding the so-called gene pool;

2. Recombination of (some of) the previously selected individuals forming the gene pool,
giving rise to an offspring of new individuals;

3. Mutation of (some of) the newly created individuals.

By iterating this three-step mechanism, it is hoped that increasingly better individuals
will be found (that is, will appear in the population). This reasoning is based in the following
ideas:

1. The selection of the fittest individuals ensures that only the best ones? will be allowed
to have offspring, driving the search towards good solutions, mimicking the natural
process of selection, in which only the more adapted species are to survive.

2. By recombining the genetic material of these selected individuals, the possibility of
obtaining an offspring where at least one child is better than any of its parents is high.

3. Mutation is meant to introduce new traits, not present in any of the parents. It is
usually performed on freshly obtained individuals by slightly altering some of their
genetic material.

There is a last operation involved, the replacement criterion, that basically says which
elements, among those in the current gene pool and their newly generated offspring, are to be
given a chance of survival onto the next generation. There are two basic strategies, generically
denoted by (g, A) (the comma strategy) and (1 + A) (the plus strategy). The letter 1 denotes
the population size and the letter A the number of offspring to be generated out of the u
elements. In the plus case, both the parents and their (recombined and mutated) offspring
are taken into account to form a new generation of again p elements. In the comma case the
parents, after generating offspring, die off and are considered to form the next generation.

An EA may be seen as a non-empty sequence of ordered operator applications: fitness
evaluation, selection, recombination, mutation and replacement. The entire process iterates
until one of the following criteria is fulfilled:

'In other disciplines, like Artificial Life methods, the phenotype is a real (or simulated) entity that interacts
with an environment.
20r the luckiest in some EA instances, like most GA.

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 170

1. Convergence: it happens because the individuals are too similar. Fresh and new ideas
are needed, but recombination is incapable of providing them because the individuals
are very close to one another, and mutation alone is not powerful enough to introduce
the desired variability. Convergence can be monitored by two measures, called on-line
performance (defined as the average of average individuals) and off-line (defined as the
average of the best individuals) throughout the generations;

2. Problem solved: the global optimum is found up to a satisfactory accuracy (if the
optimum is known);

3. End of resources: the maximum number of function evaluations has been reached.

Evolutionary Algorithms are effective mainly because their search mechanism keeps a
well-balanced tradeoff between ezploration (trying to always drive the search to the discovery
of new, more useful, genetic material) and ezploitation (trying to fine-tune good already-found
solutions). Exploration is mainly dealt with by the mutation operator. Exploitation is carried
out by the selection process and the use of recombination operators, although mutation may
also play a role in the fine-tuning of solutions. The fitness function is built out of the function
to be optimized (called the objective function). All EA represent the decision variables in the
chromosome in one way or another, either directly as real values (like ES) or resorting to a
discrete coding, usually binary (like most GA). The particular coding scheme is the classical
knowledge representation problem in Al, and completely conditions the results. In addition,
some algorithms (like ES) append their own variables to the representation in the form of
auxiliary information that evolves with time like the other variables.

According to the representation scheme chosen, there must be a decoding method I' —
equivalent to the genotype to phenotype development— to decode the decision variables from
their chromosomic representation:

Fiiell; > %; €D

where I1; stands for the population at a certain generation ¢, and D is the original problem
space. Once decoded, these variables can readily be used as arguments of an objective
function F': D — R* U {0} to yield a fitness value. The fittest individuals are those with a
lowest (in case of minimization) fitness value. Thus, the fitness function & associated to an
individual ¢ is defined as ®(i) = F(I'(¢)). Some EA require a form of post-processing such
as a global rescaling function, but it is much more convenient to consider it as part of the
selection mechanism itself.

Given @, I" —usually the only problem-specific knowledge— an EA can be formally described
by the conceptual algorithm in Fig. (6.1), parameterised by a tuple:

< EA-Setup >=< g, u, A, T, Q,9,0,9,Z > (6.1)

where II, = (&,45,...,4,) is the population at time ¢ and thus o is the, usually random,
initial population, p the population size, A the offspring size (out of), T the selection oper-
ator, § the recombination operator, ¥ the mutation operator, © the termination criterion, =

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 171

the replacement criterion and & the fitness function. In this algorithm, operator sequencing
on the population is as follows: II; represents the population at time or generation ¢, IT}
the same population after selection, II} after recombination and I1} after mutation, to form
a new population Il;4;, after application of the replacement criterion.

Procedure Evolutionary-Algorithm (<EA-Setup>)
{
t:=0;
avaluate ®(¢), Vi € Ilp;
while not(0(I1;)) do

/* Create the gene pool IIT */
select: IIT := Y(I,);

/* Apply genetic operators */
recombine: I} := Q(I1));
mutate: I} := W(II});

/* Evaluate their effect */
evaluate ®(7), Vi € I1};

/* Form the new generation */
replace: IT;4; := Z(IIY UIIY);
to=t+1

Figure 6.1: Evolutionary Algorithm.

The three main representatives of EA are: Genetic Algorithms, proposed by Holland
[Holland, 62], then settled [Holland, 75], and made popular [Goldberg, 89]; Evolution Strate-
gies, developed by Rechenberg [Rechenberg, 65] and Schwefel [Schwefel, 65], during the
60’s and more or less settled in the 70’s [Rechenberg, 73], [Schwefel, 77]; and Evolution-
ary Programming (EP), introduced by Fogel [Fogel, 62] and spread by him and his coworkers
[Fogel, Owens and Walsh, 66}, an approach that resembles ES although they were developed
independently. One of the main references to EA is [Bick, 96]; another, good and brief survey
is [Bick and Schwefel, 96]. An excellent state-of-the-art and review of EA, and a useful de-
parture point because of its rich set of references is [Back and Schwefel, 93]. Modern surveys
and introductions to specific algorithms are [Bick and Schwefel, 91] and [Bick, 95] for ES;
[Michalewicz, 92] for GA and [Fogel, 92] for EP.

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEQUS NETWORKS 172
6.3 Genetic Algorithms

6.3.1 Description of the Algorithm

The principles of GA were established in [Holland, 75]. A GA is a stochastic search procedure
characterized by:

e A population of discrete structures (individuals) representing candidate solutions for
the problem being solved;

e A selection mechanism based on the aptitude (fitness) of each individual, relative to
the population;

e A set of idealized genetic operators that modify the individuals to create new genetic
material.

In a standard GA the individuals are fixed-length strings of length L defined over an
alphabet 3, called chromosomes. The fitness function ® gives a numeric and positive value
to the adequacy of a given chromosome as a solution of the task at hand, that is: ® : & —
R+ U {0}.

The selection mechanism has the mission of favouring the better fit individuals to enter
the gene pool, for reproduction and mutation, as the basis to form the next generation. The
probability of being selected is directly proportional to the relation between the fitness of an
individual and the fitness of the population. The simplest way to do so is:

N b (1)
p(Z) a ?:1 (I)(])

(6.2)

where p is the population size. If we view the population as mapped onto a roulette
wheel, each individual 7 is assigned a fraction of space proportional to its ratio p(i), which
can be viewed as the probability of being selected. By spinning the wheel, the individuals are
chosen to form the intermediate gene pool. This method is called stochastic sampling with
replacement.

Let us define, for each individual, p*(z) = up(¢). In remainder stochastic sampling, for
each individual fulfilling p*() > 1 —that is, for above-average individuals- the number [p*(7)]
(integer part) indicates how many copies are directly selected, with no intervention of chance;
next, for these individuals, p*(7) is updated as p*(7) := p*(i) — [p*(¢)]. Then, all individuals
place copies with probability p'(i) = i%g;m, like in (6.2), until the gene pool is filled.

This procedure is efficiently implemented using a method known as stochastic universal
sampling. The population is laid out in a random order on a roulette wheel, with space
allotted in proportion to p(¢). The wheel has this time u equally-spaced pointers. A single
spin of the wheel simultaneously picks all the pu selected individuals. This selection method
can be shown to be unbiased [Baker, 87].

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEQUS NETWORKS 173

A scaling mechanism is usually included in a GA before selection takes place, to keep
roughly equal selection pressure across the generations. Early on in the search, there is a
tendency for a few (initially) highly fit individuals to begin dominating the population. Also,
in a mature population, unless using a form of rank-based selection —in which only the relative
order is important—, selective pressure can become very low and the search stagnates. A
simple and useful way of reducing these effects is by introducing a linear scaling mechanism
[Goldberg, 89], as follows. Let ® denote the fitness function and ®min, Pmaz, Pavy be the
minimum, mazimum and average fitness values in a generation and denote s the scaling
function. It is required that:

s((paug) = (I)avg
cPavg (6.3)

2
b4
3
2
:]_/
]

where ¢ € (1,2] is the scaling factor. For example, for ¢ = 2, this forces that the new @
value for ®,,,, be twice the average, which remains the same. However, by doing this, worse-
than-average individuals can get a negative fitness, which cannot be accepted. A usually
adopted solution is to scale with the maximum ¢’ that does not yield any negative value:

q)au - (I)mar
¢ = argmax {(Dm,-n _ Lavg 7 Pmaz > 0} (6.4)
c€(1,2) c—1

so that we get a new scaling s':

Sl(q)avy) = DQuyg
' (Pmin) = 0 (6.5)

with §'(Pmaz) = ¢/®ayg and typically ¢’ < c. After selection takes place, genetic operators
are applied to the members of the gene pool. The result of this application is a new generation.
There are two main classes of genetic operators:

Crossover (a type of discrete recombination) is applied to randomly paired chromosomes
with a certain probability, denoted P..,ss. Typical values are P..,ss € [0.6,1.0]. The
outcome crossover (a new pair of chromosomes) is inserted into an intermediate popu-
lation, where mutation will take place.

The way crossover operates is best seen with an example. Consider the following sce-
nario for ¥ = {0, 1}, L = 8, where a cut point has been set at random:

10100001 —» 001|00001

00111011 — 101]11011

where the chromosomic material of the two individuals has been crossed over. This is
called one point crossover, and others are possible.

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 174

Mutation is applied after crossover to the generated individuals. Each gene in the inter-
mediate population is altered with some probability, denoted Ppyu:. A typical value is
P4+ = 0.01. More generally, Pp,,: is set to % For example,

101[1]1011 — 101[0]1011

After the process of selection, crossover and mutation has taken place, the intermediate
population is joined to the actual population (the generation at time t) to form, via the
replacement criterion, a definite new population (the generation at time t 4+ 1). Two basic
criterions are worst individual, where the two worst among the parents and their offspring
are discarded, and parent replacement, where the parents are replaced unconditionally.

A schema can be roughly defined as a template describing a substring where some of its
positions are defined while others are not, and its defining length is the maximum distance
(number of loci) between two defined positions; e.g., in 010...1 * 0110 * *...0, the inner part
is a schema of length five. In a GA, it is more accurate to think that schemata, and not
specific individuals, are what survives from generation to generation. Crossover tends to cut
schemata of bigger lengths, which have a lower chance to survive. A lower bound on the
crossover survival probability P, of a schema with defining length §, for one-point crossover
is given by:

é
Ps 2 1- Pcrossm (6-6)

where [is the overall length of the schema. With selection, the probability of survival
of a schema depends on the average fitness (relative to population) of the schema instances
present in the population, and on its defining length. The Schema Theorem states that high-
fit schemata with short defining length are propagated exponentially [Goldberg, 89]. These
short schema are called building blocks. In a GA, crossover leads the search in the genetic
material towards finding building blocks (which can be seen as partial solutions) trying to
assemble them in the hope that the obtained full-length chromosome represents a highly
fit individual. This is the building blocks hypothesis (BBH) [Holland, 75]. When multiple-
parameter problems are coded in a chromosome, very complex interactions arise, some of
them induced by the coding and thus undesired (epistatic effects); therefore, it is general
advice to position related genes close together.

6.3.2 The GA as a HNN trainer

The encoding of a ANN into a binary GA chromosome (X = {0,1}) is carried out —given
a fixed architecture- by concatenation of the different weight representations, unit by unit,
and layer by layer, in a precise (arbitrary) order. A GA chromosome is thus a long bitstring
of constant length. Let I = integer[i, i+ k] the integer represented by the alleles contained
in the genes from loci 7 to ¢ 4 &, in base two. In this Thesis, the representation of each kind
of weight is as follows:

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOQOUS NETWORKS 175

Real-valued weights are represented in the usual form of unsigned fixed-point integers
[Goldberg, 89], and decoded as: :

I

Imaa:

r(I) := (rt=r)+r (6.7)

where r(I) is the decoded real, I is the integer represented by the examined substring,
* Imaz its maximum value, in this case gz = 2F = 1 (Iyin = 0) and [r~, r¥] the desired
real interval to be mapped.

Discrete weights, either ordinal or nominal are decoded directly as I.

Set weights are represented by taking each bit in [7,7+ k] as the characteristic function of a
given element to the set, where k — 1 is equal to the set cardinality.

Fuzzy quantities are represented as two real-valued numbers, mode and spread.

Missing values are encoded by specifying a desired proportion % in the genotype. This
means that one out of each m alleles in [i,i 4 k] are to be decoded as missing values.
Specifically, a decoded integer [is interpreted as missing if / mod m = 1. The modulus
is compared to one to allow the zero to be decoded as such. Assuming k = 32, a typical
value can be m = 256.

The fitness function is simply the inverse of the chosen error (e.g.. the mean square error).

6.4 The Breeder Genetic Algorithm

Although a clever design of specialized genetic operators would definitely improve GA per-
formance (as a consequence of introducing problem-specific knowledge) we believe that other
evolutionary techniques better suit the problem of minimizing a (non-differentiable) error
function that has such a heterogeneity in its constituting variables, many of them continu-
ous, difficult for the binary coding of the GA.

When coding an ANN into such a chromosome, highly complex interactions develop, due
to the influence that a given weight on a hidden unit has on the whole network computation.
What is more, the binary (base two) representation of the real-valued weights carries with
it extra interactions between non-neighbouring genes, thus inducing strong epistatic effects
in the GA processing, which only knows of a long chromosome where the atomic pieces are
bits®. In these conditions, it is at least doubtful that the BBH can be applied.

Therefore, a step forward in HNN training can be made by using a method that does not
need any encoding scheme -thus working at the data type level- while keeping the simplicity
and generality of a GA. Such compromise has been achieved in the development of the
following evolutionary algorithm.

®In some early experiments on the Horse Colic Problem -see (§9.2.2)- the chromosomic length reached
24,000.

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 176

6.4.1 Description of the algorithm
The Breeder Genetic Algorithm [Miihlenbein and Schlierkamp-Voosen, 93] is in midway be-
tween GA and ES. While in GA selection is stochastic and meant to mimic —to some degree—
Darwinian evolution, BGA selection is named truncation selection, a deterministic procedure
driven by the so-called breeding mechanism?, an artificial selection method stating that only
the best individuals —usually a fixed percentage 7 of total population size— are selected and
enter the gene pool to be recombined and mutated, as the basis to form a new generation®.
Recombination/mutation operators are applied by randomly and uniformly selecting two
parents until the number of offspring equals g — ¢q. Then, the former ¢ best elements are
re-inserted into the population, forming a new generation of x4 individuals that replaces the
previous one. This guaranteed survival of some of the best individuals is called elitism what-
ever the EA. For the BGA, the typical value is ¢ = 1. The BGA selection mechanism is then
deterministic (there are no probabilities), extinctive (the best elements are guaranteed to be
selected and the worst are guaranteed not to be selected) and l-elitist (the best element is
always to survive from generation to generation). Self-mating is always prohibited. This is a
form of the comma strategy (u, A) employed by ES because the parents are not included in
the replacement process, with the exception of the ¢ previous best. Note that, given ¢ (that
is fixed) in the BGA only u needs to be specified, since the number X of offspring® can be
calculated as A = g — q. In other words, the BGA criterion is to generate A = uy—q < p
offspring to partially replace the old population, that is completed with the former ¢ best.
The full BGA procedure is depicted in figure 6.2, where 7 is the truncation percentage for
selection.

The other strong resemblance of the BGA to ES is that, unlike GA, the BGA uses a
direct representation, that is, a gene is a decision variable (not a way of coding it) and its
allele is the value of the variable’. An immediate consequence is that, in the absence of other
conditionings as constraint handling, the fitness function equals the function to be optimized,
®(7) = F(&). In addition, in a BGA chromosome there are no additional variables other than
the z;, that is to say, the algorithm does not self-optimize any of its own parameters, as is
done in ES and in some meta GA. Chromosomes are thus potential solution vectors £ of n
components, where n is the problem size, the number of free variables of the function to be
optimized. This issue is of crucial importance because:

1. It eliminates the need of choosing a coding function (e.g., binary, Gray) to be used for
all data types.

2. It allows the direct manipulation of different kinds of variables, other than real numbers
(e.g., fuzzy quantities, discrete quantities, etc).

3. It permits the design of data-dependent genetic operators.

*This method is employed in livestock breeding.

%1t is interesting to note that Tournament Selection in GA is a stochastic form of rank-based selection, of
which truncation selection is the most used instance.

$In this case, A < p and the BGA mechanism deviates from that of ES.

7Of course, in a digital machine, we still have a coding, namely, that of the floating point representation
but the decoding is transparent to the high level treatment of real numbers.

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 177

I; selection ntY recombination T, mutation IT; replacement Ilt+1
gene
pool Y
T)) :
m _&IOO n-q H-q u
q

Figure 6.2: A scheme of the BGA procedure. Each box represents the population at different
stages in the process to form a new generation. Notation on top of the boxes names the
population at that point (see text) and the label from box to box (above the arrows) denotes
operator sequencing (from left to right). The expressions at the bottom of the boxes indicate
the population size at each step. Note how the final population size y is formed by summing
its two incoming values.

The common aspect of the BGA with an ordinary GA is the fact that both are mainly
driven by recombination, with mutation regarded as an important but background operator
intending to reintroduce some of the alleles lost in the population. This view is conceptually
right for GA, because the cardinality of the alphabet used to code variables into the chro-
mosome (the number of alleles per gene) is usually very small (two, in most cases). But in
the case of algorithms that make use of real-valued alleles, like the BGA, mutation has to be
seen in the double role of solution fine-tuner (for very small mutations) and as the main dis-
covery force (for moderate ones). In fact, the initial BGA formulation readily acknowledged
this superiority and remarked that it is the synergistic effect of their combined and iterated
application what extracts the most from an EA [Miihlenbein and Schlierkamp-Voosen, 93].
What is more, in ES and EP, the roles are exchanged and mutation is the driving force, in the
form of a very powerful self-adapting operator that tries to take the (unknown) relationships
between variables into account, such that optimization is performed in several dimensions
simultaneously. Because of this, for neural network weight optimization, the use of ES can
convey a very high amount of parameters to be optimized. This is the main reason why we
have considered the BGA over ES, although this last algorithm could certainly be of use. We
will now briefly describe the different possibilities for the genetic operators. The reader is
referred to [Belanche, 99d] for a detailed description.

6.4.2 Recombination

Any operator Q combining the genetic material of the parents is called a recombina-
tion operator. In a BGA, recombination is applied unconditionally, Pr(2) = 1. Let
&= (21,...,2n), ¥= (Y1,--.,Yn) be two selected gene-pool individuals &, i such that & # 7.
Let = (z1,...,2,) be the result of recombination and 1 < ¢ < n. The following are some of

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEQOUS NETWORKS 178

{ i
17 !
1 |
______ - i -
| 1
| |
t I
i 1
a ! '"a
| i
L 1 I » §. t
X-a Xi x+a Y y+a
Xj ¥ i 1 1Y
(offspring) (offspring)

Figure 6.3: Potential zones for offspring and their probabilities. (Left) for the EIR operator,
uniform pdf with a = 8|y; — z;|. (Right) Bimodal pdf for the FR operator, where a = ely; — 2|,
for 0 < e < 1 (shown for e = 0.5).

the more common possibilities to obtain an offspring 2

1. Discrete Recombination (DR).

z € {zi,yi} (chosen with equal probability) (6.8)

2. Line Recombination (LR).

zi =z + oy — i) (6.9)
with a fixed « € [0,1]. Typically, @ = 0.5.

3. Extended Intermediate Recombination (EIR).

zi = i+ o (ys ~ ;) (6.10)

with a; € [~4,1 + 6] chosen with uniform probability. The é parameter expresses to
what degree an offspring can be generated out of the parents’s scope, the imaginary
line that joins them in R. More precisely, it works by controlling the maximum fraction
a = &ly; — x;| of the distance between parents where the offspring can be placed,
cither left to the leftmost parent or right to the rightmost parent -Fig. (6.3), left. A
typical value for § = 0.25, although any non-negative real number is a potential value.
Reasonable values should not exceed § = 0.5, since the bigger the §, the more the effect
of the parents is diminished in creating offspring. A method for dynamically setting its
value is called ranges, and has been shown to have a remarkable effect in performance
on a classical set of test functions [Belanche, 99d]. It works as follows:

z =y + oz — i), with z; > y;

such that a; € [~87, 1+ 8] with uniform probability and,

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 179

. - + .
s-=Yi T, gF=li T
i S =

(6.11)

This procedure assigns different values for the left (67) and right (&}) limits of the
interval from which o; is to be selected, and does never generate a value outside the
range [r;,rT] for the variable i, an aspect not fulfilled by the other methods that
otherwise has to be dealt with a posteriori.

4. Fuzzy Recombination (FR), introduced in [Voigt, Miihlenbein and Cvetkovic, 95]. This
operator basically replaces the uniform pdf (probability distribution function) by a
bimodal one, where the two modes are located at z; and y;, the two parents, that
is Pr(z;) € {Prg(z:),Pry,(2i)} thus favouring offspring values close to them, and not
in any intermediate point with equal probability, as with previous operators. The
label “fuzzy” comes from the fact that the two parts Pry, (t), Pry, (t) of the probability
distribution resemble fuzzy numbers (triangular in the original formulation), such that
they fulfill the general conditions (where y; > z;):

zi—elyi— | <t <zitely -

yi—elyi—mil S t S yi‘*‘elyi—l‘il

stating that the offspring ¢ lies in one (or both) of the intervals, being e > 0 the fuzzy
number’s spread, the same for both parts. The favour for offspring values near the
parents is thus stronger the closer the parents are. This operator is depicted in Fig.
(6.3), right. In the simplest case, assuming e = 0.5 —that is, the two parts meet at the
median and this point has zero probability, as in the figure— an offspring 2; is obtained
with probability

Pr(z;) = BT (zi){elyi — =i, zi, e|ys — 2], i} (6.12)

where BT(t) is a Bimodal Triangular pdf, defined by the four notable points: the two
modes and their left-right spread (these are equal in our case).

6.4.3 Mutation

A mutation operator ¥ is applied to each gene with probability Pr(¥) = % so that, on
average, one gene is mutated for each individual. Let Z = (z,...,2,) denote the result of
mutation of an individual &. The elements of 2" are formed as follows:

1. Discrete Mutation (DM).

z; = a; 4 sign - range; - § (6.13)

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 180

with sign € {~1,+1} chosen with equal probability, range; = p(rf—r7), p€(0.1,0.5)

and
k-1
6= Z (p,'2_i

1=0

where ¢; € {0,1} from a Bernouilli probability distribution where Pr(p; = 1) = % In
this setting k£ € Nt is a parameter originally related to the precision with which the
optimum was to be located, a machine-dependent constant. Modern machines, capable
of double precision, would in principle allow for higher values of k (e.g. 24, 32) than
those traditionally used (e.g. 8, 16). In practice, however, the value of k is related
to the ezpected value of mutation steps: the higher k is, the more fine-grained is the
resultant mutation operator [Belanche, 99d]. The factor p is the range ratio, related
to the mazimum step that mutation is allowed to produce as a ratio of variable range.
This scheme favours small values but cannot generate all possible representable points®,
but only a discrete amount and prefers small values in an approximately (on average)
logarithmic (log,) scale, always up to a precision of range; - 2-%+1.

2. Continuous Mutation (CM). Same as DM but with

§=27F° (6.14)
where 3 € [0, 1] with uniform probability.

6.4.4 The BGA as a neural network trainer

A concise review on the generic use of evolutionary learning algorithms for neural optimization
was given in (§2.1.8). To the best of our knowledge, the BGA has only been used for some
specific neural optimization tasks or application examples:

e In [De Falco et al., 97] a hybrid methodology, in which the BGA is used to find an
adequate architecture is combined with a derivative-based method (DBM) -Back-
Propagation, in this case- in an application example concerned with a non-linear system
identification task. Also, the BGA is replaced by a GA and the results are compared.
The combination (BGA, DBM) is found to be superior to (GA, DBM).

e In [De Falco et al., 98] the numerical optimization problem is left to the BGA, given
a fixed neural architecture, to solve the Mackey-Glass time series. The results are
compared to those obtained by a DBM (a globally enhanced Back-Propagation). The
DBM is found to be superior to the BGA and this, in turn, superior to the GA.

e In [Zhang and Miihlenbein, 93], a BGA variant called BGP or Breeder Genetic Pro-
gramming is introduced. It is basically a BGA with variable-length chromosomes and a

8By this we mean machine-representable. We assume that there is a machine-dependent floating point
constant € equal to the smallest positive representable number in a chosen precision. For example, in our
machines, such number for double precision is € &= 2.22 - 10716,

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 181

next-ascent hill-climbing mutation mechanism to improve on the individuals found. All
the work is left to the BGP and the search is biased to solutions representing minimal
networks. The two tasks addressed are binary problems and the focus is on the ability
of the system to find the minimal known solutions.

In all, the results point the BGA to be markedly superior to traditional GA techniques
although still inferior to DBM, especially if the latter are enhanced by a means to escape from
local optima. However, these are initial studies and the application of the BGA to neural
network training does not constitute yet a widely spread methodology. It is our belief that
EA -particularly, the continuous ones— are in need of specific research devoted to ascertain
their general validity as alternatives to DBM in neural network optimization. Theoretical as
well as practical work oriented to tailor specific EA parameters for this task, together with a
specialized operator design should pave the way to a fruitful assessment of validity, both in
terms of effectiveness and efficiency.

As an initial step toward this end, in the following the BGA is used for the numerical
optimization task of a specific classification problem, the Pima Indians database, often used
for neural benchmarking [Prechelt, 94]. The intention is not to solve this problem to a full,
or achieve the best possible solution, but to use it to investigate its possibilities in the place
of a DBM, in a task known not to be an easy one [Zheng, 93]. Specifically, the experiments
are to address the following issues:

1. Determine whether and how can the BGA -as a particular EA technique- cope with
this problem;

2. Explore the way different configurations of the algorithm (choice of genetic operators
and their parameters) affect its performance, investigating the existence of configura-
tions potentially better suited for neural network training;

3. With the experience gained, select the best of those settings and re-run the BGA with
the purpose of finding good solutions;

4. Compare the solutions found by the BGA, in case they are found to be within reasonable
values, to those found by a powerful DBM.

6.5 An investigation in BGA performance

6.5.1 Experimental design

The Pima Indians Database has been taken from the Proben Archive [Prechelt, 94]. It consists
of 768 examples of a two-class classification task, a positive or negative diagnose of diabetes.
There are 8 input real variables, normalized to lie in the interval [0, 1]. Class membership
comes coded as a 1-out-of-2 scheme. The number of training cases used is half this quantity
—actually the first half, which happens to be class-split into 145 {37.76%) and 239 (62.24%),
totaling p = 384 training cases. The number of hidden units chosen is fixed to h; = 6, that

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 182 ,

is, a neural architecture 8 — 6 — 2 is the one to be used in all of the experiments performed.
A MLP with scalar product plus bias, and the logistic as activation, is used. This means
that a total of 68 free parameters are to be optimized. The activation function is the logistic
(3.9) for all the hidden units, and the identity for the output ones. The cost function to be
optimized (equal to the fitness) is the square error accumulated over all training examples.
All the weights are let to vary within the (possibly too generous) real interval [-10, 10].

Note at this point that the BGA (or any other algorithm for that matter) is likely to find
different results for different numbers of hidden units, basically due to two compromising
reasons:

1. A different form for the function realized by the neural network is going to approximate
a training set more easily the higher is h;, in theory regardless of the training algorithm.

2. Given a fixed size for the input and output spaces, an increasing number h; of hidden
units means a linearly increasing number of free parameters and any training algorithm
is likely to have more trouble optimizing a function in a higher number of dimensions.

Provided we are not concerned in these experiments with selecting the best architecture,
but on assessing BGA performance for the numerical optimization task with varying learning
parameters, h; is kept constant for all the experiments. An important hypothesis is then
that should we select a different hq, the overall results would have been different, but only in
absolute terms. In our case, the value of h; = 6 has been chosen deliberately small —although
not to the point of being too restrictive- so that a learning algorithm has a difficult time
accommodating the rather large training set of cases. This way, differences in performance are
to show themselves more markedly. In what concerns the BGA, we are primarily interested
in addressing the following issues:

e Choice of mutation operator ¥ and its parameters p and k.
e Choice of recombination operator 2 and its parameter § (only for EIR).
e Determination of the truncation threshold 7.

e Study of performance as a function of population size pu.

The stopping criterion is based on the number of fitness evaluations permitted (given by
the variable FFEvals). In particular, given a finite number of FFEvals, the algorithm will
stop each run whenever [%J generations are reached. This stopping criterion allows to
compare different general settings in a fair way, since, for example, a smaller population will
be allotted more generations, but always keeping the number of fitness evaluations in similar
values. For each configuration, a number of independent runs are performed -denoted by
NRuns- keeping track of the mean and best solutions found. For all of the experiments, unless
otherwise stated, FFEvals=40, 000 and NRuns=20. Elitism is set to ¢ = 1. In accordance with
the studies performed on some classical optimization problems [Belanche, 99d] the following
representative subset of possibilities is explored:

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEQUS NETWORKS 183

Mutation operator ¥ € {CM, DM}; parameters p € {0.1,0.5}, k € {8, 16,24, 32}. Number
of different configurations: 16.

Recombination operator @ € {DR, LR («=0.5), EIR (é§ € {0,0.15,0.25,0.35,0.45}), EIR
(6 = ranges), FR (e=0.5)} and a simple random recombination (explained below).
Number of different configurations: 10.

Truncation threshold 7 € {5,8,11,...,50}. Number of different configurations: 16.

Population size u € {2,4,6,...,100}. Number of different configurations: 50.

This experimental design is suboptimal because not all the possible combinations of mu-
tation with recombination or with values of 7 are tested. As we shall see, this number is too
high to allow a full study to be performed and, furthermore, it is our belief that many of the
combinations can readily be discarded a priori by a smaller but more effective experimental
design. Also, even with the full results, the conclusions could not in any case be general ones
since there is probably no configuration that is optimal for every conceivable (even reason-
ably) network optimization task, not even if, as in this work, the study is circumscribed to
a specific search algorithm. Clearly, an exhaustive search over configurations is computa-
tionally infeasible, even limiting ourselves to a finite number of possibilities for every issue
tackled (in our case, as in can be readily checked, this number amounts to 128,000). Hence,
instead of performing an exhaustive (in a sense, multiplicative) number of experiments, a
greedy (additive) strategy can be applied in the following way:

1. Set to their values all parameters that are constant across all the experiments.
2. Set an initially standard setting for the issues to be explored, except for the first.
3. Select a suitable ordering for the issues to be explored;

4. Perform the experiment for the first of the issues according to the order chosen. Deter-
mine the best (or better two) setting, and hold it constant for the rest of the experiments,
replacing the old value;

5. Perform the experiment for the nezt of the issues according to the order chosen. Deter-
mine the best (or better two) setting, and hold it constant for the rest of the experiments,
replacing the old value;

6. If not done (all issues explored), go to step 5.

The strategy is then to perform several consecutive experiments that are kept simple
and use the knowledge found up to the point for the remaining experiments. By proceeding
this way, the number of configurations is to shrink to a minimum of 92, assuming that only
the best setting is selected for each issue. If the better two are kept, this number will be
between 92 and 184 (the double), depending on the ordering. In any case the number of
configurations is now manageable. The order chosen is that of the previous description.
First: selection of mutation operator; next: selection of recombination operator, truncation

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 184

threshold and finally population size. There is no strong reason behind this ordering: it has
been the case because we are primarily interested in finding out whether there are mutation
and recombination settings generally better suited for neural network training, and then, to
explore their performance across different truncation thresholds and population sizes.

6.5.2 Experimental results
Experimental results on mutation

For this experiment, 4 = 100 and NRuns=10 for each setting of the algorithm shown in Fig.
(6.4), where the choice for recombination, Q = EIR (6 = 0.25), fairly standard, has been
selected. The results are presented as follows. Two tables are given, separated in continuous
(CM), Table (6.1)), and discrete (DM), Table (6.2), mutation. For each configuration (p, k)
the average and best solution found throughout the NRuns are kept. Instead of giving a sep-
arate entry for each such configuration, some simple additional computations are performed
to compact the information. The entries in the column for p are obtained averaging out
the results forall k¥ in {8, 16, 24, 32}. Similarly, the entries in the column for & are those
obtained averaging out forall p in {0.1, 0.5}. By proceeding this way, one has to deal with
less information and the obtained values are more representative. For instance, the entries
for p are averages over 20 runs and those for k over 40 runs. Top value shown is the average
and bottom value (in parentheses) is the best result.

Procedure Mutation-Test ()

(1, 7) := (100, 25);
Q := EIR (é§ = 0.25);
forall £ in {8, 16, 24, 32}
forall p in {0.1, 0.5}
forall ¥ in {CM, DM}
BGA (g, k,p, ¥, NRuns, FFEvals, {2, 7);

}

Figure 6.4: Mutation-Test Algorithm pseudocode.

~p - P

0.1 05 8 16 24 32
130.0 | 124.7 || 123.4 | 124.9 | 1314 | 1298
(120.1) | (115.7) || (114.9) | (116.8) | (120.2) | (119.6)

Table 6.1: Results for Continuous Mutation (CM). See text for an explanation of entries.
Markedly good results are boldfaced.

All figures correspond to the direct fitness values obtained, corresponding to the accumu-
lated square error, to be minimized. This value is a monotonic function of the usually reported
error and computationally cheaper. To get the actual root mean square error (RMSE), just
divide each entry by 768 (number of patterns times number of outputs) and take the square

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 185

0.1 0.5 8 16 24 32
130.2 | 127.1 || 126.1 | 1286 | 131.1 1286
(117.3) | (117.1) || (118.6) | (120.1) | (115.3) | (114.9)

Table 6.2: Results for Discrete Mutation (DM). See text for an explanation of entries.
Markedly good results are boldfaced. '

root of the result. The results are of course non-conclusive because the number of runs is
not too high and the explored possibilities are also a small —though representative— sample.
However, by looking at Tables (6.1) and (6.2) several aspects are noteworthy.

e Firstly, the results for CM are very neatly defined: performance is superior for p = 0.5
over p = 0.1, and for k € {8,16} over k € {24, 32}, both on average and for the best
value obtained. This corresponds to the boldfaced rectangular region in Table (6.1).

e For DM, the results are less vigorously defined, but in general accordance. It can be
checked that again p = 0.5 is superior to p = 0.1 and performance for k € {8,16} is at
least as good as k € {24,32}. This last point, however, is not fulfilled by the absolute
best values found; though these are less representative quantities than the averages,
this behaviour is in need of an explanation.

e The overall results (high values of p combined with low values of k) are also in strong
accordance with previous studies on non-trivial functions [Belanche, 99d].

e Secondly, CM seems to be slightly superior to DM, a fact that shows itself especially
for the best results, that is, for p = 0.5 and k € {8,16}. For k € {24,32}, CM is better
but only marginally and in any case the results are worse than those for k € {8,16}.

By looking at the average results for individual settings (not shown) we find that per-
formance for CM (0.5, 8) is equal to 122.2, while that for CM (0.5, 16) is 121.5, and hence
this last setting is the one finally selected, although we conclude that a value of £ = 8 is an
almost equally valid choice. ’

Experimental results on recombination

In the case of recombination operators, up to ten different settings are tested, as follows:
DR, LR with a = 0.5, EIR with § = 0,0.15,0.25,0.35 and 0.45, EIR with ranges and FR
with e = 0.5. The mutation operator is fixed to CM with p = 0.5,k = 16, as a result of the
previous experiment on mutation. The BGA procedure in the algorithm of Fig. (6.5) is run
for this experiment with ¢ = 100 and NRuns=20 for each setting. As an additional reference, a
completely uninformed recombination operator is included, which simply yields an offspring
generated randomly within the range (not taking into account the parents’s information).
This operator is denoted RR (Random Recombination).

The results are presented in a single table for ease of reading ~Table (6.3)- summarizing
the information for all of the recombination variations tested. For each configuration, the

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 186

Procedure Recombination-Test ()
{
(g, 7) = (100, 25);
¥ := CM (p = 0.5, k = 16);
forall Q in { RR, DR, LR (a = 0.5),
EIR (§ = 0,0.15, 0.25,0.35,0.45),
EIR (ranges), FR (e = 0.5) }
BGA (u, F;,k, p, ¥, NRuns, FFEvals, Q, 7);
}

Figure 6.5: Recombination-Test Algorithm pseudocode.

average and best (in parentheses) solutions found throughout the NRuns are shown. Several
points are noteworthy:

1. The computed average performance of EIR across a fixed é € {0.15,0.25,0.35,0.45} is
equal to 123.6. This figure compares favourably to those for the other operators (RR,
DR, LR and FR), not counting EIR (ranges).

2. FR is somewhat in between on average. Note that its best result (112.8) is very similar
to that for the averaged EIR with fixed § (112.7). It seems then that this last operator
(EIR) can yield potentially better results, provided we find the right §. In any case,
averaged EIR mean behaviour (123.6) is better than FR (127.4).

3. With respect to EIR (ranges), it is clearly the best setting on average (117.6) though it
achieves only middling results for the best value. A closer study on performance with
a greater number of runs should give more definite results. In this line of thinking, it
is interesting to observe that EIR (6§ = 0.45) has the absolute best result, although its
mean performance is the worst across all EIR. All this confirms that the best values
found are subject of much greater variability and cannot be readily predicted by the
average results, this last quantity being the one to be primarily taken into account to
judge among different settings.

RR DR LR EIR EIR EIR EIR EIR EIR FR
a = 0.5 §=0 [§=0.15|8=025]| §=035 | §=0.45 || ranges || e=05
399.5 138.2 129.8 124.5 121.7 124.2 122.5 124.9 117.6 127.4
(193.6) || (114.4) || (119.5) || (114.0) | (112.1) | (us8) | (112) | (110.6) |} (114.8) || (112.8)

Table 6.3: Results for the different settings of recombination operators. Each entry shows
the average and best results (in parentheses) across NRuns=20 runs.

To sum up, note that the average performance of EIR is always better than the rest (RR,
DR, LR and FR), for all §. This shows EIR as a robust operator, and notably when using
the method ranges.

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 187

Experimental results about the truncation threshold

Sixteen different values for the truncation threshold r = {5,8,11,...,50} are tested, as
samples of the full (discrete) interval [5,50]. As before, the mutation operator is fixed to
CM with p = 0.5,k = 16. As a result of the previous experiment on recombination two
settings, EIR (6§ = 0.35) and EIR (ranges), are to be used. The latter is the one with the
best average performance, while the former —besides being a representative of EIR with a
fixed 6- has the best all-round performance (crudely defined as the mean of average and
max). The BGA procedure -the algorithm in Fig. (6.6)— is run for this experiment with
p = 100 and NRuns=20 for each setting. The results are presented graphically in Fig. (6.7)
for EIR (6 = 0.35) (left) and EIR (ranges) (right). As usual, for each configuration, average
and best performance throughout the NRuns are shown.

Procedure Truncation-Test ()
{
g :=100; ¥ := CM (p = 0.5, k = 16);
forall Q in {EIR (6 = 0.35), EIR (ranges)}
forall 7 in {5,8,11,...,50}
BGA (u, Fi, k, p, ¥, NRuns, FFEvals, §, 7);
}

Figure 6.6: Truncation~Test Algorithm pseudocode.

1S

"o P N U VN S S |
S B 11 14 17 20 22 26 2 N B W 4 M4 47 %N

Figure 6.7: Results as a function of truncation parameter 7. Left: EIR (6 = 0.35). Right:
EIR (ranges). Each point is the result of NRuns=20 runs.

The most prominent observation is the radically different behaviour of both settings:
whereas for EIR (§=0.35) performance firmly increases up to a bending zone (about [26, 35],
peaking® at 29 and 32) and then begins to decline, for EIR (ranges) the best region appears
very soon, in [8, 20], peaking at 11 and 17. These zones are marked in the plots of I'ig. (6.7)
(left and right) by two vertical bars. In between (in [20, 26]) there is a transition zone, where

9The peak points are orientative because not all points have been sampled. They should be read as
“around” marks.

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 188

performance for both is in the [118, 122] mark. More precisely, the crossing lies in [23, 26],
where both operators are in the {120, 122] mark. This comparative behaviour is clearly seen
in Fig. (6.8), where average results for the two operator settings are plotted together. It
is also clear from this last plot that both configurations achieve comparable average results,
although for quite opposite values of 7.

Our motivation here is clear: no single value is going to be always the best suited, because
the particular threshold for truncation is likely to be tailored to a specific problem; instead,
it makes more sense to ascertain a generally correct interval and then choose a value or values
inside it. In our case, the two intervals are very definite but different for the two settings. For
the sake of avoiding duplicate experiments or favour one of the two settings, the point of equal
performance is selected: the midpoint of [23, 26] being 24.5, we take 25. This approximate
cross-point value happens to be consistent with usual proposals (usually 7 € [20,25]) in the
neural network context [De Falco et al., 98}, [Zhang and Miihlenbein, 93].

1 _Average 10.35) —--
Avarega (mnge) v |

R

s . 1 1 V7 20 23 28 20 3% 385 I8 41 44 a7 B0

Figure 6.8: Average results for the two recombination settings. The cross-point is around 25.

Experimental results varying the population size

Once the best configurations for mutation and recombination and a reasonable value for
the truncation threshold have been set, it is of interest to perform an experiment on how
the population size p affects performance. In this line of argument, it is very clear that no
single value for u is going to be generally “best”, even for a particular task. Rather, we
are concerned with studying the curves of performance as a function of u, keeping other
parameters constant. It is of added interest that all the experiments are to be allotted
the same total number of fitness evaluations (given by FFEvals), thus allowing a truly fair
comparison. Two questions arise: is a bigger population size going to give (significatively)
better results, provided it is allowed to resort on the same number of fitness evaluations? Is
there any clear trend in performance as a function of u?

To give an answer, fifty different values for the population size are tested, sampling the
discrete interval 2, 100] of even numbers, to get a smooth transition between consecutive
results. To keep the computational burden within reasonable values, the limit FFEvals is
set to 4000, thereby allowing for 2000 generations for ¢ = 2 and only 40 for g = 100. In
practical applications, this would constrain the absolute performance figures to unacceptably
low values. However, in this experiment (as in the majority of experiments in this study) we

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEQUS NETWORKS 189

are primarily intefested in the relative performance with varying p. In a sense, we are going to
explore how does the algorithm behave in the first 4,000 evaluations of what would normally
have been a longer execution. It has been observed [Zhang and Miihlenbein, 93] that the
typical performance curves for a BGA follow the trends shown in Fig. (6.9) (depending on
problem difficulty). Hence the initial performance is able to illustrate how the algorithm
is going to behave for a particular setting. Expected variations due to specially lucky (or
unlucky) runs are to be mitigated by computing the average over the NRuns runs.

titness

generations

Figure 6.9: Typical (idealized) BGA performance curves.

Procedure PopulationSize-Test ()
{
T:=25 ¥ :=CM (p= 0.5, k = 16);
forall Q in {EIR (6 = 0.35), EIR (ranges)}
forall p € {2,4,6,...,100}
BGA (u, F;, k,p, ¥, NRuns, FFEvals, Q, 7);

}

Figure 6.10: PopulationSize-Test Algorithm pseudocode.

Operators are set to CM with p = 0.5,k = 16 for mutation, and EIR (6 = 0.35), EIR
(ranges) for recombination, with 7 = 25 and NRuns=20 for each setting. The procedure is
that of algorithm in Fig. (6.10). The results are again presented graphically, in Fig. (6.11,
left) for EIR (6 = 0.35) and (right) for EIR (ranges). For each configuration, average and best
performance curves across the NRuns are shown. In addition, a quartic function (polynomial
of degree 4) is fitted to the data and plot.

Both sets of curves are similar in that they exhibit the same trend: a sudden initial
decrease (more marked for the average performance) up to a turning point from which further
improvements are slow but consistent. This clear tendency to better performance answers
both questions affirmatively: the first one because of the trend, and the second one because
of its smoothness. The bigger i, the better the results even though the effective number of
generations is getting lower and lower.

More precisely, the interval {35, 40] seems to be the turning point in both cases, then there
is a flat plateau ({40, 65]) and from 65 on, the curve decreases in both cases, reaching the
lowest zone at (85, 95] for EIR (6 = 0.35) and at [60, 80] for EIR (ranges). It finally seems
to slightly raise again, possibly because the number of FFEvals is too small for g = 100.
This collective behaviour is more clearly seen in Fig. (6.12, left), where average curves for

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 190

. IR e - a2
i s, 14 3 TWAT L Sy

i Mh x SRR IR L

P TV o e il

120 o i A hlN it i

0 5 10 15 20 25 0 35 40 46 60 55 60 65 70 75 80 85 90 05 100 0 5 10 15 20 26 30 35 40 45 50 S5 € 65 0 75 80 85 90 95 100

Figure 6.11: Average and Best BGA performance as a function of u. Left: for EIR (6 = 0.35).
Right: for EIR (ranges). Each point is the result of NRuns=20 runs.

120 120 bomini I S S S S
© 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8¢ 85 90 95 100 0 S 10 15 20 25 30 35 40 45 S0 S5 60 65 70 75 60 85 90 05 100

U TS N S S WA S S S S T W ST T | i i

Figure 6.12: Compared BGA performance as a function of u. Left: Average. Right: Best
results. Each point is the result of NRuns=20 runs.

both settings are plotted side by side. Both average curves have nonetheless similar trends,
showing the slight increase at the end. It is also clear from these plots that the curve for EIR
(ranges) is consistently better than that of EIR (6 = 0.35). The same arguments are valid
for the Best result curves (Fig. 6.12, right). In this case, the increase at the end is more
marked.

A comparison of performance

With the knowledge gained so far, it is of interest to perform a further batch of experiments
with the clear intention of finding relevant solutions, and to compare them to those found

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 191

by DBM. To this™end, we select the two settings that have been used so far, but this time
allowing the algorithm for FFEvals = 100,000 across NRuns = 10. The two recombination
settings are used with the following parameters: (p = 90, 7 = 30) for EIR (6 = 0.35) and
(¢ = 50, 7 = 18) for EIR (ranges). As can be seen, these are rather temptative values chosen
inside the regions of best performance, following the results of (§6.5.2).

Algorithm - MSE -

Average + \—7—; Best
BGA (EIR, § = 0.35) | 0.1461 £ 0.0016 | 0.1354

BGA (EIR, é = ranges) | 0.1471 £ 0.0012 | 0.1407
Annealing + ConjGD | 0.1409 £ 0.0053 | 0.1134

Table 6.4: Comparative results found by the three optimization algorithms.

These two representative BGA configurations are to be compared to a DBM, in as much
equal conditions as possible, though this is in general extremely difficult. The method chosen
is a powerful combination of two classical optimization methods. It consists of a Conjugate
Gradient descent coupled to a Simulated Annealing schedule [Ackley, 87]. This hybrid method
is allowed to resort to 10 restarts to match the 10 runs of the BGA, and it optimizes the same
cost on the same data set, using an identical network architecture. The results are shown in
Table (6.4). This time, data for MSE are directly shown in the format Average + —”\/;, where
o is the standard deviation and n the number of runs, along with the best solution found.
There are some interesting observations:

1. The average values found by the two BGA and the Annealing 4 Conjugate Gradient
are very close indicating a comparable average performance, which is by itself very
notable, given the sophisticated nature of the chosen DBM. However, the latter method
finds an extremely good solution not matched by any BGA setting. In spite of this,
the comparable average behaviour and the markedly lower variability shown by the
BGA indicate a general feasibility for the task, perhaps contrary to what one could
pessimistically expect of an evolutionary algorithm.

2. The fact that EIR (ranges) gives poorer results is a little deceptive in light of its
previous results. This operator is in need of a thorough experimental investigation,
which falls beyond the scope of this Thesis. However, the lower deviations w.r.t. the
DBM may be an indication that it has not been used in or near its optimal population
sizes and truncation thresholds. This could also apply to EIR (§ = 0.35).

3. In what regards the duration of training, the DBM took about six times (actually six
hours) the time used by a BGA execution (counting all the NRuns), on a shared SUNTM
Ultra-60 System.

The obtained performance curves are shown in Fig. (6.13) for the two selected recombi-
nation settings. Each of the curves traces the evolution of the best solution found up to a
given generation. They can be compared against those in Fig. (6.9). By looking at them, it

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 192

1000 1000 r
i ! T !
200 900 -
0 0o +
00 i H 200 H
600 ¢ &0 ! :
i | |
00 i 800 b e e i i
400 400 i
i
i o T T
® L .
100
i I |
° N s i N ° s s i n N L H " N
[20 w00 €0 00 1000 © 20 400 60 80 1000 1200 1400 1800 1800 2000

Figure 6.13: Actual BGA performance curves. Left: for EIR (§ = 0.35). Right: for EIR
(ranges). The z-axis shows the generations and the y-axis shows the fitness. Note the
different number of generations due to the different values of 1 used. In each case, all ten
curves are plotted, illustrating in both situations the very low variability.

can be seen how the BGA quickly (in a couple of hundred generations) finds relatively good
solutions, then stabilizes and continues to minimize the cost but at a very low pace.

6.5.3 Summary of findings

We are now in a position to summarize the main findings of the experiments. For some
aspects, specific configurations (one or two) are shown to be specially better while, in other
cases, a range of values can be proposed. The intention is then to provide an interval from
which a careful problem-dependent experimental setup could draw samples. For instance, in
our case study, it is improbable that we have chosen the best possible value for 7 or u in the
comparison to the DBM, but the chances that we are in a meaningful interval are high and a
specialised search for practical solutions to this problem would surely improve on the solutions
temptatively obtained. Recall that the same 7 has been used for two radically different
recombination settings to obtain the results on p. In a real application, separate experiments
should be performed. A summary of recommended BGA operators and parameters follows:

Mutation operator: Continuous Mutation with parameters p = 0.5 and k£ € {8,16}. Dis-
crete Mutation could also be a choice, although not for the problem studied. For both
operators, this parameter setting is in general favour of bigger mutation steps.

Recombination operators: Extended Intermediate Recombination (EIR) with a high é =
0.35 or § = 0.45 (good behaviour on average and w.r.t. the best result found) and EIR
with dynamic § calculation (best average behaviour).

Truncation threshold 7: found to be approximately 7 € [26,35] for EIR (§ = 0.35) and
T € [8,20] for EIR (6 = ranges) for 4 = 100. This value is likely to depend on p.

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEQUS NETWORKS 193

Population size for the selected 7 of 25, performance reaches the optimum zone in the 85,
95] interval for EIR (0.35) and within [60, 80] for EIR (ranges). Again, the interaction
between 7 and g prevents from drawing far-sighted conclusions, but the definite per-
formance trends found for both parameters and their relationship are very clear and
deserve a closer attention.

6.6 Extension of the BGA to heterogeneous network training
The manipulation of each kind of heterogeneous weight is carried as follows:

Real-valued weights are directly treated as such, initialized at random within a pre-declared
range, and recombined and mutated with the operators described in (§6.4.2) and
(§6.4.3). Values eventually generated outside the boundaries are clipped.

Ordinal weights are represented as positive natural numbers in the interval [1, m] —following
the discussion in (§4.3)- an initialized at random within the interval. For recombination,
there are three possibilities, which mimic the real-valued operators: discrete recombi-
nation (6.8) (which is generally valid but ignores the order), line recombination (6.9)
(which respects the order), and extended intermediate recombination (6.10) (idem, but
needs an extra parameter to be set). Some preliminary investigations lead to the choice
of line recombination with fixed o = 0.5, that is, the median of the parents. In case of
an odd number of elements between the parents, the offspring was selected with equal
probability among the two choices.

Mutation involves an increase (to the immediately following value w.r.t. the linear
order relation) or a decrease (idem, but in the opposite sense), and the decision is taken
with equal probability. Values eventually generated outside the boundaries are wrapped
around.

Nominal weights are also represented as positive natural numbers in the interval {1, m],
where m is the cardinality, but no order relation is assumed. They are initialized at
random within the interval. The clear choice for recombination in this case is discrete
recombination, being the only one ignoring any underlying order. Mutation is realized
by switching to a new value in the interval, with equal probability.

Fuzzy quantities. The BGA extension to handle fuzzy numbers is given by a tuple of reals
(three in the general case, only two if the chosen representation is symmetric triangular
or Gaussian). Linguistic variables are described by their anchor points on the abscissa
axis (four in the case of trapezoidal membership functions). Actually, the two spreads
are taken as offsets to simplify the manipulation.

The BGA can in a sense be seen as a fuzzy BGA because it directly deals with fuzzy
quantities, as long as the algorithm manipulates the involved variables as representing
a unique entity at all levels (e.g. in initialization, recombination or mutation).

The initialization of fuzzy numbers is as follows: the mode is assigned a random value
within the pre-declared range. The fuzziness involves the generation of a new random

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEQOUS NETWORKS 194

value within the same range, which is then manipulated in accordance with the way
fuzzy numbers are constructed for the corresponding input (e.g., a fixed percentage).
This is so since the weights are not restricted to have the same kind of fuzziness as the
inputs (and that is why two real-valued numbers are needed in their representation).

Recombination of fuzzy numbers is developed as the corresponding extension of the
operators for real-valued quantities. In particular, for the EIR operator, the mode is
obtained following (6.10) (involving the selection of a é), and the spread is computed
using (6.10) with the same a. This makes sense whenever the spread is proportional to
the mode. Fig. (6.14) provides an example.

i 1 | I | 1

| 1 3 4 3 §

Figure 6.14: EIR recombination for fuzzy numbers with § = 0.25, and o = 0.75
uniformly chosen in [—0.25,1.25]. Mode and spread for the two parents are 2.0,
1.0 and 4.0, 2.0. The thicker number is the result of recombination. As for real
numbers, the value of & makes offspring resemble its bigger parent more (a factor
of %) than its smaller one. The resulting mode is 3.5 and the spread 1.75.

Mutation of fuzzy numbers is also developed as an extension of the real-valued operators,
by taking into account that mode and spread are collectively expressing a single (fuzzy)
number. Both continuous and discrete operators can be used, as follows. First, the
change on the mode is determined as in (6.14) or (6.13), respectively. The change on
the spread is done in the same way, but using the same sign and § (which are the
terms depending on probabilities) as used for the mode. It has to be said that, initially,
the proposed change for the spread was altered as a small percentage of the proposed
change in the mode, but this ended in very small changes in the spread that made no
real difference to the algorithm. Hence, this last correction was abandoned.

The initialization of linguistic variables is as follows: first, the left mode is assigned
a random value within the pre-declared range, and then the right mode is chosen in
the interval between the first mode and the right limit of the range. Alternatively, the
right mode can be first chosen in the whole range, and then the left one is chosen in the
interval between the left limit and the second mode. To lessen the bias of the method,
one of the two strategies is chosen with equal probability and applied. Then, the two
spreads (left and right) are selected independently (of each other and of the modes).

Recombination is again developed as an extension of the operators for real-valued quan-
tities. In particular, for the EIR operator, the procedure is analogous as for fuzzy num-
bers, that is, using the same o for all the involved quantities. In this case, however, the
source of uncertainty is different, and there is no need for the spreads of the offspring

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 195

to be in a proportion to their modes similar to that of the parents, and other operators
could be conceivable. Fig. (6.15) provides an example.

[T\

Figure 6.15: EIR recombination for linguistic terms, with § = 0.25 and & uniformly
chosen in [-0.25,1.25], and equal this time to 0.50, for clarity. The thicker set is
the result of recombination. In this case, both parents are equally responsible of
the obtained offspring (o = 0.5).

Finally, mutation of linguistic terms is also developed as an extension of the operator
for fuzzy numbers, where both continuous and discrete operators can be used. A single
step change is proposed according to (6.14) or (6.13), which affects all the constituting
points (modes and spreads) in the same way. This can be thought of as a translation
of the linguistic term in the universe of discourse (in the geometric sense).

Missing values are dealt differently than for a GA. They are initially generated according
to the estimated probability of a missing value in the variable. This makes sense since
for variables containing high numbers of missing values, the probability of placing one
in the corresponding weight (of a given unit) increases. In the limit, if all the values
for a variable were missing, the weights would also be so.

If this probability is zero (since no value was missing for the variable) a missing value for
a weight could still be introduced by mutation (signaling the temporal loss of a gene or
trait). A mutation operator sets a missing value in the allele with a certain probability
(usually very low). If this change leads to improved performance in the corresponding
network, it will be retained. A missing value cannot be mutated back to a non-missing
one. A definite value can only be recovered by recombination to the (non-missing) gene
of another individual.

Recombination is treated as discrete (DR) whenever at least one of the parents have a
missing trait. This is coherent with the philosophy of EA: recombination stands for the
transmission of the parents’s genetic material to their offspring. If a parent is lacking
a gene, this characteristic has to be given the chance to be passed on. Besides, if the
trait or gene is lacking for both parents, it will be so for the offspring, since nothing can
be “invented from scratch”. This will eventually be the role of mutation. In summary,
given a recombination operator (possibly heterogeneous), it is extended to a Qy
(where X" denotes the missing value) as:

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEOUS NETWORKS 196

Qziy) fai#F XAy #X
Qu(zi,¥:) =< DR(ziy) fz;=XVy=4& (6.15)
y ¢ otherwise

where V denotes exclusive-or. All this manipulation for missing values differs from the
one done in the GA, in that in the latter, this value was treated as any other value, and
generation and propagation were carried out blindly and completely at random. The
proposed treatment for the BGA has the added advantage of being simple, and natural
from the point of view of an EA (in the sense that it is taken as a missing gene) and is
independent of the data type.

6.7 Conclusions

We have presented an overview of Evolutionary Algorithms, focusing on the two instances
used in many of the experiments carried out in this Thesis, a standard GA and the BGA.
Both have been extended with means to represent and manipulate heterogeneous information
(including missing values), in order to use them as trainers for an HNN. For the BGA, this
has involved the extension of the repertoire of genetic operators, adapting them to specific
data types. The algorithm has also been investigated in this task.

The search for generally adequate genetic operators and other BGA parameters —like
optimal population size g and truncation threshold for selection 7— for supervised training
of a neural network is of great interest and has to be carried in a principled way, if the aim
is to tailor the BGA specifically for this kind of problem. The reasons for this research are
numerous, and among them we mention the following:

1. We believe that there effectively are BGA configurations (specially, genetic operators)
in favour of the particularities of this task. Specialised operators can be devised, but the
knowledge gained on the existing ones constitutes a good departure point. Moreover,
genetic operators behave at their best for certain balanced combinations of p and .
Thus, the relationship between these two important parameters must be further clarified
in this context, specially in light of the quite opposite influence they have on the two
recombination settings that have stood out -EIR (§ = 0.35) and EIR (ranges).

2. It is also our belief that the potential of EA (and especially of the BGA) to solve this kind
of task has not yet been fully employed; the experiments in this work are initial steps
in this direction. Hybrid methods in which an EA takes the model selection part and
the numerical optimization is left to traditional DBM not only are very time consuming
but they do not make the most of EA. This is because, due to the high computational
demands, only small populations run for a very low number of generations can be run.
Also, the search is biased by an external factor —the DBM- that, due to its nature, is
to yield a suboptimal solution that also depends heavily on the initial weights, learning
rate, momentum, and other DBM parameters (not controlled by the EA). In addition,

CHAPTER 6. EVOLUTIONARY TRAINING OF HETEROGENEQOUS NETWORKS 197

the (reasondble) model space is discrete and usually small, and it makes sense to take
profit of incremental/decremental steps until some criterion is fulfilled. Note that one
is interested in generalization ability and thus the guiding error is going to be that over
the validation set, not over the training set, which is known to decrease with models of
increasing complexity (and hence the use of incremental/decremental methods).

3. In the same vain, the hybridization of methods involves a double set of parameters to
be optimized at the same time. Not only the learning parameters of the DBM have to
be set, but the parameters of the EA have also to be chosen over a rich variety. And it
is likely that interactions arise between both methods, making the search on the joint
parameter space an unfeasible task.

For these reasons, we postulate for EA to solve the numerical optimization problem only,
among which continuous EA (like the BGA or ES) are possibly better suited than traditional
binary-coded GAs. To this end, the classical testbeds for EA on which the BGA has already
been tested [De Falco et al., 96], [Belanche, 99d], [Belanche, 99¢] should be widened with
those used in neural benchmarking. This would surely open new directions in its development.

A partial solution for the effect of recombination —at least one that alleviates the problem-
is the use of recombination operators with high variance, able to leave the scope of the parents,
possibly in a controlled way, depending on how close they are. In addition, the mutation
operator should be vigorous enough as to tune (exploit) a solution proposing non-trivial
changes, since a fairly small change (e.g. in the fourth decimal) in one of the weights (that
is, the expected change in a BGA) is not going to affect network performance. However, a
stronger change (e.g. in the second decimal) can affect it, either for the better (it will be
kept) or for the worse (it will be kept if it still marks as one of the best = percent).

This intuitive thinking is supported by the results of this work. For recombination, the
EIR family of operators stands out from the rest. These operators are the only ones that
allow to exit the parents’s scope, the amount of which is controlled by their parameter §.
Specifically, a big value of 4 = 0.35 and the highly-allowing method ranges, which dynami-
cally sets it to the maximum feasible value, have been shown to be the best. For mutation,
high values of p combined with low values of k& (actually, the respective high and low extreme
of the intervals sampled) yield the best results. This setting favours higher average mutation
steps, up to reasonable values. For example, some simple calculations show that, for the
selected values p = 0.5 and k = 16, and the weight range of [—10, 10], the expected mutation
step is around 0.04 (positive or negative), very approximately the mean change in the second
decimal.

The results presented in this Chapter, corresponding to an initial study —and specifically
a study of relative performance between parameter settings— should not be taken as a useful
comparison to those obtained by DBM. Moreover, the choice of the cost function and the range
of weights is likely to certainly exert an influence in BGA performance because, although the
underlying task is basically the same, what the BGA sees is a different fitness function and
has a different range where to generate solutions to it. For instance, it is specially likely that
a function not suitable for DBM training, the number of correctly classified examples, could
give good results. All this remains to be worked out in the future.

Chapter 7

Experiments on Real-World
Problems

I know why there are so many people who love chopping wood.
In this activity, one immediately sees the results.

Albert Einstein

7.1 Introduction

If a new approach is developed for its assumed utility, an empirical comparison is a good
means to assess it. In this setting, it should be verified that new algorithms or, in our
case, new models, perform well for some real problems, as these are the only tests that are
guaranteed to have practical relevance, not only for the specific problem being considered,
but also as indications of a generic applicability of the approach to the always challenging
domain of real-world problems.

An additional and most important question has to be addressed: for what kinds of prob-
lems is the approach best suited or recommended? In our case, the answer has been pointed
out from the outset, and constitutes one of the thesis of the present work: whenever there
is a natural and modelable heterogeneity in the data or there exists an explicit knowledge
(which is task-dependent) that can be written in the form of a similarity relation defined on
the data patterns.

7.2 Contents

The following material consists mainly of experimental work carried out on three quite dif-
ferent real problems, one in Medicine (the first one presented) and the other two in the
field of Environmental Sciences. It has been extracted from [Belanche and Valdés, 98c],
[Belanche, Valdés and Alquézar, 98a], [Nieto, 00], [Valdés, Belanche and Alquézar, 00] and

- 198

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 199

[Belanche and Valdés, 99a]. \

The first problem aims at the finding of models for the controllers in the central nervous
system control (CNSC). Three variants of the task are considered, differing in the difficulty
and in the variety of data used.

The second problem is an environmental study in which two heterogeneous models are
used in an imprecise classification task, aimed at detecting underground cavities.

The third problem tackles another environmental task, this time a multi-class classifica-
tion, for the identification of valid models in the context of a geochemical study on arctic
natural waters.

A word of warning is in order about the experiments. Due to the different timings in
the availability of the data and the fact that they were worked out in different stages of the
Thesis, they are embedded in methodological and experimental settings that are not always
fully coincident. Nonetheless, an effort of unified presentation has been made to minimize this
effect, but without altering the original settings or fundamental results, because this would
have meant to redo them completely. In practical terms, it only means that the different
experiments should be looked at individually.

7.3 Experimental setting

In all the experiments, an heterogeneous neuron model grounded on the measure in (§4.4.1)
(with spmqer = 1) is used, based on a simple additive similarity aggregation operator, followed
by a non-linear similarity-keeping or § function, acting as a logistic activation function by
adapting it to the real domain [0, 1]. The neuron model computes a function F;(&) as follows:

Fi(7) = 3 (EZ=1 se(zk, wik) Ok(Z, 15:')) | (.1)

ZZ:I 6k(f’ ’(171)
where 3(2) = g(z, k) (4.74) with k£ = 0.1 and, being X' the missing information symbol,

v 1 iz #F XA AEX
5 (&, 9) = { 0 otherwise

The partial measures s; between the variables are computed using the partial similarity
functions defined in (§4.3), chosen accordingly to each data set as described individually for
each of them. In the considered problems, all information is originally continuous and the
two possible models (with or without considering the underlying uncertainty) are consistently
explored. The used partial measures for continuous variables are always distance-based ones,
based upon the measure defined in (4.51) and, unless otherwise stated, using (4.76) with
d = 1, = 1, that is, the function (2) = 1 — 2z or S0.0 in the Table (4.1) of similarity
transforming functions, corresponding to the basic measure (4.52). The measure (4.60) is the
one used for fuzzy numbers.

In this respect, it is interesting to note that, in effect, the variables in the experiments ex-
hibit a significant amount of imprecision. Two generic models ~the continuous and the fuzzy

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 200

continuous— are studied in the form of two heterogeneous neuron models, conveniently de-
noted as the h and f models (for heterogeneous and fuzzy, respectively). The reference model
for comparison is the P-neuron, denoted as the n model (standing for normal). Other tech-
niques are sometimes considered, such as the complex neuron model [Birx and Pipenberg, 92],
consequently denoted the ¢ model, or the k-nearest neighbours algorithm [Fukunaga, 90].

In most of the studies, several architectures are explored, varying the neuron model and
the number of hidden units. To this end, the following notation in introduced:

Let ¢, denote a single layer of ¢ neurons of type z, where possibilities for z are n, h, f
and c, corresponding to architectures with no hidden neurons. Accordingly, p.q, denotes
a feed-forward network composed of a hidden layer of p neurons of type z and an output
layer of ¢ neurons of type y. For example 435, is a network composed of a hidden layer of
4 neurons of type h and an output layer of 5 neurons of type n. Shortcut (direct input to
output) connections are not considered.

Regarding the neural training procedure, several learning algorithms are employed, in-
cluding evolutionary techniques (such as genetic algorithms) and derivative-based ones (such
as backpropagation or the conjugate gradient). In any case, all neural architectures are
trained in each particular experiment using the same algorithm with the same set of con-
trol parameters, to eliminate this source of variation from the analysis. Sometimes, classical
neuron models are trained with two methods (one evolutionary and one derivative-based) to
have a supplementary set of results.

A standard genetic algorithm (denoted SGA), enhanced to deal with missing values, as
explained in (§6.3.2), is always used with the following characteristics: binary-coded values,
probability of crossover P.,ss = 0.6, probability of mutation P,,,; = 0.01, a linear scaling
with factor ¢ = 1.5, selection mechanism: stochastic universal, and a replacement proce-
dure given by the worst individuals. To avoid misunderstandings, population size and other
particular settings for this and other methods are made explicit for each experiment.

7.4 Learning models of the CNSC

7.4.1 Preliminaries

The study and prediction of time-varying processes is a fundamental problem with a long
tradition in the literature. For this study, the availability of several time-series of cardiology
data from a patient and the knowledge of previous attempts to induce accurate models out of
these data using Fuzzy Inductive Reasoning [Nebot et al., 98] brought an opportunity to bring
the different neural models and networks into comparison, in the context of the Heterogeneous
Neural Network approach.

The cardiovascular system —see Fig. (7.1)-is composed of the hemodynamical system and
the Central Nervous System Control (CNSC). The CNSC generates the regulating signals for
the blood vessels and the heart, and it is composed of five controllers: heart rate, peripheral
resistance, myocardial contractility, venous tone and coronary resistance. All of these con-
trollers are single-input/single-output (SISO) systems driven by the same input variable, the

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 201

carotid sinus pressure.

CARDIOVASCULAR SYSTEM

Heart Rate Controller System
yocardiac Contractilit
Controller Heart

]
]
1
[
]
1
)
]
]
]
1
t
]
)
Peripheric Resistance :
Controller !
)

]

)

1

T

]

1

1

1

1

1

]

]

1

1

Venous Tone
Controller

Mechanisms

Carotid Sinus
Blood Pressure

Coronary Resistance
Controller

1
1
1
1
1]
]
t
]
1
]
)
[}
]
]
Circulatory Flow :
1]
]
[}
]
]
)
[}
)
¥
.

..

Figure 7.1: The cardiovascular system.

Whereas the structure and functioning of the hemodynamical system are well known
and a number of quantitative models have already been developed that capture its behav-
ior fairly accurately, the CNSC is, at present, still not completely understood and no good
deductive models exist able to describe the CNSC from physical and physiological prin-
ciples. Although some differential equation models for the CNSC have been postulated
[Leaning et al., 83], these models are not accurate enough, and therefore, the use of other
modeling approaches —like neural networks or qualitative methodologies— has been shown in
[Cueva, Alquézar and Nebot, 97] to offer an interesting alternative to classical quantitative
modeling approaches, such as differential equations and NARMAX techniques [Vallverdii, 93].

7.4.2 Experiments
Experiment 1

The first set of experiments compares the effectiveness of heterogeneous models with that
of more classical models, like P-neurons and complex neurons, in a time-series forecasting
setting, focused on the first of these signals, the heart rate.

Models tested

Since the use of the heterogeneous neuron as a brick for configuring network architectures
can be done in several ways, in this first set of experiments several architectures are explored,
restricting ourselves to networks with one or no hidden layers. The possible combinations

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 202

include fully heterogeneous networks, in which all neurons (including the output ones) are of
the same heterogeneous type and compute the same similarity relation. In the present study,
there is just one output to be predicted (the heart rate). Consequently, the output layer
is always composed of a single neuron. The hidden layer (if any) will always have h; = 3
neurons. All of them are to be trained with the SGA in exactly the same conditions.

It should be noted that there has been no attempt to find better architectures (different
number of hidden-layer neurons and/or more than one hidden layer) nor to improve GA
performance on this particular problem by tuning its parameters or devising specialized
operators. It is reasonable to believe that this would probably have improved the results
obtained with the different neuron models. However, these setting are very likely to be
changing for different models, and would have introduced a strong bias. Qur main concern
is to have them compared in a (perhaps crude) but absolutely fair way, using reasonable,
although maybe not optimal, settings.

The neural models tested correspond to those denoted by the code letters n,
h and f, as introduced in (§7.3). The architectures under study will then be:
1oy 18, 14,3010, 3010, 3£1n, 301k, 3014, 3514 and 341y

The only difference between h and f neurons is that —according to the fuzzy heterogeneous
model- the latter have their inputs and weights fuzzified. In this experiment, original crisp
data were converted into (triangular) fuzzy numbers in the form of a 5% of imprecision w.r.t.
the original value. Though this percentage is probably an upper-bound for modern measuring
devices, it was considered adequate for the task.

In order to better assess the performance of the different HNN architectures, another
powerful neural approach was also employed to infer a model for the task at hand: a feed-
forward neural network working in the complex plane, of which a brief comment is due.

Complex neural models

The complex neural network (CNN) is an advanced model [Birx and Pipenberg, 92] which
operates in the complex plane, having inputs, weights and outputs given by complex numbers.
They have been used very successfully in the analysis of many complex dynamic systems and
in difficult classification problems (e.g. [Birx and Pipenberg, 93]). In these networks, the
transfer function is a direct translation of the scalar product to complex arithmetic. Let
z = z 4+ iy € C be the complex neuron net input as given by the scalar product. The
tanh(r/x24+y2)

z24y?
Following our terminology, we will use a 3.1, architecture, where ¢ denotes a complex neuron.
In this case, the output neuron will use a linear activation function. The training procedure
chosen is a combination of the simulated annealing and conjugate gradient-descent techniques
explained in Chapter (2).

squashing function used is given by f(z2) = f(z + iy) = pz+ i py where p=

Data preparation

The input and output signals of the CNSC were recorded with a sampling rate of 0.12 sec-
onds from simulations of the purely differential equation model. The model had been tuned
to represent a specific patient suffering from an at least 70% coronary arterial obstruction,
to agree with the measurement data taken from the patient. The full set of data consists

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 203

of 7,869 timed méasurements. From these, the first 1,500 were used as training set and the
immediately following 1,000 as the test set to be forecast. To give a graphical impression,
the input and output variables of the heart rate controller subsystem are displayed in Figs.
(7.2) and (7.3). Note that both signals exhibit high-frequency oscillations modulated by a
low-frequency signal.

240

. PR ———
zao .

oo
1w8o

Teo

(o S P

1a0 K,;“
i3

iy (s
&

U

Tao

|
Hialhl) y
L 8
‘ i N
H Loy ‘

Too

.o [
co

-

o soo 1000 Tesoo 2000 Zsoo
Tirme unite

Figure 7.2: Input signal: Carotid Sinus Pressure.

.Gt

Heathee
¢
0

s0o 1000 1=oco
° Tirme unite @Zoo0O Zzsoco

Figure 7.3: Output signal: Heart Rate Controller, measured in seconds between beats.

In previous studies of the data at hand [Nebot et al., 98], the obtained results were found
to be greatly improved by performing a prior Markov analysis on the data, in search of
single-dependency variable-order significant time delays. This hybrid technique had been
very successfully applied to the task at hand using data from different patients and controllers
and different training and test set regimes. It was found that in both input z(¢) and output
y(t) signals there were two specific time delays (1 and 6 sampling intervals), highly significant
from the point of view of exhibiting a Markov chain behavior when the continuous process is
discretized.

Accordingly, a training set consisting of four inputs z(t—1), z(t—6), y(t—1), y(¢t—6) and one
output y(t) was constructed. This generic model was then used for all the approaches. For the
CNN, this information was given as two complex numbers z(t—1)+z(t~6)¢, y(t—1)+y(t—6)s.
Note that the weights of the CNN are also complex.

Results

For each neural architecture, five different training trials were run using different random
initial populations, in an attempt to reduce the effect of a specially lucky (or unlucky) strike
by the SGA. Average and best mean-square errors (MSE) on test set were then calculated
and are the ones shown —Tables (7.1) and (7.2). The CNN was given 50 different annealing

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 204

- Architecture 1n 1n 1y
Average 2.150e-02 | 9.855e-04 | 5.723e-04
Best 9.965e-04 | 9.657e-04 | 3.510e-04

Table 7.1: MSE errors for the different single-layer HNN architectures.

Architecture 3nln 3nln 3nly 3nln 3nln 35ln 371y
Average 1.640e-03 | 2.621e-03 | 1.594e-03 | 1.114e-04 | 1.661e-04 | 7.817e-05 | 7.683e-05
Best 1.216e-03 | 2.603e-03 | 1.036e-03 | 9.405e-05 | 9.424e-05 | 6.652e-05 | 6.527e-05

Table 7.2: MSE errors for the different multilayer HNN architectures.

restarts and the final (overall best) result attained was 8.136e — 05. Notice the decrease of
MSE in orders of magnitude due to the increasing presence of heterogeneous neurons, until
a comparable (and slightly better) performance to that obtained by the CNN is reached.

Experiment 2

The second set of experiments compares the effectiveness of heterogeneous models exclusively
with that of classical models (P-neurons) but using three kinds of architectural dispositions
and learning algorithms: a time-delay neural network trained with backpropagation, the same
architecture trained with the conjugate gradient plus simulated annealing method, and an
augmented single-layer recurrent network or ASLRNN, trained by a true gradient-descent
method. This time the target is composed of all five controllers of the CNSC.

Neural approaches used in the erperiments

In general, two types of neural network architectures can be used for learning tasks involv-
ing a dynamic input/output relation, such as prediction and temporal association: time-delay
neural networks (TDNNs) and recurrent neural networks (RNNs). The HNN model is is used
here as a TDNN and compared to a RNN and to two other different TDNN models, as
described below.

Time-delay neural networks

If some fixed-length segment of the most recent input values is considered enough to
perform the task successfully, then a temporal sequence can be turned into a set of spatial
patterns on the input layer of a multi-layer feed-forward net trained with an appropriate
algorithm such as backpropagation. These architectures are called TDNNs, since several
values from an external signal are presented simultaneously at the network input using a
moving window (shift register or tapped delay line) [Hertz, Krogh and Palmer, 91]. A main
advantage of TDNNSs in front of RNNs is their lower cost of training, which is very important
in case of long training sequences. TDNNs have been applied extensively in recent years to
different tasks, in particular to prediction and system modeling [Lapedes and Farber, 87].

In the case of learning a SISO controller, with an input real-valued variable z(t) and an
output real-valued variable y(t), the output layer of a TDNN consists of a single output unit

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 205

that will provide The predicted value for y(t), whereas the input layer holds some previous
values y(t—1),...,y(t—m) and some recent values of the input variable z(t),z(t—1),...,z(t—
p), from which the value y(t) could be estimated (i.e. a total number of m+p+1 modelinputs).
Additionally, a layer of h; hidden units (h; to be determined) is required. In the present
study, two different TDNN approaches that differ in the training method have been tested:
a standard backpropagation algorithm (TDNN-BP) using sinusoidal units, and the hybrid
procedure composed of repeated cycles of simulated annealing coupled with a conjugate
gradient algorithm (TDNN-AC) described in [Ackley, 87]. For the latter, hyperbolic tangent
units form the hidden layer whereas the output layer is composed by a linear neuron. It
should be noted that the HNN model as used here (TD-HNN) can be viewed as a TDNN
that incorporates heterogeneous neurons and is trained by means of genetic algorithms.

Recurrent neural networks

In recent years, several RNN architectures including feedback connections, together with
their associated training algorithms, have been devised to cope naturally with the learn-
ing and computation of tasks involving sequences and time series. A type of RNN that
has been proven useful in grammatical inference through next-symbol prediction is the first-
order augmented single-layer RNN (or ASLRNN) [Sopena and Alquézar, 94), which is similar
to Elman’s SRN [Elman, 90] except that is trained by a true gradient-descent method, us-
ing backpropagation for the feed-forward output layer and Schmidhuber’s RTRL algorithm
[Schmidhuber, 92] for the fully-connected recurrent hidden layer. Although the use of sig-
moidal activation functions has been common in both RNNs and backpropagation networks,
a better learning performance can be achieved using other activation functions such as the
sine function [Sopena and Alquézar, 94]. Such networks with sinusoidal units can be seen
as generalized discrete Fourier series with adjustable frequencies [Lapedes and Farber, 87].
Hence, the ASLRNN model used here was built up with sinusoidal units.

Ezperiment setup

The data used in the training and test phases of the experiments came from a single
subject. All five CNSC models, namely, heart rate, peripheral resistance, myocardial contrac-
tility, venous tone and coronary resistance, were inferred for this subject by means of the
neural approaches aforementioned. The input and output signals of the CNSC controllers
were recorded with a sampling rate of 0.12 seconds from simulations of a purely differential
equation model. This model had been tuned to represent a specific patient suffering from
coronary arterial obstruction, by making the four different physiological variables (right au-
ricular pressure, aortic pressure, coronary blood flow, and heart rate) of the simulation model
agree with the measurement data taken from the patient. The training set was composed of
1,500 data points for each controller, whereas six data sets not used in the training process
(600 points each) were used as forecasting targets, containing signals that represent specific
morphologies. The HNN and the TDNN architectures were fixed to include 1 output unit, 8
hidden units, and 7 input units, corresponding to the values z(t), (¢t - 1), z(t ~ 2), «(¢t - 3),
y(t—1), y(t — 2) and y(t — 3), where z(t) denotes the current value of the input variable and
y(t — 1) denotes the value of the controller output in the previous time step. All inputs to the
HNN were treated as fuzzy numbers with an uncertainty of a 5%, and the accordingly defined
similarity relation was used. The first-order ASLRNN architecture also included 1 output and

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 206

8 hidden units, but just 2 input units, corresponding to the values z(t) and y(t — 1), though
in this case the hidden layer incorporated additional weights for the feed-back connections.

In the testing process, the normalized mean square error (in percentage) between the
predicted output value, §(t), and the controller output, y(t), was used to determine the
quality of each of the inferred models. This error is given by:

> 0E - il '
NMSEFE = = - -100‘7, 7.2
Sli<as—gF 0% (7:2)

where (; = F(%;) is the network’s response to input pattern &, and < g > represents
the mean of the target data over the required set.

For each CNSC controller and neural approach three different training trials were run
using a different random weight initialization. The HNN was trained using the SGA as
explained in (§7.3), with 100 individuals. The algorithm stopped when no improvement was
found for the last 1, 000 generations (typical values were about 5,000). On the other hand,
the TDNN-BP and ASLRNN nets were allotted 3,000 epochs using a small learning rate of
a = 0.025 to allow a smooth minimization trajectory. These parameters were tuned after
some preliminary tests. For each run, the network yielding the smallest NMSE error on the
training set during learning was taken as the controller model. The TDNN-AC was trained
in only one run and the process was stopped after 20 annealing restarts.

Results

The nets resulting from the training phase were applied to the trairning set and to the
six test data sets associated with each controller. The normalized MSE errors for these sets
were calculated, together with their averages for the different training runs and test sets. The
summary of the errors obtained by the different neural approaches is displayed in Table (7.3).

Controller | TD-HNN TDNN-BP | TDNN-AC ASLRNN
Train. Test | Train. Test | Train. Test | Train. Test
HRC | 0.11% | 0.18% | 1.15% | 1.52% | 0.15% | 0.13% | 1.63% { 1.91%
PRC | 0.09% | 0.12% | 0.94% | 1.27% | 0.26% | 0.14% | 0.84% | 1.10%
MCC | 0.03% | 0.06% | 0.81% | 1.33% | 0.09% | 0.08% | 0.71% | 1.18%
VTC | 0.03% | 0.06% | 0.81% | 1.33% | 0.09% | 0.08% | 0.71% | 1.18%
CRC | 0.10% | 0.11% | 0.47% | 0.66% | 0.03% | 0.04% | 0.41% | 0.53%
[mean [0.07%] 0.11% [0.84% [1.22% [0.12%] 0.09%] 0.86% [1.18%]

HRC heart rate, PRC peripheral reststance, MCC myocardial contractility
VTC venous tone, CRC coronary resistance

Table 7.3: Average normalized MSE errors for the training sets (left) and test sets (right) of
the CNSC controller models inferred by each neural approach.

It is interesting to observe the excellent results yielded by the models inferred by both
the HNN and the TDNN-AC, especially as compared to the TDNN-BP and ASLRNN, which

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 207

showed an almost identical prediction performance, possibly caused by a short depth of
temporal dependencies in the modeled system (i.e. all relevant past information could be
included in the moving window that selects the inputs of a TDNN).

Experiment 3

The third set of experiments compares the effectiveness of distance-based heterogeneous mod-
els with that of scalar product. This is an interesting setting because, being all variables
continuous, the experiments permit to focus on different similarity measures defined exclu-
sively on continuous data; it also means that they all can be trained with a derivative-based
method, which in this case is the conjugate gradient plus annealing methodology explained
in Chapter (2). This involved the computation of analytic expressions for the derivatives
of all the neuron models described below. The presence of missing information is specially
investigated, including its effect on scalar product-driven models.

Targets are two of the CNSC controllers: the heart rate (HRC) and the coronary resistance
(CRC). These two series are shown, for their first 1,500 samples, in Figs. (7.4) and (7.5),
respectively. For each of them, the following model is built:

y(t+r) = F{"L'(t - 1),$(t—- 2)1$(t— 3)7y(t)ay(t— 1)’y(t_ 2)1y(t - 3)}’T € N+ (7'3)

where y(t) is the time-series (HRC or CRC) and z(t) is the control signal, in both cases
the Carotid Sinus Pressure, as explained in (§7.4.1) and depicted in Fig. (7.2).

Ezxperimental setting

For each of the two controllers, six sets of experiments are performed, with a varying r €
{1,4} and a percentage of missing information X% € {0%, 10%, 30%}. For each experiment,
a 3-fold cross-validation procedure is worked out on the 1,500-sized data sets. This means that
three partitions are investigated, with 1,000 points for training and 500 for validation. An
independent set of 600 samples is used as a test set to assess generalization performance. Each
training run is carried out to end of resources, given by a limit of 1,000 epochs (presentations
of the training set, with learning purposes). The results reported are the average of the three
runs. All the variables have been normalized to lie in the interval [0, 1].

The motivation behind the introduction of missing data is to evaluate its impact on the
performance of the considered neural models. To this end, the original data sets are used
as is (0% of missing values), and altered by randomly and uniformly seeding missing values
(10% and then 30%), done equally for training, validation and test sets. This makes sense in
the studied domain, an in general in Medicine, where data can be absent by a manifold of
circumstances: values that get lost in the patient history, invalid results, improper handling
by the patient, etc. In the present case, the data were originally clean because they came
from a simulation, thus not being fully realistic (complete and perfectly crisp).

Models tested

All the models set forth based on a distance computation correspond to similarity models

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 208

o T oo oo >o0 “oo soo sco oo

-, —

Figure 7.4: Output signal: Heart Rate Controller, shown in two parts, totalling 1,500 con-
secutive samples.

o Too Zzoo aoco oY= soco eco oo soo Soco 1000 1100 12006 1300 1400 1500

Figure 7.5: Output signal: Coronary Resistance Controller, of 1,500 consecutive samples.

of type (A) -obtained by transformation from a global distance- and are thus kinds of RBF
units (in the wide sense), whereas the scalar-product based neurons correspond to similarity
models of type (C). To describe the distance-based models, we follow the notation introduced
in (§4.2.1), and cast them as instances of a generic family of weighted Minkowskian distances,
as defined in (4.4). They are all displayed in Table (7.4).

The names SPR and SPN will refer, respectively, to the standard scalar product and to
a normalized counterpart, enhanced to handle missing values (see below). They both use
the hyperbolic tangent as activation function. All the other models employ the adapted
similarity keeping function g¢(z,0.25) (4.74). The difference between EUl and EU2 is that
the former uses §;(2) = H+z as similarity transforming function, while the latter makes use

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 209

Index | Parameters Description
nlg|l ¢
GOW | n | 1| Guew Mean City-block distance, weighted by
the inverse of the maximum deviation
CLA [1 {2} 1 Coefficient of divergence or Clark distance
CAN [111 1 Canberra distance
EUO [1 (2] 1T Basic unweighted Euclidean distance
EUL | 112} Gge Euclidean distance weighted by
the inverse of the maximum deviation
EU2 | n | 2| Oges Mean Euclidean distance weighted by
the inverse of the maximum deviation
CYB|1]|1] 1 Unweighted City-block distance
MN4 [1[4 T A basic unweighted Minkowskian distance
PEA |1]2} & Pearson distance

F4ep: vector of maximum deviations, 5% vector of variances, 1: unity vector

Table 7.4: The different distances used in the experiments.

of 59(z) = 1 — z. The other function that uses §9(z) is GOW; all other distance functions
make use of §;(z). In all cases, spqr = 1.

All the neuron models (except SPR) make use of the same built-in treatment for missing
values consistently used throughout the Thesis: a normalization by the number of actually
performed (partial) computations. All are are trained (including the two scalar products) in
exactly the same conditions and make use of the same data for all the experiments, so that
any difference in performance is only attributable to the different models. The neurons are
arranged in two different architectures, with h; € {16,32} hidden units. The output neurons
are always linear P-neurons (that is, they only perform linear combinations of the hidden
units).

Presentation of results

Due to the high volume of information, the results are presented in a more compact form,
always averaged for the two architectures and displayed in two different formats: according to
the t 4+ 7 target (averaging out for the different percentages of missing data) and conversely,
according to the different percentages of missing data, and averaging out for the two ¢ + 7
targets. The results for different entities are averaged as follows: let R(h, 7, X) denote the
results achieved —for fixed model and controller— with A hidden neurons, in ¢t + 7 and with a
X% of missing information. Let R[z] denote the weighted average w.r.t. argument x of R,
with outer correction factors equal to the inverse sum of the weightings, as follows:

Rl (A, 7, X) = §<%—R(16,T,X)+R(32,T,X)) (7.4)

R, %) = 3(Rh1,X)+ R4)) 5)

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 210

BX](h 7, X) = ;—(R(h, r0)+ éR(h, r,10) + %R(h, r 30)) (7.6)

The first type of information is displayed in Table (7.5) together for HRC (left part) and
CRC (right part). The second type is displayed in Table (7.6) for HRC and in Table (7.7)
for CRC. In all the tables, the best three results for each column are shown boldfaced.

HRC CRC

Index t+1 t+4 t+1 t+4

Train Test | Train Test || Train Test | Train Test
SPN || 3.183 | 3.993 | 8.633 | 10.856 || 5.431 | 7.281 | 6.151} 8.197

GOW || 2.291 | 3.112 8.420} 11.372 || 1.215| 1.929 | 2.326 | 3.161
CLA || 1.749 | 2.404 | 6.968 | 8.809 0.910 | 1.449 | 2.037 | 2.868
CAN || 1.793 | 2.418 | 7.309 | 9.598 1.297 | 2.008 | 2.198 | 3.197
EUO || 1.983 | 2.563 | 7.489 | 9.796 || 0.745 | 1.237 | 1.953 | 2.726
EU1 || 2406] 2.990{ 8.167 | 11.580 |j 0.876 | 1.446 | 2.119 | 3.305
EU2 || 2.819 | 3.600 (8.679 | 23.048 || 1.304 | 2.651 | 2.519 | 3.789
CYB 1.984 | 2.791 | 7.788 | 11.211 1.023] 1.501] 2.128 | 3.4i11
MN4 2.118 | 2.753 | 7.083 | 9.632 || 0.548 | 0.992 | 1.601 | 2.389
PEA 2.460 § 3.758 | G.007 | 11.444 j) 4476 | 6.831 | 6.142 | 9.867

Table 7.5: Performance results according to the two t + 7 targets.

We use the informal notation X > Y to express that X is better than Y. The first notable
point, in both controllers, is the coherence of results, not only for ¢t 4+ 1 but also for the ¢ + 4
delay; hence, we make a collective discussion. To begin with, CYB > GOW, signaling that
a normalization to a distance in [0,1] may not always be the best choice. However, GOW
uses Sp(z), which is linear, whereas CYB uses §(z), which is not. This could explain the
different behaviour. Besides, there is another city-block based distance (PEA) using $;(z),
and this one gives very poor results. Similarly, for the Euclidean distances, EU0 > EU1 >
EU2, signaling again that normalizations are no good for the task at hand. It should be
recalled that the variables had already been normalized (by the maximum deviation) prior
to training.

For HRC, the best measures are clearly CLA and CAN, followed by MN4 and EUQ. This
pattern is similar for CRC, though in inverse order: the best measures are clearly MN4
and EUO, followed by CLA and EUl. This points CLA, EU0 and MN4 as the more robust
measures. In both cases, the worst measures are PEA, EU2 and SPN (not counting the basic
SPR, not shown since it does not accept missing values). The overall behaviour is perhaps

more clearly seen from the perspective of the increasing presence of missing information, as
shown in Tables (7.6) and (7.7).

For the HRC data, and in the case of no missing values, it is noteworthy how SPN > SPR,
with SPN yielding approximately half the errors of SPR, indicating that normalization is an
interesting feature for the scalar product. In general, though, when compared to the distance-
based measures, SPN performs badly, being one of the worst measures. This is mainly caused
by the missing information. For complete data, SPN is among the best models, second only

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 211
Index | — 0% 10% 30% Average
Train | Test | Train Test | Train [Test || Train Test
SPR || 2.987 | 3.737 - - - - - -
SPN || 1.8902 | 2.363 | 9.654 | 12.779 | 22.511 | 27.084 || 5.908 | 7.424
GOW || 2.145 | 2.999 | 8.126 | 11.098 | 19.078 | 24.986 || 5.355 | 7.242
CLA 2.220 | 2.900 | 6.281 | 8.244 | 13.343 | 16.569 || 4.359 | 5.607
CAN 2.322 1 3.005 | 6.706 | 8.933 | 13.614 | 18.176 || 4.551 | 6.008
EUOQ | 1.890 | 2.338 | 7.731 | 10.295 | 15.818 | 20.992 4736 | 6.179
EU1 1.914 | 2.369 | 8.127 | 12.681 | 19.846 | 25.988 || 5.287 | 7.285
EU2 1.920 | 2.373 | 8.436 | 37.154 | 23.349 | 31.372 || 5.749 | 13.324
CYB || 2.113 | 3.641 | 7.244 | 10.085 | 16.809 | 20.997 || 4.886 | 7.001
MN4 || 1.892 | 2.410 | 6.864 | 9.878 16.326 { 21.520 || 4.601 6.193
PEA 1.955 | 2.470 | 8.631 | 11.481 | 22.614 | 30.628 5.734 | 7.601

Table 7.6: HRC: Performance results according to the amount of missing information.

Index 0% 10% 30% Average
Train | .Test | Train | Test | Train [Test || Train [Test
SPR || 0.492 | 0.841 - - - - - -
SPN |} 0.231 | 0.311 | 10.631 | 14.401 | 29.475 | 38.985 || 5.791 | 7.739
GOW || 0.273 | 0.406 | 2.489 | 3.691 | 9.319 | 13.088 || 1.771] 2.545
CLA || 0.290 | 0.450 | 1.952 | 3.314 | 7.618 | 10.099 || 1.473 | 2.159
CAN {| 0.308 | 0.451 | 2.642| 4.356 | 8.597 | 12.004 || 1.747 | 2.603
EUO || 0.261 | 0.359 | 1.866 | 2.647 | 6.838 | 10.386 || 1.349 | 1.982
EUL || 0.257 | 0.380 | 2.004 | 3.475 | 7.928 | 12.152 || 1.498 | 2.376
EU2 || 0.260| 0.362 | 2.272| 3.626 | 11.097 | 19.556 || 1.911 | 3.220
CYB || 0.278] 0.842 | 2.236 | 2.894 | 8.038 | 11.266 || 1.575 | 2.456
MN4 || 0.255 | 0.359 | 1.382 | 2.631 | 6.374 | 7.797 || 1.074 | 1.690
PEA j| 0.303 | 0.396 | 6.018 | 8.931 | 33.927 | 54.907 || 5.309 | 8.349

Table 7.7: CRC: Performance results according to the amount of missing information.

to EUO, and in the line of results of EU1, EU2 and MN4. It is remarkable that these five
models are the best both in training and in test. A very similar picture can be seen regarding
the CRC data.

For a 10% or a 30% of missing values, the situation changes radically, and the best models
are clearly, in this order, CLA and CAN, followed by MN4 and EUO for HRC, and MN4,
EUO followed by CLA, for CRC. SPN, however, accepts badly the lack of information and its
performance decays vigorously.

Concluding remarks

Missing information exerts a strong influence on performance, affecting all the models,
though ones more markedly than others. For complete data, SPN, EUO and MN4 are clearly
the best ones. In the presence of missing information (10% or 30%) CLA, EUO and MN4

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 212

go in the lead. This points these three distances (and CAN to a lesser degree) as the more
robust overall. On the contrary, SPN is not able to cope with missing data, at least with
the used mechanism of normalizing by the number of non-absent components in a pattern.
The alternative is to have them encoded in the data, and then use a classical (possibly
normalized) scalar product. However, the use of this normalization seems to greatly increase
performance to the level of the best distance-based measures, although is not enough in
presence of missing values. This is interesting, because the use of measures that carry out
a normalized computation is one of the generic postulates for heterogeneous neuron models.
All these results, and this is most remarkable, happen both for training and test data.

7.4.83 Conclusions

Heterogeneous neural networks have been successfully tested in a signal forecasting task, in
order to learn controller models for the central nervous system control. The experiments
show how the use of fuzzy heterogeneous networks can significatively increase the accuracy
of the models obtained. These networks have been compared to the standard multi-layer
perceptron and to a complex neural network, for the task at hand. The results obtained
show a remarkable increase in performance when departing from the classical neuron and a
similar one when compared to other current powerful neural techniques, such as the CNN.
The learning and generalization performance of time-delay HNNs are also comparable to
that of other TDNNs trained with sophisticated optimization algorithms, and better than
that of TDNNs trained with backpropagation and RNNs trained with a true gradient-descent
algorithm. Finally, the performance of several distance-based models and scalar product in
a thorough study with varying percentages of missing information points to a general better
adequacy of the former models to handle this important problem, and how normalization can
lead to better performance in the case of scalar product.

7.5 -Handling imprecise classification problems

7.5.1 Preliminaries

This second problem is an environmental study ~using geophysical data processing- in which
two heterogeneous models are used in an imprecise classification task aimed at detecting
underground cavities.

An environmental investigation made in the tropics, dealing with the detection of un-
derground caves using geophysical measurements collected at the surface of the earth is the
departing point for the different experiments. First, some words describing the problem are
necessary.

Karstification is a peculiar geomorphological and hydrogeological phenomenon produced
mostly by rock solution as the dominant process. As a consequence, earth’s surface is covered
by exotic irregular morphologies, like lapiaz, closed depressions (dolinas), sinks, potholes and
the like, with the development of underground caves. This implies that the surface drainage

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 213

network is usually poorly developed or simply does not exist at all, while vertical infiltration
of rain waters forms an underground drainage system where water flows through fissures,
galleries and caves. The studied area is located 30 km to the south of Havana City (Cuba)
in the so called Havana-Matanzas Karstic Plain composed of porous, fractured and heavily
karstified limestones of Middle Miocen age with abundance of a variety of clay minerals. Un-
der the high temperatures and humidity typical of tropical conditions, weathering processes
develop an overburden composed by reddish insoluble materials (tera rossa) coming from
solution processes on the limestones.

Negative karst forms on the surface (the lapiaz, sinks, dolinas, etc.) are partially or
totally covered by an overburden of variable depth. These forms often connect with caves
in the underground, some of them big. Direct detection is very difficult or impossible and
geophysical methods are necessary, as they usually are for tasks like geological mapping and
construction of cross sections. This is a very important problem from the point of view of
civil engineering, geological engineering and environmental studies in general in this kind of
regions.

In a selected square area (340 m side), geophysical methods complemented with a detailed
topographic survey [Valdés and Gil, 84] were used with the purpose of characterizing the shal-
lower horizons of the geological section and their relation with underlying karstic phenomena.
Targets were zones of intense fracture and karstification, filled depressions, overburden pock-
ets and the presence of underground caves. The set of geophysical methods included the
spontaneous electric potential of earth’s surface, the gamma radioactive intensity and the
electromagnetic field in the VLF region of the spectrum [Valdés and Gil, 84]. In particular,
two different surveys of spontaneous electric potential were performed, in the dry and rainy
season respectively, since strong negative anomalies are due to infiltration potentials asso-
ciated with electrochemical processes taking place as water infiltrates into the underground
via fissures and joints. These four measurements, along with the surface topography, consti-
tute the five variables to be used by the neural models. The complexity of these measured
geophysical fields in the area is illustrated, as an example, by the distribution of gamma ray
intensity and the surface topography. While radioactivity is highly noisy, topography shows
few features. They are shown in Figs. (7.6) and (7.7), respectively.

Geophysical survey methodologies consider independent sets of measurements in order to
account for the different kind of errors and the natural variability of such kind of information.
In order to be considered acceptable, each survey must have an error no greater than 5% when
comparing the original and the independent measurements. This means that the reported
values of all geophysical fields (i.e, the available data), have an inherent uncertainty which
must be considered. In the area, a gentle variation in geological conditions for both the
bedrock and the overburden was suspected by geologists and also a large underground cave
with a single gallery was known to exist in the central part of the area. The cave has about
300 meters long with cross sections ranging from less than one square meter in the narrowest
part, to chambers having 40 meters wide and 30 meters high, reaching the surface in the form
of a gorge in the bottom of a depression.

An isolation of the different geophysical field sources was necessary in order to focus the
study on the contribution coming from underground targets, trying to minimize the influence

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 214

30

25

20

Figure 7.6: Distribution of gamma ray intensity in the studied area.

“¢5if.gnu* -
0.561 -
0.0723 -
0416 —

Figure 7.7: Surface topography of the studied area.

of both the larger geological structures, and the local heterogeneities. According to the a
priori geological ideas, each geophysical field was assumed to be described by the following
additive two-dimensional model composed by trend, signal and random noise:

f(l,y) = t(xvy) + 3(3:99') +n(x,y)

where f is the physical field, ¢ is the trend, s the signal, and n the random noise component,
respectively. In order to isolate an approximation of the signals produced by the underground
target bodies, a linear trend term t'(z,y) = co +c1 = + c2 y was computed (by least squares)
and subtracted from the original field. The residuals r(z,y) = f(z,y) — t'(z,y) were then
filtered by direct convolution with a low pass finite-extent impulse response two-dimensional
filter in order to attenuate the random noise component [Dudgeon and Mersereau, 84]. Such
convolution is given by:

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 215

N N
S@y) = Y, D hlkike) r(e—ki,y ~ka)

ky=—-N ky=-N

where r(z,y) is the residual, s'(z, y) is the signal approximation and h(k;, k2) is the low-pass
zero-phase shift digital filter.

7.5.2 Experiments

In order to study the behavior of the heterogeneous neural models, a comparison was made
regarding geological-geophysical accuracy of classification. This kind of knowledge, as well
as results from previous non-supervised classification techniques [Valdés, 97] had shown the
existence of two multivariate populations within the studied area: one representing more
karstified zones with large interconnected underground cavities, and another in which kars-
tification is not so intense. Since the hypothesis of two hyperspherical classes in pattern
space was tenable, and the purpose of this work is to assess the relative merits of the three
considered neuron models (classical, heterogeneous and fuzzy heterogeneous) in the task at
hand (imprecise classification using data which are also imprecise), a network consisting of
a single neuron was the architecture selected. Clearly, other multilayer layouts are possible
and should deserve future attention, but this is a useful reference for initial comparisons.
Together with a small training set (relative to test), it should make the problem much more
difficult than it really is, so the differences should be more evident.

The experiments were conceived in two phases as follows. In phase one, a comparison
is made between the classical real P-neuron and the H-neuron with real inputs and weights.
In a second stage, the latter is compared to a fuzzy H-neuron. Also, the experiments were
designed following geological criteria. From this point of view, it is known that the number
of observable caves in any karstic area is only a small fraction of the actually existing ones,
making class structure itself imprecise, a situation usual in complex problems like those from
environmental studies. Moreover, there are no sharp boundaries between rock volumes con-
taining caves and those containing less or none. One could say that the notion of “caveness”
degrades smoothly, which is another reason to use fuzzy models.

The training was supervised (in the usual mean-squared-error sense) by the information
given by the topographic map of a large cave present in the area, so that those surface
measurement points lying ezactly above the known cave were considered as class 1 patterns
and those outside as belonging to class 2 ~the resulting cave is shown in Fig. (7.8). This
procedure for class assignment was too conservative but, otherwise, one would have been
forced to provide as output the exact caveness degree for each point. This value, besides being
very difficult to estimate, would have introduced a strong subjective bias. The computation
of this degree is precisely the task we want the model to perform.

Selected data from the northern half were used for training, whereas the rest was used to
test the trained network (consisting of a single neuron only). More precisely, the training set
was composed by the 31 points from the northern half located exactly above the known cave
(representing class 1), plus 32 others homogeneously distributed in the east-west sides —see

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 216

Figure 7.8: The known cave borders: see text for an explanation of what is considered as cave
and what is not. Dots indicate the (approximate) location of the points used for training.
Units are in tens of meters.

Fig. (7.8). As test set we used the remaining 567 patterns from the whole area.

Phase 1

Here we have a classical real-valued neuron (in this study, having scalar product as net input
and the hyperbolic tangent as a squashing activation function). The training procedure for
this neuron is a combination of conjugate gradient with simulated annealing [Ackley, 87],
whereas the heterogeneous neuron is trained using a standard genetic algorithm with the
following characteristics: binary-coded values, probability of crossover: 0.6, probability of
mutation: 0.01, number of individuals: 50, linear scaling with factor ¢ = 1.5, selection
mechanism: stochastic universal, replace procedure: worst individual.

The results obtained by both models are shown in Figs. (7.9) and (7.10), respectively,
where caveness prediction is plotted in five equally-spaced a-cut sets. Clearly, the distribution
of the two-dimensional sets for the heterogeneous neuron reflects much better the distribu-
tion of the known cave than the classical neuron, for various reasons. First, the classical
neuron fails to detect the southernmost part of the known cave, whereas the heterogeneous
counterpart does.

Second, the classical neuron predicts complete cave areas in the south-east and south-
west zones, which are misleading. These are also signaled by the heterogeneous neuron, but
always with a degree of 0.5 or less. The only exception is a small area located in coordinates
(7 — 8,12 — 15), where other geophysical methods (seismic and DC-resistivity) not used in
this study had signaled cave anomalies. And third, the general layout of the actual cave
(north-south main axis, slightly bended and narrower in the middle part) is better reflected
by the heterogeneous neuron.

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 217

0 5 10 15 20 25 30
Figure 7.10: Results of phase 1: a-cut sets for the heterogeneous neuron.

Phase 2

In a second stage, a fuzzy heterogeneous neuron was trained in the same experiment setting,
but this time using fuzzy inputs. This means that all neuron weights were fuzzy sets (actually
triangular fuzzy numbers), and both training and test vectors represented by fuzzy numbers
(the mode was given by the corresponding observed value, and the spread by a £5% of
it). This is in accordance with the upper bound of the measurement errors reported for the
geophysical field surveys made. It should be noted that this criteria was conservative, since
some surveys actually had less than 5% of error.

The results —shown in Fig. (7.11) are again qualitatively satisfactory, in what regards to
the general layout of the cave. But now a quantitative factor comes into the picture: the cave
is much more neatly defined, a fact that shows in two ways: first, the different a-cut sets are
much closer, showing a gradual but firm transition between classes of 2 units in the map on
average (roughly 20 meters in the field) —a very reasonable value. That is, this narrow belt
w.r.t. the trace of the known cave represents the transition zone between the rock volumes,

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 218

0.833 ----- 4 30
0.667 -----
0.5 e
0.333 ~-- 1 25
0.167 -----
-1 20
4 15
1 10
4 5
0

Figure 7.11: Results of phase 2: a-cut sets for the fuzzy heterogeneous neuron.

more and lesser affected by big underground cavities. Second, the extensive anomalous zones
predicted by the heterogeneous neuron in the eastern and south-western zones completely
disappear, with the exception of a small region in coordinates (25 — 30,0 — 2), which should
be specifically checked. What is more, the strongest region where the presence of a secondary
cave is signaled by the fuzzy heterogeneous neuron is precisely the one aforementioned and
confirmed to exist by other means. This a nice result, since allowing imprecise inputs and
weights for all of the five variables does not degrade the overall performance. On the contrary,
the results can be said to be even more accurate. Notice that all of the neurons are using the
same small training set but, in practice, this situation is less favourable for the fuzzy neuron,
which would need an enlarged training set to compensate for the imprecision.

7.5.3 Conclusions

Experiments have been made with complex multivariate space-dependent data —coming from
a real world problem in the domain of environmental studies. The results have shown that
better models can be found by treating data with its natural imprecision, rather than con-
sidering them as crisp quantities, as is usually the case. In this respect, allowing imprecise
inputs and using heterogeneous (fuzzy) neurons based on similarity yields more accurate
representations (because of their greater flexibility) than those found via classical crisp real-
valued models, in a problem for which one is not so much interested in crude train/test set
classification errors but in its ability to model the imprecise structure of the domain.

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 219
7.6 Classification of natural waters

7.6.1 Preliminaries

This is again an investigation in the field of environmental sciences, namely, the geochemical
study of natural waters in the Arctic (Spitzbergen). The elements studied include classifica-
tion accuracy, the effect of working with crisp or fuzzy inputs, the use of traditional scalar
product vs. similarity based functions, and the presence of missing data. A description of
the problem follows.

During the scientific expedition Spitzbergen’85, organized by the University of Silesia
(Poland), a scientific team composed of specialists from this university, the National Center
for Scientific Research (Cuba), and the Academy of Sciences of Cuba, performed glaciologi-
cal and hydrogeological investigations in several regions of the Spitzbergen island (Svalbard
archipelago, about 76°N to 80°N). The purpose was to determine the mass and energy
balance within experimental hydrogeological basins, the study of the interaction between
natural waters and rock-forming minerals in the severe conditions of polar climate and their
comparison with similar processes developed in tropical conditions. This has been a long-
term research of several Polish universities (Silesia, Warsaw and Wroclaw) and the Polish
Academy of Sciences since the First Geophysical Year in 1957, and represents an important
contribution to the evaluation of the impact of global climatic changes.

In this respect, almost all of the studied glaciers had a negative mass balance and are
experimenting severe recessions with an increasing trend. Thus, massive meltings are taking
place in polar summers, with the corresponding acceleration of denudation rates, both me-
chanical and chemical. These affect glaciers, morraines, the permafrost, the fjords, etc, and
there are complex interactions due to peculiar geological, geomorphological and hydrogeolog-
ical conditions which, in the end, reflect in water geochemistry.

| Variable | Max | Min | Mean SVar |
Temperature 12.50 | -0.20 1.00 2.49
pH 9.00 | 5.00 7.34 0.46
Conductivity 946.00 | 12.00 | 205.63 | 35183.09
Hydrocarbonate 2.951 0.15 0.89 0.29
Chloride 1.76 | 0.04 0.26 0.04
Sulphate 6.66 | 0.06 0.81 0.90
Calcium 5.80 | 0.00 0.92 0.94
Magnesium 4.00 | 0.00 0.47 0.26
Sodium-Potasium 1.86) 0.18 0.57 0.06

Svar: sample variance.

Table 7.8: Basic statistical descriptors for the available variables.

In this study, a collection of water samples were taken from different hydrogeological
zones in two Spitzbergen regions (the Grondfjord and the Hornsund fjords). They were
representative of many different zones: subglaciar, supraglaciar, endoglaciar, springs (some

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 220

hydrothermal), lakes, streams, snow, ice, the tundra and coastal. Among the physico-chemical
parameters determined for the water samples, the following nine were used for the present
study: temperature, pH, electrical conductivity, hydrocarbonate, chloride, sulphate, calcium,
magnesium and sodium-potasium. Basic statistical descriptors are shown in Table (7.8).

Previous geochemical and hydrogeological studies of these data had shown a relation
between the different hydrogeological conditions present in Spitzbergen and the chemical
composition of their waters, reflecting the existence of several families of waters. That is,
an indirect assessment of their hydrogeological origin is in principle possible from the infor-
mation present in the geochemical parameters, thus enabling the use of a learning algorithm
[Fagundo, Valdés and Pulina, 90}, [Fagundo, Valdés and Rodriguez, 96].

7.6.2 Experiments
General Information

The available set of N = 114 water samples from Spitzbergen, corresponding to ¢ = 5 hy-
drogeological families of waters, was used for comparative studies of supervised classification
accuracy using different neural architectures, described below. To express the distribution of
samples among classes we introduce the notation n; to denote that there are n samples of
class k. This way, the actual distribution was 37;,29,, 103, 114, 275. Default accuracy (rela-
tive frequency of the most common class) is then 37/144 or 32.5%. Entropy, calculated as
— > k=1 (nk/N) loga(ni/N), is equal to 2.15 bits. There were no missing data and all mea-
surements were considered to have a 5 % of imprecision w.r.t. the reported value. This aspect
will be taken into account when considering uncertainty in the form of fuzzy inputs, since the
fact that the physical parameters characterizing the samples as well as their chemical anal-
ysis were done in situ —in the extremely hard climatic and working conditions of the Arctic
environment— makes them particularly suited to a kind of processing in which uncertainty
and imprecision are an explicit part of the models used. Accordingly, feed-forward networks
composed of a first (hidden) layer of heterogeneous neurons, collected in an output layer by
classical P-neurons is the basic architectural choice for this case study. These hybrid archi-
tectures will be compared to their fully classical counterparts —under the same experimental
settings— in order to assess their relative merits.

We recall the notation explained at the beginning of the chapter concerning architectural
settings, with ¢, denoting a single layer of ¢ neurons, where possibilities for z are:

n Classical: real inputs, scalar-product net input and logistic activation.
h Heterogeneous: real inputs, similarity-based net input and (adapted) logistic activation.

f Fuzzy heterogeneous. Triangular fuzzy inputs, obtained from the original crisp reported
value by adding a 5% of imprecision. Similarity-based net input and {adapted) logistic
activation.

Accordingly, p.q, denotes a feed-forward network composed of a hidden layer of p neurons
of type @ and an output layer of g neurons of type y. For example 4,5, is a network composed

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 221

of a hidden layer 6f 4 neurons of type h and an output layer of 5 neurons of type n. All units
use the logistic as activation.

All neural architectures are trained using a standard genetic algorithm (SGA), as men-
tioned at the beginning of the chapter. Additional characteristics are: number of individuals:
52 and the fact that the algorithm was stopped unconditionally after 5,000 generations or
if there was no improvement for the last 1,000. This last criterion helps in evaluating the
goodness of the architecture being trained and saves unuseful computing time. '

Experimental Settings

In the present study, all models (including the classical feed-forward one) were trained using
exactly the same procedure and parameters in order to exclude this source of variation from
the analysis. Of course, fully classical architectures need not be trained using the SGA. They
could instead be trained using any standard (or more sophisticated) algorithm using gradient
information. However, this would have made direct comparison much more difficult, since
one could not attribute differences in performance exclusively to the different neuron models,
but also to their training algorithms. The experiment settings were the following;:

Training regime The training set was composed of 32 representative samples (28% of the
whole data set), whereas the remaining 82 (72%) constituted the test set, a deliber-
ately chosen hard split for generalization purposes. Class distribution is 8;, 72, 53, 54, 75
in training and 29;,22,, 53, 64,205 in test. Default accuracies are 25.0% and 35.4%,
respectively.

Architectures We will explore the following architectures: 5,2.5,,4:5,,6.5, and 8.5,
for z in n, h, f. Note that the output layer is always composed of five units, one for
each water class.

Number of runs Every architecture was allowed R = 5 runs varying the initial population.
All of them were included in the results.

Weight range The weights concerning units of type n were limited to be in the range
[—10.0, 10.0], to prevent saturation, whereas heterogeneous weights adopt (by definition
of the heterogeneous neuron) the same range as their corresponding input variable.

Error functions The target error function to be minimized by the training algorithms is
the usual least squared error, defined as follows:

P m
LSE = Y) [9} — yi)?
e

where y} is the j-th component of thg output vector j cqmputed by the network at
a given time, when the input vector &* is presented, and g; = $;(Z*), is the target for
.1:?}, where ¢; represents the characteristic function for class j. The error displayed will
be the mean squared error, defined as MSE = ;—nl;LSE, where m is the number of

outputs and p the number of patterns.

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 222

Presentation of the Results (I)

Let the classification accuracy for training (TR) and test (TE) sets, calculated with a winner-
take-all strategy, be denoted CAgr(r) and CATg(r), respectively, for a given run r. The errors
MSETr(r) and MSEtg(r) are similarly defined. For each neural architecture, the following
data is displayed:

Accuracy: Mean classification accuracy on training MCATRr = % Eﬁmﬂ CArgr(run), mean
classification accuracy on test MCATg = % Zﬁm:l CArg(run) and best classification

accuracy (BCA) defined as the pair < CAtr(r), CATg(r) > with higher CATg(r).

Error: Mean MSE in training defined as MMSEr = % Eﬁm:l MSETg (run), sample vari-

ance in training defined as

R
SVMSErg = ﬁ S [MSErr(run) — MMSErg)?

run=1

and similarly defined values MMSETg and SVMSETE for the test set.

The results are collectively shown in Table (7.9). As an additional reference measure of
performance, the k-nearest neighbours algorithm (with & = 5) is also run on the data —with
the same train/test partition— yielding an accuracy in test equal to 58.5%.

Net || Training Test BCA
MCArr | MMSErr | SVMSETR || MCATg | MMSETg | SVMSETE

5 54.4% 0.1075 2.4e-04 46.6% 0.1661 5.8e-05 65.6% 53.7%
Sp 66.3% 0.1084 8.0e-06 67.1% 0.1202 1.6e-05 75.0% 76.8%
5¢ 99.4% 0.0338 3.0e-06 69.3% 0.0917 1.1e-05 100% 75.6%
2,5, | 41.9% 0.1314 4.3e-04 45.4% 0.1420 4.9¢-04 68.8% 67.1%
249, | 71.9% 0.0968 2.0e-04 69.5% 0.1088 2.6e-04 81.3% 85.4%
2/5, | 86.3% 0.0635 1.2e-04 71.7% 0.0995 9.3e-05 81.3% 81.7%
4,5, | 70.6% 0.0785 6.1e-05 58.3% 0.1288 3.5e-05 71.9% 61.0%
435, | 90.0% 0.0614 1.0e-05 79.0% 0.0786 2.9e-05 93.8% 82.9%
45, | 98.1% 0.0201 1.4e-04 81.2% 0.0620 1.3e-04 100% 86.6%
6nbn | 70.0% 0.0802 2.6e-04 55.4% 0.1389 7.7e-05 81.3% 58.5%
640, | 91.3% 0.0508 5.0e-05 83.7% 0.0803 5.6e-05 93.8% 87.8%
675n 100% 0.0106 3.0e-06 84.9% 0.0553 1.1e-05 100% 90.2%
8,50 | 87.6% 0.0396 5.7e-05 63.7% 0.1231 2.2e-04 87.5% 68.3%
8sbn | 93.8% 0.0456 1.9e-05 86.6% 0.0603 4.0e-05 93.8% 90.2%
8¢5n 100% 0.0064 4.0e-06 80.5% 0.0541 4.3e-05 100% 84.1%

Table 7.9: Results of the experiments. See text for an explanation of entries.

Analysis of the results (I)

As previously stated, the experiments were oriented to reveal the influence of several factors:

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 223

- \
a) the kind of neural model used (heterogeneous vs. classical)
b) the effect of considering imprecision (fuzzy inputs vs. crisp inputs), and

c) the effect of missing data in the test set.

The effect of factor (a) can be assessed by comparison, for all the architectures, of the first
entry against the other two, column by column. The effect of (b) reflects in the difference
between the second vs. the third. The effect of (c) will be discussed later on.

Single-layer architectures

Let us begin by analysing the results for the architectures with no hidden units, that is,
the first three rows of table 7.9. The approximation capabilities of the three neuron models
can be seen by comparing the value of MCATr. The mean error MMSETR is also a good
indicator. The robustness (in the sense of expected variability) can also be assessed by the
value of SVMSETR. It can be seen how the heterogeneous neurons are in general better
and much more robust than the classical one. Especially, the fuzzy neuron can learn from
the data set to almost perfection very robustly. Similar results are achieved in the test set.
Again, an increasing accuracy and decreasing errors and variance indicate an overall better
performance. However, the f units are clearly overfitting the data, a fact that shows in the
highly unbalanced TR and TE accuracy ratios (both in average and in the best pair BCA).

Multi-layer architectures

For the four groups of architectures selected (the p;5;), there are two aspects amenable
to be discussed. First, the relative behaviour of elements of the form p.5,, for a fixed p.
Second, their relative behaviour for a fixed . These two dimensions will collectively give
light on any coherent behaviour present in the results.

To begin with, it can be seen that for all the architectures 2,5,, 4,5,, 6.5, and 8.5,, as
we go through the sequence n, k, f, the behaviour is consistent: mean accuracies increase, and
mean errors and their variances decrease, both in training and in test, with the only exception
of the test accuracy in the case 8,55, due to an overfit. This shows a general superior
performance of h neurons over n neurons, and of f neurons over h. The absolute differences
between neuron models are also noteworthy. In all training respects, the p;5, families show
very good approximation capabilities, explaining the 100% of the TR set starting from p = 4
in BCA and from p = 6 in MCATg. This trend is followed —to a less extent— by the p5,.
The same consistent behaviour is observed in all test indicators. Here the two heterogeneous
families show a similar behaviour, with the f neurons slightly above the h ones, until for
p = 8, the architectures py5, end up overfitting the data so strongly that their performance
in test begins to fall down.

As for the second aspect, p.5, fixing z, it can be checked that all neuron models show
an increasing approximation ability when the number of hidden neurons is increased, as can
reasonably be expected. In conclusion, for all of the architectures it is clear that the use
of heterogeneous neuron models leads to higher accuracy rates in the training and test sets.
Moreover, when imprecision is allowed by accepting that each value is endowed with the above
mentioned uncertainty, the fuzzy heterogeneous model also outperforms its crisp counterpart.

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 224

Presentation of the Results (II)

The neural nets obtained in the previous experiment can now be used to assess the effect
of factor (c), the influence of missing values in the data. The purpose of this experiment is
twofold: first, it is useful studying to what extent missing information degrades performance.
This is an indication of robustness and is important from the point of view of the methods.
Second, in this particular problem, studying the effect of missing data is very 1nterest1ng,
because it can give an answer to the following questions:

1. What predictive performance could we expect if we do not supply all the information?
(and just a fraction of it).

2. What would have happened had we presented to the net incomplete training information
from the outset?

This scenario makes sense in our case study, for which a rich set of complete data may be
impossible to obtain, because of lack or damage of resources, physical or practical unfeasibility,
lack of time, climatic conditions, etc. Note that it is not that a particular variable cannot
be measured (we could readily remove it) but that some realizations of (potentially) all
variables may be missing. These experiments were performed with the same nets found in
the previous section. This time, however, they were each run on different test sets, obtained
by artificially and randomly (with a uniform distribution) adding different percentages of
missing information. These percentages range from 10% to 90%, in intervals of 10%. These
experiments were not performed for the p,5, architectures, for they do not directly accept
missing information. Although there are estimation techniques, they are not an integrated
part of the models, and would have introduced a bias. The results are presented, for the whole
set of heterogeneous architectures displayed in Table (7.9), in a graphical form, through Figs.
(7.12, a) to (7.12, e). The z-axis represents the total percentage of missing values in the test
set, while the y-axis stands for the MCATg (that is, again, data shown for each point is the
average for R = 5 runs). The horizontal line represents the size of the major class (35.4%)
to be taken as a reference, and the same k-nearest neighbours algorithm is run and shown in
Fig. (7.12, a).

Analysis of the Results (II)

Both neuron models h, f are very robust, a fact that shows in the curves, which follow a
quasilinear decay. The accuracies are consistently higher for the fuzzy model than for the
crisp counterpart for all the network architectures, again showing that allowing imprecision
increases effectiveness and robustness. Performance, in general, is well above the default
accuracy until a 50% — 60% of missing information is introduced. In many cases, mecan
classification accuracy is still above for as far as 70% — 90%, which is very remarkable.

The last figure -Fig. (7.12, f)- shows the effect of a different training outset. Choosing
what seems to be the best group of architectures for the given problem, the 6,5, and 6,5,
these networks were trained again, this time with a modified training set: adding to it a
30% of missing information, in the same way it was done for the test set, and using them

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS

Hetoroganeous —
Fuzzy botergaceos. ~os-
%} K Nadro Negpbonrs
Oeteth accuracy —
Y3

(133
b NG T,

(e) 8,5, and 845,

225

(b) 245, and 245n

Heatorogeneous ——=
P o Sy 77

100
(d) 6n5, and 645,
100 T v
o acCuracy ——

sl
70
wNC e
b TN T
wl
o e, T~
5
10
00 10 20 30 40 5‘0 5 70 80 90 100

(f) 6155 and 6s5n

Figure 7.12: Increasing presence of missing data in test. Mean test classification accuracy for
the heterogeneous (pn5s) and fuzzy heterogeneous (ps5,) families. (a) 55 and 5; (b) 2,5,
and 275, (c) 445, and 445, (d) 645, and 65, (e) 8,5, and 85, (f) Mean test classifica-
tion accuracy for 655, and 675, when trained with a 30% of missing information. z-axis:
percentage of missing values in test. y-axis: percentage of accuracy in test.

CHAPTER 7. EXPERIMENTS ON REAL-WORLD PROBLEMS 226

again to predict the increasingly diluted test sets. As usual, the horizontal line represents
the size of the major class and k-nearest neighbours performance is also shown. Training
accuracies were this time lower (as one should expect) and equal to MCATr = 88.8% for
645, and to MCATr = 96.3% for 6;5,. However, the differences with previous performance
are relatively low. Some simple calculations show that, although the amount of data is 70%
that of the previous situation, new accuracies are as much as 97.3% and 96.3% of those
obtained, with full information, for 6,5, and 6,55, respectively. Performance in test sets is
also noteworthy: although the new curves begin at a lower point than before, the degradation
is still quasilinear. What is more, the slope of this linear trend is lower (in absolute value),
resulting in a slight raising up of the curves (in both of them).

7.6.3 Conclusions

This last group of experiments, carried out with data coming from a real-world problem in the
domain of environmental studies, have shown that allowing imprecise inputs, and using fuzzy
heterogeneous neurons based on similarity, yields much better prediction indicators —mean
accuracies, mean errors and their variances and absolute best models found— than those from
classical crisp real-valued models. Especially noteworthy is the graceful degradation in the
increasing presence of missing information, a particular feature of heterogeneous models that
should not be overlooked, since it is a very desirable feature in any model willing to be useful
in real-world problems.

7.7 General conclusions

In this chapter, heterogeneous neural networks have been successfully tested in a variety of
tasks. They have been compared to the standard multi-layer perceptron and shown to lead
to a remarkable increase in performance when departing from this classical neuron.

The experiments show how the use of fuzzy heterogeneous networks can significatively
increase the accuracy of the models obtained. The moral seems to be that better models can
be found by treating data with its natural imprecision, rather than considering them as crisp
quantities, as is usually the case. Allowing imprecise inputs and weights in a neural model
translate in more accurate representations, because of their greater flexibility in front of those
found with crisp models. This is so to the point that the fuzzy models have been observed to
have a strong tendency to overfit the data, a fact that shows in all the experiments presented.
This is not dangerous as long as it entails a careful control of the proposed architectures, and
the use of a model selection technique. Such methodology is followed, together with the use
of validation sets in the training process, in the experiments of chapter (9).

In all, these results for heterogeneous networks confirm the features observed in other
studies, concerning their mapping effectiveness and their robustness in the presence of uncer-
tainty and missing data. Their ability to directly consider imprecise data and their remarkable
resistance under those circumstances deserve special attention, due to their implications for
real-world problems and from the point of view of neurofuzzy systems.

Chapter 8

A study in Wastewater Treatment
Plants

Lo que el hombre hace no puede hacerlo
la naturaleza; si bien el hombre, para hacerlo,
se vale de todas las leyes de ésta.

Louis Kahn

"I'he control and prediction of Wastewater Treatment Plants (WWTP) poses an important
goal in order to always keep the system in stable operating conditions under a wide range of
working circumstances, thereby avoiding the risk of breaking the environmental balance. In
this respect, the availability of models characterizing WWTP behaviour as a dynamic system
is a necessary first step. However, due to the high complexity of the involved processes and
the heterogeneity, incompleteness and imprecision of WWTP data, finding suitable models
entails substantial problems.

In system identification, the studied model is provided with information coming from the
system history of behaviour, possibly in the form of a fixed number of appropriately delayed
inputs and outputs. The interest in making models out of observations is in its application
to the prediction, control or simply in a better understanding of the modelled system. In this
Chapter, several acceptable submodels are found, able to characterize WWTP behaviour in a
statistically satisfactory sense and performing better than other well-established techniques.
The material presented has been compiled from [Belanche et al., 98b], [Belanche et al., 99c],
[Belanche et al., 99b] and [Belanche et al., 00].

8.1 Introduction

Dirty water is both the world’s greatest killer and its biggest single pollution problem
[Lean and Hinrichsen, 94]. The large amount of wastewater generated in industrialized soci-
eties is one of the main environmental pollution aspects that must be seriously considered.

227

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 228

New Directives and Regulations have guaranteed the construction of specific plants to treat

these wastewaters, being the activated sludge process the one most extensively used nowa-
days.

The proper management of wastewaters in modern industrialized societies is hence not
only an option, but a necessity. The main objective is to maintain natural water systems at as
high a quality level as possible, and to ensure equilibrium between supply and demand through
a rational use and management of water resources. Moreover, the wastewater treatment helps
to reach the attainment of rivers as biological corridors, translating in a good quality of life
for animals and vegetals living in the water.

Wastewater coming from different municipal uses contains a wide variety of contaminants.
Among them, the most commonly found in municipal wastewater are total suspended solids
(TSS), organic matter —measured as biochemical oxygen demand (BOD) and chemical oxy-
gen demand (COD)— pathogens, and nutrients. The basis of wastewater treatment processes
lies in oxidizing biodegradable organics from raw water into stabilized, low-energy compounds,
maintaining a mixture of microorganisms and supplying oxygen by aerators [WEF, 96].

The European directive of the Council 91/271/EEC on urban wastewater treatment sets
forth a precise standard regarding the degree of treatment and purification to be required for
diverse types of population centers. It foresees wastewater treatment for all urban concentra-
tions greater than 2,000 inhabitants-equivalents before the end of year 2005, excepting those
of less than 150,000 discharging in the sea. To achieve these purposes, the autonomous Gov-
ernment of Catalonia has drawn up its Pla de Sanejament. To date, more than 225 WWTP

have already been built in Catalonia, treating an average daily wastewater flow superior to
2,000, 000 m3.

Although it is very important to ensure the quality of the treated wastewater prior to
discharge, the correct control and operation of the process carried out in the WWTP is not

a well-established task. Some of the factors which affect the real-time control of the process
are [WEF, 92]:

the biological nature of the process, involving the presence of a true trophic web;
e the great complexity and variability of the influent composition;
e the lack of reliable on-line sensors and signals;

e the delay of the analytical results from the laboratory: minutes, hours or even days,

according to the different TSS (30 minutes), COD (2 hours) or BOD (5 days) determi-
nations, and

¢ the dynamically changing state of the process, due to the fact that the involved factors
have very different dynamics (e.g., the inflow characteristics change in seconds, the

quality of the outflow changes in hours and the biomass changes at a pace that may
take days).

Research contributions in this field have been formulated from many different points of
view. However, a direct cause-effect relationship for WWTP performance has been estab-
lished only in a few cases and, even in those, experimental results could lead to contradictory

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 229

conclusions [Capodaglio et al., 91], avoiding the formulation of deterministic cause-effect re-
lationships that could be used as prediction models. The identification of a model that could
predict in real-time and with reasonable accuracy is thus of great practical importance in view
of a potential improvement of treatment plant efficiency and cost savings [Novotny et al., 90].

To tackle such task, several staged studies have been performed towards the development
of input-output behaviour models for WWTP, in which the temporal behaviour of the main
outgoing variables (COD-AT, BOD-AT and TSS-AT, see below) is acceptably captured and
reproduced. The long-term aim of this work —-which is only in its initial stages— is to find
a model capable of short-term prediction, taking into account only the actually relevant
variables and accommodating some of the characteristics of real WWTP data: imprecision,
heterogeneity, and high incidence of missing information.

The chapter is organized as follows. Section 2 briefly describes the basics of a WWTP
while Section 3 describes the problem at hand, the particular WWTP under study, and its
characteristics. Section 4 overviews the experiments to follow and the used techniques other
than those already introduced in previous parts of the work. The next three Sections deal
with the experimental part itself, the experiment setup and the obtained results. Finally,
Section 8 presents the conclusions of the chapter.

8.2 Basics of a WWTP

The definition of waste water includes any combination of liquid flow coming from human
establishments, public installations and industrial settings, eventually supplemented by un-
derground, surface or rain waters. In a WWTP, different stages —physical, chemical and
biological- are combined to form the process diagram. The global process can be best de-
scribed following the water flow-line [Balaguer et al., 98]:

1. A pre-treatment stage, to eliminate or reduce the impact of the bigger solid material,
consisting on a sequence of screens followed by the removal of grit, sand and grease,
the former two by sedimentation and the latter thanks to its floutability.

2. A primary treatment stage, where the water is allowed to rest for a while (some hours)
in order to settle part of the organic matter, and the grit or inorganic matter not
eliminated in the pre-treatment.

3. A secondary treatment stage, the most important part of the process, in which a pop-
ulation of specific microorganisms degrades the organic matter dissolved in the water.
This treatment takes place at the oxidation ditchs or bioreactors. Roughly speaking,
the microorganisms use the oxygen present in the water to consume the substrate (the
organic molecules). As a result, the microorganisms get the necessary amount of living
energy and are able to reproduce.

4. Finally, a second settlement process is carried out in order to achieve a good separation
between the treated water and the biomass. A clarification and chlorination process
are performed at the end, prior to the release of water to a natural emissary.

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 230

5. As aside effect, WWTP generate a large amount of a by-product called sludge (basically
a liquid mixture of microorganisms and particulated organic matter) that must also be
treated. Thickening, stabilisation and dewatering are the three main unit operations
to convert the sludge into a stable product for ultimate disposal.

A scheme of a WWTP water flow-line providing primary and secondary treatment using
the activated sludge process is illustrated in Fig. (8.1).

Flow Pri
distribuion | DoAY Osidation ditch Clarifier Chlorination
chambers

Raw Drum Gnt
water screen removal

= -

Final

settlers effluent

T Sample points
Sludge treatment

Figure 8.1: Schematic of a WWTP water flow-line providing primary and secondary treat-
ment. The line consists of a pre-treatment (drum screen and grit removal), primary treatment
(flow distribution chambers and three primary settlers), secondary treatment based on the
activated sludge process (an oxidation ditch as bioreactor followed by a secondary settler),
and final chlorination prior to discharge the treated water to an emissary.

8.3 A WWTP case study

The database utilized in the forthcoming experiments corresponds to a WWTP of a touristic
resort situated in Costa Brava (Catalonia, Spain). This plant follows the schema of Fig. (8.1),
providing primary and secondary treatment using the activated sludge process to remove
organic load and suspension solids contained in the raw water of about 30,000 inhabitants-
equivalents in winter and about 150,000 in summer.

The available historical data comprises a large amount of quantitative and qualitative
information corresponding to an exhaustive characterization of the main points of the plant,

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 231

[Sample Point | On-line Data (flow rates) Analytical Data Qualitative Data
COD-AB, BOD-AB
AB (inflow) | Q-AB (inflow) (organic matter) -

TSS-AB (suspended solids)

Presence of foam

Q-R (biological recycle) Microfauna
AS Q-P (biological purge) - {Aspidisca, Vorticella ...)
(bioreactor) | Q-A (biological aeration) Filamentous bacteria
(Nocardia, Thiothriz ...)
AT (outflow) - COD-AT, BOD-AT, TSS-AT | Look (appearance)

Table 8.1: Selected variables characterizing the behaviour of the studied WWTP.

such as the inflow, the bioreactor, and the outflow (indicated in Table (8.1) with suffixes
-AB, -AS, and -AT, respectively). Quantitative information includes analytical results of
water quality: organic matter ~measured as chemical (COD) and biochemical (BOD) oxy-
gen demand- and Total Suspended Solids (TSS), together with on-line signals coming from
sensors: inflow, recycle, purge and aeration flow rates. Qualitative data include informa-
tion about the presence-of foam in the bioreactor (“Presence-foam”), the subjective ap-
pearance of outflow (“Look”), and daily microscopic examinations (basically, presence of
microfauna —e.g. Aspidisca, Vorticella- and some filamentous organisms —e.g. Nocardia, M.
Parvicella). This information is also being used in other approaches to improve WWTP
operation [Comas et al., 98].

The first work was focused on selecting an homogeneous amount of days, to cover a
representative period of time. Then, it was necessary to select the most relevant variables of
the process, corresponding to the analysis of water quality and flow-rates at different points
of the plant. These variables are presented in Table (8.1), distinguishing between on-line and
analytical values, and specifying the sample point (AB or influent, AS or bioreactor and AT
or effluent). Global process variables are related to the three control actions that the plant
manager can modify when removal efficiency decreases, in order to reconduct the process to
normal performance: purge (Q-P), recycle (Q-R) and biological aeration (Q-A) flow rates. To
simplify the description of the influent characteristics, the set of internal variables (Q-OP1,
COD-OP1, BOD-OP1 and TSS-OP1) at the primary settlers has been excluded from the
analysis.

The final data set covers an homogeneous representative period of 609 consecutive days,
where each day is considered as a new sample. The second work has comprised a statistical
analysis of the studied database variables. Basic statistical descriptors of the variables in the
database are shown in Table (8.2) (for quantitative variables) and Table (8.3) (for qualitative
ones). The relative abundance of qualitative variables is categorized in three different levels:
none, some and many, with the exception of the outflow appearance (that is, “Look-AT”),
categorized as poor, fair and good.

The most relevant feature of the database is the extremely high incidence of missing values
(between 60% and 80%, approximately), basically due to different time measurements of the
variables, and to the cost (in time and money) of performing some of the analytical tests. This
is specially true in the case of the outflow variables COD-AT, BOD-AT and TSS-AT -more

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 232

suitable as targets for developing prediction models— variables characterizing water quality
at the inflow COD-AB, BOD-AB and TSS-AB, and qualitative variables characterizing the
microorganisms. Clearly, this situation makes the search for models to characterize WWTP
behaviour considerably hard. They must always be taken into account in evaluating the
quality of the learned models.

[Variable | Unit | Missing | Mean [StDev [Min { Max |
Q-AB m°/d 18 | 10707 3634 0.0 | 23681
COD-AB mg/] 380 795.8 198.0 | 150.0 1644
BOD-AB mg/1 480 390.7 | 95.70 70.0 620
TSS-AB mg/l 380 315.9 91.35 69.0 647
Q-R m°/d 1| 5597.7 | 2287.1 0.0 | 12086
Q-P Kg TSS/d 11 771.6 756.6 0.0 6523
Q-A Kg O,/d 61 | 4138.6 | 1878.4 0.0 8643
COD-AT mg/1 380 55.8 18.52 20.0 134
BOD-AT mg/l 480 8.96 4.876 2.3 32
TSS-AT mg/! 376 9.56 5.750 2.0 42

Table 8.2: Basic statistical descriptors for selected WWTP variables (in 609 days).

Variable No. of Category
(609 days) Missing | none | some | many
Presence-foam 394 17 153 45
Zooglea 394 117 69 29
Nocardia 399 90 51 69
Thiothriz/021N 396 112 85 16
Type 0041 397 140 44 28
M. Parvicella 395 156 23 35
Aspidisca 503 8 82 16
Euplotes 438 154 16 1
Vorticella 501 4 89 15
Epistylis 501 9 81 18
Opercularia 450 126 27 6
Carniv. ciliates 394 160 48 7
Flagellates >20um 394 184 23 8
Flagellates <20um 394 176 24 15
Ameabae 394 173 38 4
Testate amebae 394 206 8 1
Rotifer 394 117 97 1
poor | fair | good
Look-AT 394 9 168 38

Table 8.3: Basic statistical descriptors for qualitative WWTP variables. The last three
columns show the number of days for each variable and category.

The linear intercorrelation structure among variables is shown in Fig. (8.2) as a hier-
archical clustering of the (absolute) correlation matrix of variables. With the exception of
incoming water discharge (Q-P), the actuation (Q-), output (-AT) and input (-AB) variables

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 233

are clustered intothree —not too homogeneous— groups. The fact that the highest intercorre-
lations are observed in output variables (0.736-0.764) indicates that once a reasonable model
is found for one of them, similar ones should be also found for the rest.

Similarity
14.65 = !
43.10 —f
71.55 —
100.00
- GERLAS Se T. JC. S R I
&S PES <& & P S

Figure 8.2: Hierarchical clustering of the absolute correlation for the studied WWTP vari-
ables.

Normal Probability Plot Normal Probability Plot
999
:z] 1.
9 1
§ L g2 owi
o =
3 % g w0
o a
§ 21 e 7t
0s 4) . . [
ndi. A i 05 9.
o0 o
00t
8 LS] 358 450 550 850
k 0 1 0 » 0
" Kelmagoroe-Smamer Nomusey Trst
:n?-'n’:x TSS-AB Du 0832 00024 0 4052 Avarnge § 5610 TSS‘AT Kolmegorsw Srmwner HomaRty Tas
wim M Frana 8 14 ROwe § 7088 Do 1S 0 412 00188
*1m foprecings Kb <G 01

Figure 8.3: Normal probability plots of Total Suspended Solids for the Kolmogorov-Smirnov
test, for incoming (TSS-AB) and outgoing (TSS-AT) total suspended solids.

The complexity of the WWTP behaviour problem is reflected in the frequency distri-
bution of its variables. As an example, Kolmogorov-Smirnov tests applied to the incoming
TSS-AB and outgoing TSS-AT variables confirm what direct inspection suggests: whilst the
first variable is distributed normally, the second does not. Actually it has a right-skewed dis-
tribution, reflecting strong non-linear distortions introduced by the WWTP dynamics -see
Fig. (8.3).

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 234
8.4 Experiments

In the first two experiments to be presented, the time behaviour of two outgoing variables
(COD-AT and BOD-AT), expressing the quality of effluent water, is modelled as a function
of influent characteristics and control actions. The obtained models take the imprecision
inherent in the samples into account, and make use of all available information despite the
significant presence of missing data.

The next natural step is to take into account qualitative variables —not considered in the
previous studies— and to explore how it affects the formation of these predictive models. This
qualitative information, although known to exert an influence in the process and conveying a
great amount of information, is usually put aside because of its nature and the high levels of
missing values that it brings along. These two features are a nuisance ~if not a problem- for
many neural learning algorithms and models, which have to accommodate qualitative and
missing information in a deformative preprocessing.

Description of the methods

Four techniques are employed in this work in search of valid models of behaviour or to study
the influence of specific variables: a heterogeneous neural network (trained with genetic
algorithms), a classical neural network (the multi-layer perceptron, trained with simulated
annealing plus the conjugate gradient), a probabilistic network (trained as a Bayes-Parzen
classifier) and the k—nearest neighbours algorithm. Rough set theory is also used to perform
a reduction of dimension. The three neural techniques are used as time-delay neural networks.

We begin by briefly outlining the methods employed in the experiments and not introduced
in other sections of the Thesis; specifically, rough sets and probabilistic neural networks. The
concept of a time-delay neural network (TDNN) was already presented in (§7.4.2).

Rough Sets.

An important issue in the analysis of dependencies among variables is the identification of
information-preserving reduction of redundant variables. In particular, the task is to find a
minimal subset of interacting variables having the same discriminatory power as the original
ones, which would lead to the elimination of irrelevant or noisy variables, without the loss
of essential information. Rough Sets [Pawlak, 91] exploit the idea of approximating a set by
other sets. Given a finite set of objects U (the universe of discourse), a set X C U and an
equivalence relation R, two subsets can be associated, called the lower (Ry) and upper (Ry)
approximation, respectively, as follows:

R,={Y €eU/R|Y C X}
Ry={Y eU/R|YNX #0}

where U/ R is the set of equivalence classes (a partition) induced by R. The lower approxi-
mation, also called the positive region POSR(X), is the set of elements which can be certainly

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 235

classified as eleménts of X, whereas the upper approximation is the set of elements which
can be possibly classified as elements of X. The dependency coefficient is defined as the ratio
between positive region size and universe size. A set of variables P is independent w.r.t. the
set of objects Q) if for every proper subset R of P, POSp(Q) # POSg(Q); otherwise P is said
to be dependent w.r.t.). Moreover, the set of variables R is a minimal subset or reduct of
P, if R is an independent subset of P w.r.t. Q, such that POSr(Q) = POSp(Q). A variable
a € P is superfluous if POSp(Q) = POSp\(4}(Q); otherwise a is said to be indispensable in
P. The set of all indispensable relations is the core. An important property of the core is
that it is equal to the intersection of all reducts.

Rules of the form <condition> = <decision> can be generated by using the information
contained in the reducts and the objects, concerning their condition and decision attributes.
The condition part of the rule is a conjunction of attribute—value pairs. The decision part,
in this study, is a single pair composed of the object’s decision attribute. Three different
strategies are used in the following experiments for rule generation from reducts, as follows:

Strategy 1 : for each object, this strategy finds a single relative optimal reduct (in the sense
of its length), using heuristics for preserving the dependency coefficient. This strategy
is usually the fastest;

Strategy 2 : for each object, the shortest relative reduct (in the explicit sense) is computed
and used for constructing the rule;

Strategy 3 : this strategy operates in a class-wise manner by finding all shortest relative
reducts whose rules cover some element of the corresponding class.

In all cases, repeated rules are not included. Criteria for matching objects with rules are
based on a notion of distance, defined as the number of unmatched attributes taken from
the set of predictor variables appearing in the rule. Missing attributes are considered in
an optimistic sense, i.e., always matching. Two classification methods are used to test the
performance of the generated rule sets:

Method 1 : Find the most frequent decision among rules with minimum distance from a
given sample object.

Method 2 : Select first all the rules with minimum distance from a given sample object and
then, for every selected rule, count the number of matched objects, choosing as decision
the one corresponding to the rule with the highest such number.

Probabilistic neural networks.

This learning model [Specht, 90] is a reformulation of the Bayes-Parzen classifier —a classical
pattern recognition technique [Duda and Hart, 73]-in the form of an artificial neural network.
The fact that the Bayes classifier is optimal in the sense of the expected misclassification cost
makes the use of this kind of network very attractive, specially for smooth classification
problems, and in which all variables are relevant.

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 236

Besides the input layer, there is a so-called pattern layer with as many neurons as patterns
are included in the training set. Next, a summation layer contains one neuron for each class,
then leading to the output layer. Each pattern-layer neuron computes a distance measure
between the input and the training sample associated with the neuron. The activation func-
tions of these neurons are Parzen windows used to collectively approximate the probability
density functions required by the classifier. The cornerstone of this method lies in its approx-
imation of the multivariate population density function, estimated from the training set as
the average of separate multivariate distributions, each centered in a sample from the training
set. The main drawbacks are the curse of dimensionality, like all kernel-based methods, and
the limited ability to ignore irrelevant variables, which may be a cause of poor generalization
ability [Sarle, 99].

8.5 Experiment 1

The purpose of this first investigation is to assess whether partial models of the plant can
effectively be found by neural techniques. The developed models characterize the effluent
quality (measured as BOD-AT and COD-AT) as a function of the influent characteristics
and control actions, by means of developing a model for each variable. The aim of this
experiment has been to find, as a first step, models able to capture the time variation of basic
outgoing WWTP variables.

Experiment setup

In this first experiment, two different TDNN approaches that differ in the training method
have been tested: a hybrid procedure composed of repeated cycles of simulated annealing
coupled with conjugate gradient algorithm (TDNN-AC) [Ackley, 87] and the HNN model
presented, where a neuron model of the form (4.73) is used, with (4.74) as the activation
function, as described in (§4.4.1). All the variables are taken to be fuzzy numbers with a
5% of imprecision, according to the estimated upper-bound of uncertainty. Their similarity
is computed by using the measure in (4.60).

The TDNN-AC hidden layer uses the hyperbolic tangent as activation function. Both
networks have an output layer composed by a linear neuron. It should be noted that the
HNN model as used here (TDNN-HG) is viewed as a TDNN that incorporates heterogeneous
neurons and is trained by means of genetic algorithms. The TDNN-HG and TDNN-AC
architectures were thus fixed to include one output unit and 8 hidden units, corresponding
to the model:

ylt+1)=F <z(t),z(t-1),z(t —2),y(t - 1) >

where z(t) denotes the current value of the input variable and y(t) denotes the corresponding
output. Selected inputs were Q-AB, Q-A, Q-P and Q-R, that is, the incoming flow rate
and the three actuation variables and the output is considered in the 2-day delay. Hence,
the model is composed of a total of 13 inputs. In the testing process, the normalized mean
square error (in percentage), given by (7.2), between the predicted output value and the real

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 237

output, is used to"determine the quality of each of the inferred models.

For each studied output variable (BOD-AT and COD-AT), the TDNN-HG was trained
using a standard genetic algorithm —enhanced to deal with missing values (§6.3.2)- with the
following characteristics: binary-coded values, probability of crossover P..,ss = 0.6, proba-
bility of mutation: P, = 0.01, population size: A = 150, linear scaling with factor ¢ = 1.5,
selection mechanism: stochastic universal, replace procedure: worst individual. The algo-
rithm stopped when no improvement was found for the last 1, 000 generations (typical values
were about 7,000). The TDNN-AC was trained in only one run and the process was stopped
when a reasonable error was attained. In both cases, the training set chosen was the first
half of available data (about 300 days).

Results of the experiment

The WWTP characterization produced via neural networks trained with the hybrid simulated
annealing-conjugate gradient procedure was worse than the corresponding one obtained by
using a fuzzy heterogeneous neural network model, as illustrated by normalized squared
errors shown in Table (8.5) for BOD-AT and COD-AT output variables. In both cases the
same neural architecture was used but the errors obtained are appreciably lower for the
heterogeneous model w.r.t. the classical neural one, although it uses a very sophisticated
training procedure.

[TDNN-AC | TDNN-HG |
BOD-AT | 45.55% 20.74%
COD-AT 30.76% 11.64%

Table 8.4: Normalized MSE errors of the two neural network models used for characterizing
two of the outgoing variables.

The relation between the BOD-AT output variable, as estimated by the heterogeneous
neural network, and the corresponding observed values is shown in Fig. (8.4, left). There is
a significant linear correlation between both values, and model adequacy is revealed by the
fact that almost all points are enclosed by the 95% confidence band.

The corresponding time behaviour is illustrated in Fig. (8.5), where the observed BOD-AT
values are displayed together with the 95% confidence band given by the neural network model
(upper and lower dashed curves). In spite of the fact that 78.7% of the data, corresponding to
the 300 day period chosen for the characterization were missing, almost all observed values are
within the confidence band with only very slight exceptions. A similar behaviour is exhibited
by the COD-AT variable —Figs. (8.4, right) and (8.6).

8.6 Experiment 2

The previous experiment showed how models characterizing WWTP behaviour can be found.
The next step to be taken is to develop a model able to predict future WWTP output in

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 238

" Regression Plot Regression Plot
¥+ QSIST2 4 QOTX ¥ 45300+ 10X
Raq-0me Reg- 010

(real)

— MaghiItA
- WmN

(estimated)

(estimated)

Figure 8.4: Relation between estimated vs. real BOD-AT (left) and estimated vs. real
COD-AT (right).

situations never seen before (that is, not used in the formation of the model) again in light
of available past values of its variables. This is a very difficult issue, again complicated
by the presence of missing data in a set of characterizing variables that is already very
heterogeneous in nature and plays strong non-linear interaction roles in the overall process.
A further complication that arises is the different time scales of the variables. While some
of them are available almost at will, others may take days (as, for example, the BOD-AT,
that takes 5 days). For this reason, the COD-AT variable has been the one chosen as a
prediction target. This variable is available in about 2 hours and, thus, previous values w.r.t.
the present day are always known.

To achieve this, a still more careful selection and a clever treatment of the data to be used
as training is a means to pave the way. Specifically, three treatments have been performed:

o First, the correlation structure reflected in Fig. (8.2) shows that the groups of variables
(Q-AB, Q-A), (COD-AB, BOD-AB) and (COD-AT, TSS-AT, BOD-AT) are reasonably
similar. This suggests the use of Q-AB, Q-R, Q-P, COD-AB and TSS-AB as input
variables when considering the construction of prediction models. The choice of COD-
AB is favored by the fact that it is a much simpler and faster analytical procedure than
BOD-AB from the chemical point of view.

e Second, we observed that part of the errors of the models inferred in the previous
experiments were due to the high peaks present in both studied variables (BOD-AT
and COD-AT). For this reason, COD-AT was log;o transformed.

e Third, the delays used in such models were proposed intuitively, but without any regard
to actual underlying significance. This is where rough set theory comes to play.

No doubt that one of the most important tasks when finding useful dependencies from the
point of view of constructing prediction models is the discovery of those time delays in the

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 239

35
30
25
20
15
10

BOD-AT

0 50 100 150 200 250 300
Time (days)

Figure 8.5: Time behaviour of BOD-AT during the first 300 days (solid line) with observed
points. Upper and lower dashed lines indicate the 95% confidence estimation interval (ac-
cording to the TDNN-HG model).

input variables, and in the predicted variable itself, carrying essential functional relationship.
In the present study an experiment was made by forming a data matrix containing the
information concerning the behaviour for each day of the last 10 days for variables Q-AB,
Q-R, Q-P, COD-AB, TSS-AB and the target variable COD-AT itself. This makes a total
of 60 new variables potentially related with the value of the COD-AT for each day, with
a dependency coefficient found to be 0.9699 {a value of 1 means that the selected variables
convey all the information present in the whole data available).

The continuous process represented by these data was transformed into a discrete one by
analysing the empirical probability distribution of all variables involved and defining suit-
able categories introducing corresponding cut-point values. In particular, the following were
set: Q-AB [0, 8500), [8500, 13000), [16500, c0), COD-AB [0, 650), [650, 950), [950, 00), TSS-AB
[0,250), [250,400), [400,00), Q-R [0,5000), (5000, 7000), [7000,), Q-P [0, 1000),[1000, o)
and log,0(COD-AT) [0, 1.65),[1.65, 1.85), [1.85, c0).

The core and reducts were computed for the discrete process obtained via categorization
of the original data and it was found that, from the original 60 potential predictor variables,
only 13 were really indispensable, whereas adding another 7 makes them an optimal reduct.
That is to say, optimal from the point of view of relative size of the positive region defined
by these 20 variables, and w.r.t. the positive region defined by the whole set.

The core itself was composed of the following variables: Q-AB (delay 1), TSS-AB (delay
7), Q-R (delays 1, 2, 3,4, 5,7, 9, 10) and logio (COD-AT) (delays 5, 7). The optimal reduct
is completed by variables Q-AB (delays 5, 10}, COD-AB (delays 2, 4), Q-P (delay 5) and
log10(COD-AT) (delays 2, 3). It is interesting to observe that almost all information coming
from the recirculation flow was considered essential (a variable controlled by the WWTP

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 240

140

120
100
80

COD-AT

" B
Voo B
AN ot
D
. Vor 0 0

vE e
» ’
o]

40 ¥
20

0
0 50 100 150 200 250 300
Time (days)

Figure 8.6: Time behaviour of COD-AT during the first 300 days (solid line) with observed
points. Upper and lower dashed lines indicate the 95% confidence estimation interval (ac-
cording to the TDNN-HG model).

human operator). This delay information given by the optimal reduct was used to set up a
prediction model based on the HNN as in Experiment 1, this time with log1o(COD-AT) with
delay 0 as target.

A very simple HNN architecture consisting of just 2 hidden neurons was utilized (20
inputs, 1 output), with the same training set used for the previous experiments (50% of the
total available). The last 25% (56 days) as data to be predicted. Also, very prudent GA
settings were used (26 individuals, only 500 generations) to avoid excessive data overfitting.

The behaviour of the predicted COD-AT values w.r.t. the real observed ones is shown in
Fig. (8.7). In spite of the fact that the fit is not as accurate as before, the relation between the
two is highly significant, both from the linear correlation coefficient and the linear regression
points of view, as tested with the corresponding ¢-test for the correlation coefficient and the
F-test for the analysis of variance (for 95% confidence in both cases). Actual numbers for the
t-test are: R = 0.504 with 54 degrees of freedom (f = 4.288). The result for the F-testis 18.39
for one degree of freedom in the numerator and 54 in the denominator -Fig. (8.8). All this
shows that the model, although far from perfect, does capture prediction information and is
able to prognose outputs within a 95% confidence band. This is particularly important in
view of the WWTP complexity and the vast quantity of missing information (78.7% of the
data in the period chosen for the characterization were missing).

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 241

2 T T T T T
"real.gpt® ——
"pred.gpt* -----
1.9 -1
[5 ! -
1.8 . . T \ 1
, - i it (AR Vi
\ \ { Vo[/i |
1.7 |- 4 H \i [Y] i \ _
AT .' ¥ v \ H i
\ Vit v \ :
¥ Vv Y 4 H
HRY v i
1.6 |- X \i WAY i
‘ y Py L% !
v vy v
¥
1.5 |- —
1.4 |- ~1
1'3 N 1 1 1 v
o] 10 20 30 40 50 60

Figure 8.7: Actual time behaviour of COD-AT during the last 56 days (solid line) with
observed points against prediction according to the TDNN-HG model. The normalized MSE
for prediction is 60.0%.

Regression Plot

N m 1A 1197 = C.TT4 108X
RGa = q.254

1 —

s —

a0 —

™ —

€ —

s —

- —

e — —— Regression
0 — — - oS i
1w —

Figure 8.8: Relation between predicted vs. real COD-AT (solid line). Upper and lower
dashed lines indicate the 95% confidence interval (according to the TDNN-HG model).

8.7 Experiment 3

8.7.1 Preliminaries

The purpose of this third investigation is to present several experiments performed using
qualitative information, either per se or together with quantitative information, such as in-
fluent characteristics and control actions. It is known that qualitative features —including

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 242

microscopic examinations of microfauna and bacteria, and some subjective information— are
useful indicators of overall process performance, and strongly influence the activated sludge
process. Specifically, the influence on effluent TSS levels is studied, as an indication of plant
performance and fulfillment of regulations. There is also a second need to handle uncertain
or imprecise information, a characteristic present in all kinds of variables, specially in all
numeric measurements coming from on-line analyzers, but also in analytical determinations
and qualitative observations.

The results show that qualitative information exerts a considerable influence on plant
output, although quite variable, since high degrees of information redundancy are discovered.
Comparable predictive capabilities are obtained when working with a much reduced set of
variables, which coincide with those highly rated by WWTP experts. Also, a common upper-
bound in classification accuracy is discovered, in light of the coherent results yielded by
methods that are very different in nature. In addition, despite the high levels of missing -
information, very reasonable prediction models are found.

8.7.2 The bulking phenomenon

As explained in (§8.2), in an activated sludge process, the wastewater, which contains organic
matter, suspended solids and nutrients, goes into an aerated tank where it is mixed with
biological floc particles. After a sufficient contact time, this mixture is discharged into a
settler that separates the suspended biomass from the treated water. Most of the biomass is
recirculated to the aeration tank, while a little amount is purged daily [WEF, 96] —see Fig.
(8.9).

Activated sludge is a clear example of an environmental process that is really difficult to
understand, and thus difficult to be correctly operated and controlled. The inflow is variable
(both in quantity and in quality); not only there is a living catalyst (the microorganisms) but
also a population that varies over time, both in quantity and in the relative number of species;
the knowledge of the process is scarce; there are few and unreliable on-line analyzers; and
most of the data related to the process is subjective and cannot be numerically quantified.

Most of the problems of poor activated sludge effluent quality result from the inability
of the secondary settler to efficiently remove the suspended biomass from the treated water.
When the biomass is strongly colonised by long filamentous bacteria, holding the flocs apart
and hindering sludge settlement, the amount of Total Suspended Solids (TSS) at the outflow
of the plant increases seriously. Although this phenomenon, called bulking, has been exten-
sively studied, the interrelations and diversity of the many bacterial species involved, and the
uncertainty about the factors triggering their growth constitute obstacles to a thorough and
clearcut understanding of the problem.

Previous works have applied stochastic models and neural networks to accurately predict
the occurrence of future bulking episodes [Capodaglio et al., 91]. This study uses 14 months
of complete daily measurements of quantitative data only, from the Jones Island WWTP in
Milwaukee (Wisconsin, USA). Although the study is based on real data, it is not common (at
least in Europe) to make daily analytical measurements of all process variables (e.g., organic
matter and TSS are typically measured two or three times a week). As a result, the databases

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 243

- \

Aerated tank

Recycle Purge

Y

Activated Sludge Process

Figure 8.9: Flow diagram of the Activated Sludge Process. The influent stream (sample
point AB) is combined with the sludge return stream Recycle and sent to the aerated tank
(sample point AS) for biological oxidation of the organic matter. A settler is then used to
remove treated water (sample point AT) from biomass and to thicken it. The withdrawn
sludge Purge is concentrated to a higher solids content in the sludge line of process.

are full of missing values, evenly distributed all over the time. Incidental equipment failures
also bring along compact chunks of missing data. This high incidence of missing information
is the main reason why most of other studies are based on simulated data.

There is then a clear interest in a model of the process. This model should allow to obtain
an accurate estimation of TSS ranges at the outflow of the plant, based on the relationship
among the most relevant variables of the process, both quantitative (e.g. flow rates and ana-
lytical results) and qualitative (biomass microscopic examinations and process observations),
in order to know whether the plant is meeting the discharge permit requirements.

In this study, the final database processed includes only those days with a recorded value
in the target variable TSS-AT, causing the initial data matrix to shrink from 609 to only 233
days —Table (8.2), last row. Nevertheless, the rate of missing values is still extremely high
among potential predictor variables.

8.7.3 Setup and specification of the methods

Three different TDNN approaches that differ in the neuron model and training method have
been tested: a multi-layer perceptron trained by means of the hybrid procedure composed of
repeated cycles of simulated annealing coupled with the conjugate gradient algorithm (which
we will call TDump), our HNN model (id. TDynn), incorporating heterogeneous neurons and
trained by means of genetic algorithms, and the probabilistic neural network (TDpnn). Four
architectures formed by a hidden layer of 2, 4, 6 and 8 neurons and an output layer of a linear
neuron were studied. The TDunN was again trained using a standard genetic algorithm with

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 244

Peross = 0.6, Py = 0.01, two explored population sizes of A € {26, 52} individuals, a linear
scaling with factor ¢ = 1.5, stochastic universal selection and a replacement procedure given
by the worst individuals. The algorithm was allowed 5 runs for each population size and
stopped after 1,000 generations unconditionally. The TDpmpp uses the hyperbolic tangent
instead of the logistic, and is trained in one long run for every architecture, in which the
number of annealing restarts was fixed to 50. In all cases, average and best results found
across the architectures are shown.

The TDpnn was used here with a Gaussian kernel. During training, each variable and
class units were allowed to have their own variance, with values optimized during the process
(possible values ranged from 0.001 to 10). Also, the k—nearest neighbours (KNN) algorithm
(with k& = 3) was tested against the data as a further reference (recall that this algorithm
has no training phase). The TDynn treats qualitative and missing information directly, and
original real values as triangular fuzzy numbers, by considering a +5% of imprecision w.r.t.
the reported value. The other two neural approaches codify all information as real-valued
and a missing input as zero (no input).

8.7.4 Description of the experiments

The effluent quality of the WWTP process given by the TSS-AT was discretized by catego-
rizing the original continuous values into three classes {[0, 5), [5, 13.5], (13.5,00) }, expressing
low, normal and high values. Four main sets of experiments were performed, all in accordance
with the general model:

y(f) = F{a:l(t - 2)»$1(t - 1)»"'1‘7:m(t - 2)1$m(t_ l)ay(t - 2)’y(t’— l)} vVt >3 (81)

where m is the number of input variables, for a total of 7 = 2m +2 model input variables.
Each z;(t) denotes the value of the i-th input variable and y(¢) the value of the target TSS-AT
output variable, at time {. The number m varies and will be specified accordingly.

For each experiment, a preliminary study of the training data matrices via rough set
analysis is first presented, with the aim of evaluating the actual predictive capacity of the
considered model and thus what can be expected on its influence in the output. Next,
the matrices are processed by using the three different strategies for rule generation, and
the generated rules, using the two classification methods, are applied to the test matrix,
yielding corresponding percentages of correct classification. For the training set, the number
of generated rules in each case is shown too. In addition, the results obtained by training
and testing the three neural methods (classical, heterogeneous and probabilistic) and the
k-nearest neighbours (KNN) algorithm are collectively shown and discussed. The advantage
of this fanning out of methods is that, being so different in nature, are able to analyze the
data from very different perspectives, allowing to draw more general conclusions. It has to
be noted that, throughout all the experiments, all the methods are applied to the data in
exactly the same experimental conditions. A description of the four groups of experiments
follows.

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 245

Experiment 1: Qualitative.

Oriented to reveal the influence of qualitative variables when studied per se; in particular, to
reveal their predictive ability on the TSS classes, taking as inputs z; the qualitative variables
of Table (8.3) (thus m = 18,7 = 38). This leads to a matrix of qualitative information 145
days long, split into a balanced (in the sense of class frequencies) training part (the first 115,
79.3%) and test part (the subsequent 30 consecutive days, 20.7%) to be forecast. It should be
noted that the initially formed matrix (232 days long) had a portion of missing information
so severe that entire rows had to be removed because all information was missing. After that,
figures for missing information still are 57.8% in training and 56.9% in test. As a further
reference, the percentage of normal days (the majority class) in the test matrix is 73.3%.

Experiment 2: Reduced-Qualitative.

The previous results via rough set analysis are used in this second experiment as an attempt
to reduce the number of model input variables. This, besides being beneficial for the majority
of learning methods, will shed some light on the relevance of variables in relation to the TSS-
AT. The new matrices consist of the same days as in Experiment 1, though only 12 of the
original 38 model variables are to be used.

Experiment 3: Combined.

Aims at discovering how the variables in Table (8.3) behave when joined to five selected
quantitative variables: those corresponding to inflow characteristics (Q-AB, COD-AB, TSS-
AB) and control actions (Q-P and Q-R). These last variables are counted among the most
relevant of the overall process, according to their linear intercorrelation structure —see (§8.3).
Model parameters are thus (m = 23,7 = 48). The heterogeneous data matrix generated
covers the whole period of days since this time none had to be removed from the matrix,
although figures for missing information were 64.2% in training and 63.4% in test. It was
split into a training part (the first 191, 82.3%) and a test part (the subsequent 41 days,
17.7%) to be forecast. The percentage of normal days in the test matrix is 70.7%.

Experiment 4: Reduced-Combined.

The model of Experiment 3 is reduced, again via rough set analysis, leading to a model with
less variables and to much lesser missing information percentages, of 31.6% in training and
29.8% in test.

8.7.5 Experimental results

The displayed information includes average and best predictive accuracies obtained with each
method. Training information is also shown. For the rough set approach, this information is
given for every strategy and method, along with the number of rules generated.

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 246

Str. 1 (70 rules) | Str. 2 (72 rules) | Str. 3 (18 rules) TDynn TDuMLP TDpnN
Met. 1 [Met. 2 | Met. 1 [Met. 2 | Met. 1 | Met. 2 [[Best T Avg. | Best | Avg.
Train 75% 74% 79% 74% 69% 74% 87.0% | 82.2% | 86.9% | 82.2% | 76.5% |
Test 73.3% | 73.3% | 73.3% | 73.3% | 73.3% | 73.3% || 80.0% | 76.3% | 73.3% | 47.56% | 73.3% |
Train 78% 74% 79% 74% 67% 74% 85.2% | 81.5% | 82.6% | 81.3% | 83.5%
Test 73.3% | 73.3% | 73.3% | 73.3% | 73.3% | 73.3% || 76.7% | 75.4% | 76.7% | 70.2% | 16.7%

Table 8.5: Rough set approach and Neural approaches: correct classification percentages
for Experiment 1 (top two rows) and Experiment 2 (bottom two rows), along with the
number of rules needed.

Experiment 1: Qualitative

Beginning with the preliminary analysis, under the rough set approach, the relative reducts
and the core were computed. The dependency coefficient between the 38 model variables and
the predicted TSS-AT in the training set was found to be zero, indicating that no element
can be classified with absolute security and, therefore, that the set of variables is rather
incomplete. A total of 68 relative reducts were found, with a core composed of 11 variables.
The frequency distribution of variables in the reducts reveal that 12 do appear in 75% or more
of all the reducts; specifically, the 11 of the core plus an extra variable. On the other hand,
another 14 variables from the original set of 38 are superfluous (they occur in no reduct).
All this means that information dependency is unevenly distributed in the set of variables,
as 32% of them is conveying the major part, while another 37% is carrying no information.

The results of the rule generation process and the three neural approaches are given
in Table (8.5, top two rows) as percentages of correct classification. All the methods and
strategies are signaling the same prediction ability, 73.3%, which coincides with the majority
class. This poor performance is nonetheless reflecting the complexity of the data set, with
a high rate of missing values affecting all variables, and classes showing severe overlappings,
revealed by the null dependency coefficient. It is interesting to observe that Strategy 3 for
rule generation needed only 23% of the rules required by the other two while keeping the
same effectiveness. The result achieved by KNN is 76.7%.

For the neural methods, several aspects are noteworthy. First, the results are quite similar
and consistent both for training and test sets. In other words, no method clearly outperforms
the rest. Second, there seems to be a limit in training set accuracy around 87.0% and at
80.0% in test, which is not a bad result for such messy data. Also interesting to note are
the solid results achieved by the TDynn, the poor average achieved by the TDypp and the
comparatively good KNN performance.

Experiment 2: Reduced-Qualitative

In order to assess the viability of smaller models, a new data matrix was constructed as in
Experiment 1, using only those model variables ~twelve, see Table (8.6)- occurring most fre-
quently (in 75% or more) in the collection of reducts. Note in the table that selected variables

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 249

| Variable | Delay
Q-AB)
Q-AB t—1
COD-AB t—2
TSS-AB t—2

QR t—2
Q-R t—1
QP t—2
Q-P t—1

Nocardia t—2
Thiothriz/21N | t — 2
Aspidisca t—1
TSS-AT t—2
TSS-AT t—1

Table 8.8: Reduced set of combined variables.

in this plant (Nocardia and Thiothriz or type 021N) causing bulking sludge, and a protozoa
(Aspidisca), the absence of which may indicate a decrease in plant performance and poor
settling characteristics. It is also remarkable the fact that these three variables also appeared
in the previous reduced set of qualitative information, and are the sole survivors when mixed
with the numerical information.

And fourth, again, the predicted variable itself (TSS-AT) (at both delays) is considered
amongst the most informative. The behaviour of this model Table (8.7, bottom two rows) is
similar to that of the previous, in the sense that classification performances for training and
test sets are slightly less, showing that the effect of the 35 discarded variables was in fact
small. The result achieved by KNN is 63.4%.

Turning the attention to the neural models ~Table (8.7, bottom two rows)- it is inter-
esting to observe that the overall results are consistent with those obtained in the different
experiments, specially in what concerns the test set. Moreover, since the TDpny is asymp-
totically optimal in the sense of the Bayes classifier, this might indicate a limit in what is
achievable with the available information. Also, the fact that the TDynn model gives slightly
but consistently higher results and a more balanced training/test ratio than all of the other
methods has been observed in other application contexts and can be attributed to its better
treatment of missing values and qualitative information.

8.8 Conclusions

For the WWTP under study, three main aspects have been found that deeply characterize
the processes that are taking place. First, with the exception of the water discharge flow
(Q-P), actuation, outgoing and incoming variables are clearly distinguished from one an-

CHAPTER 8. A STUDY IN WASTEWATER TREATMENT PLANTS 250

other, reflecting an internal structure that must be taken into account during the search for
accurate models of the process. Second, the process dynamics introduce strong non-linear
distortions between incoming and outgoing variables. Third, these outgoing variables are sig-
nificantly related and, therefore, could be described by similar models. The used techniques
have shown capable to describe the behaviour of some of these processes in a statistically sig-
nificant sense, despite the imprecision associated to raw real-world information and the high
degree of incompleteness and fragmentation, due to the number of missing values and their
time distribution in many small chunks. The fact that the TDynyn model outperformed the
classical TDyy,p, suggests that it fits better the especial requirements posed by the WWTP
problematic. In all, acceptable prediction models are found that show the interplay between
variables and give insight to the dynamics of the process.

The influence of qualitative information on WasteWater Treatment Plants (WWTP) has
also been studied regarding the quality of efluent suspended solids, one of the measures of
plant performance. We found that qualitative information exerts a considerable influence on
the output, although very unevenly. A high degree of information redundancy was discov-
ered, since comparable predictive capabilities are obtained when working with much reduced
subsets of variables, obtained by rough set analysis. However, it should be noted that this re-
dundancy refers only to the prediction of bulking episodes in the process, and the use of these
variables is necessary to guarantee the performance of the entire activated sludge process.

The analysis produces homogeneous groups of variables; for qualitative variables only, it
signals the greater importance of 2-day delayed data in the process dynamics, instead of 1-
day data. When qualitative and numerical information are collectively considered, the latter
are found to be amongst the more informative, always in both delays. None the less, there
are certain qualitative variables (the intersection of Tables 6 and 9) playing a significant role
in the process. In both cases, these selected variables are highly rated by WWTP experts.
Theyv also tend to be the ones that show the lower amount of missing values, thus reducing
the relative overall amount.

In addition, a common upper-bound in predictive classification accuracy has been discov-
ered, located around an 80%, which is a very nice result for such messy data. In this respect,
our conclusion is that the generalized and (relatively) poor performance can be attributed
almost entirely to the data —besides to the problem complexity— in light of the consistent
results yielded by methods that are so different in nature; the fact that they are based on
very different principles allows to derive broader conclusions from the available data. The
possibilities of some of these methods (especially the TDynn) are also noteworthy, provided
they can handle heterogeneity, imprecision and missing values, aspects that characterize the
data in a real WWTP process.

In conclusion, the observed patterns of behaviour are very coherent. The next step should
be oriented towards adding information in the form of better delays (e.¢. the weekly effect)
and a more accurate selection of variables, guided by the findings reported herein. Ulterior
studies with data coming from other plants are needed to determine whether these patterns
are specific or represent a more general property of WWTPs. A further goal in the future
is the development of a predictive model for control variables (Q-P and Q-R). These models
will supply the plant manager with a useful tool to improve plant control and operation.

Chapter 9

Experimental Results on
Benchmarking Problems

Theory is something that is good, but a good experiment remains forever.

Peter L. Kapitsa

9.1 Introduction

In this Chapter we proceed to carry out an extensive experimental evaluation of the approach
on several well-known benchmarking problems. These problems are, for the most part, real
problems which have been used through the literature of pattern recognition in such a way
that they have become fairly standard. They have been included as a subject of study to
complement the results on real-world problems presented in Chapters (7) and (8). Moreover,
the fact that they are benchmarks permits a comparative estimate to related results found
in the literature of neural networks.

A preliminary set of experiments involving part of the studied data sets has been reported
in [Belanche, 00c]. In the present experiments, this work is extended by using more data sets,
a selection of different architectures, ten partitions of the data and a more comprehensive
analysis of the results.

The main source for information about the problems (the input/output examples along
with a description of their features) has been the well-documented Proben neural reposi-
tory {Prechelt, 94], which in turn is based on the large UCI repository of machine learning
databases [Murphy and Aha, 91]. Since these archives contain mostly classification tasks,
two additional regression problems are used.

The chosen problems have been selected as representatives because of their variety, which
shows in three aspects:

1. The diversity in the underlying kind of problem;

251

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 252

2. The richness in data heterogeneity and amount of missing information;

3. The varying degrees of domain knowledge.

In addition, the selected classification problems are among the hardest in the mentioned
repositories, in the sense that reported results consistently indicate a poor generalization
performance (about or superior to 20% of errors). Some of them have been found to be very
resistant to be learnt completely (that is, attaining a 0% of error in the training set).

Concerning the artificial problems, while it is generally true that the obtained results
cannot be extrapolated to real problems, their interest relies in that most of their features
can be precisely controlled (as the degree of non-linearity, number of irrelevant variables or
amount and type of noise). Hence, their inclusion is interesting because it permits evaluation
of the models over a wider variety of tasks and virtually eliminates the contingency of biasing
the experiments towards given classes of problems.

9.2 Problem description

9.2.1 General description

The problems in these archives were originally meant for general machine learning approaches;
in fact, most of them cannot be readily used by traditional neural systems because of the
presence of non-continuous or missing information. In all, they are representative of the kinds
of variables typically found in real problems, while displaying different degrees of missing
information (from 0% to 26%).

The following data sets are studied: the well-known Pima Diabetes, Horse Colic, Credit
Card, Heart Disease and Solar Flares taken from the Proben repository, Sinus-Cosinus from
{Bersini and Bontempi, 97} and SISO-Bench from [Su and Sheen, 92], for a total of seven
learning tasks!. These last two problems have continuous variables only, Solar Flares has
not any, and the other four display a good mixture of variables, and varying percentages of
missing information. Their main characteristics are displayed in Table 9.1,

There is also a documentation for all the problems —except for Credit Card- in what
regards the meaning of variables; this allows for a finer assessment of the more appropriate
treatment. There is hence an explicit transfer of knowledge from the domain knowledge to
the heterogeneous neuron model.

9.2.2 Detailed description
Pima Diabetes

The Pima Indians database contains relevant information to diagnose diabetes on a number
of female Indians. It consists of personal data and the results of medical examination. The

'The last two have been given a name here, for convenience.

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 253

Name Type #P Def. Missing Miss. #P In—Qut Data

Pima Diabetes C 768 65.1% 10.6% 48.8% 8 -2 6R, 0N, 2I

Credit Card C 690 55.5% 0.65% 5.4% 15 -5 2 6R, 9N, 0I

Horse Colic C 364 61.5% 26.1% 98.1% 20 —+ 3 5R, 5N,101

Heart Disease C 920 55.3% 16.2% 67.5% 13 - 2 3R, 6N, 4I

Solar Flares R 1066 - 0.0% 0.0% 9 -3 OR,5N,4l
R

Sinus-Cosinus 400 - 0.0% 0.0% 2—1 2R,0N,O0I
SISO-Bench R 500 - 0.0% 0.0% 21 2R,0N,0!
C classification R regression R real N nominal I ordinal

Table 9.1: Some basic characteristics of the data sets. #P: number of cases, Def.: default
accuracy. Missing: total percentage of missing values. Miss. #P: percentage of patterns
with at least one missing value. In—Out: number of problem inputs and outputs. The last
column shows original da,Pa heterogeneity.

task is to decide whether an individual is diabetes positive or not. Of the 768 records, 500
(65.1%) correspond to the negative case.

This data set is very interesting in the sense that a moderate number of values are zero.
They correspond to variables for which such value is physically impossible (e.g. diastolic blood
pressure or body mass). These values are most probably originally missing and consequently
treated as such. Of the eight variables, six are originally continuous and two are ordinal
variables (1. number of times pregnant and 8. age in years).

Particular comments: Two of the continuous variables (the less precise) are converted into
fuzzy numbers with a low fuzziness, estimated at a 0.5%, reflecting the uncertainty derived
from imprecise measurements. The ordinal variables have crisp boundaries and are thus kept
as such.

A description follows:

1. Number of times pregnant [ordinal]

2. Plasma glucose concentration [continuous]

3. Diastolic blood pressure (mm Hg) [continuous)

4, Triceps skin fold thickness (mm) [continuous]

5. 2-Hour serum insulin (mu U/ml) [continuous]

6. Body mass index (weight in kg/height in m?) [continuous — fuzzy number]
7. Diabetes pedigree function [continuous — fuzzy number]

8. Age (years) {ordinal]

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 254

Total: 4 continuous variables, 2 fuzzy numbers (0.5% fuzziness) and 2 ordinal variables.
Percentage of missing information: 10.6%.

Horse Colic

The Horse Colic database contains information to predict the fate of a horse that has a colic.
It consists of data coming from a veterinary examination. The task is to decide whether
an specimen will survive, will die or will be euthanized. Class distribution among the 364
records is 224 (61.5%), 88 (24.2%) and 52 (14.3%) for the three outcomes, respectively.

This data set shows a good variety of variable heterogeneity and a considerable amount
of missing information (one of every four values is absent). Of the twenty variables, five are
originally continuous, five are nominal and ten are ordinal variables.

Particular comments: Variables number 3 and 4 are ordinal because it makes much more
sense than consider them as continuous. This is confirmed by the fact that their measure-
ments are always natural numbers in the data set. Their crisp nature makes them ordinal
variables. However, there are a number of variables that, besides being clearly endowed with
an underlying ordering relation, also display a source of vagueness —coming from their subjec-
tive character— that has to be considered. This is the case of variables number 5, 6, 10, 11, 12
and 15. These are treated as linguistic variables by respecting the number and order of the
initially crisp linguistic terms. In absence of precise information, the cut points are set at the
0.5 level, as is usually done. An interesting case is variable number 13; it is treated as ordinal
-and not as linguistic— because the inter-value boundaries are crisp. A similar argument can
be said about variable number 8. In this case, though, there are only two possible values and
thus the order information cannot be used; it is then declared as nominal. Variable number
7 could also be ordinal but we are not aware of any order.

The continuous variables are converted into fuzzy numbers, in the same way than was done
for the Pima Indians data set, with a low fuzziness of a 0.5%. This means that, for example,
in variable number 2 (rectal temperature in degrees Celsius) an original measurement of 40°
degrees has a reasonable uncertainty of £0.2° degrees. Finally, the first variable is taken
as linguistic (and not nominal) because the inter-value boundary between the two possible
values (young or adult) is vague.

A description follows:
1. Age (young, adult) [ordinal — linguistic]
2. Rectal temperature (degrees Celsius) [continuous — fuzzy number]
3. Pulse (beats per minute) [ordinal]
4. Respiratory rate (times per minute) [ordinal]
5. (Subjective) temperature of extremities (cold, cool, normal, warm) [ordinal — linguistic]

6. (Subjective) peripheral pulse (absent, reduced, normal, increased) [ordinal — linguistic]

[

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 255
7. Mucous membranes color (normal pink, bright pink, pale pink, pale cyan, bright red,
dark cyan) [nominal]
8. Capillary refill time judgement (less than 3 secs., 3 or more secs.) [nominal]

9. (Subjective) pain estimation? (no pain/alert, depressed, intermittent mild pain, inter-
mittent severe pain, continuous severe pain) {nominal]

10. Peristalsis: gut activity (absent, hypomotile, normal, hypermotile) [ordinal — linguistic]
11. Abdominal distension (none, slight, moderate, severe) [ordinal — linguistic|

12. Nasogastric tube gas emission (none, slight, significant) [ordinal — linguistic]

13. Nasogastric reflux (none, less than 1 liter, more than 1 liter) [ordinal]

14. Nasogastric reflux PH [continuous — fuzzy number]

15. Rectal examination,of feces (absent, decreased, normal, increased) [ordinal — linguistic]

16. Abdomen (normal, firm feces in the large intestine, distended small intestine, distended
large intestine, other) [nominal]

17. Packed cell volume [continuous — fuzzy number]
18. Total protein (grs./dl) [continuous — fuzzy number]
19. Abdominocentesis appearance (clear, cloudy, serosanguinous) [nominal]

20. Abdominocentesis total protein (grs./dl) [continuous — fuzzy number]

Total: 5 fuzzy numbers (0.5% fuzziness), 3 ordinal variables, 7 linguistic variables and 5
nominal variables. Percentage of missing information: 26.1%.

Credit Card

The Credit Card database contains relevant information to predict the approval or rejection
of a credit card to a customer. It consists of personal data and economic conditions of bank
customers. The task is to decide whether an individual will be granted the credit card or
not. Of the 690 records, 307 (44.5%) are positive and the remaining 383 (55.5%) negative.

This data set is also very interesting because of the great heterogeneity in the data.
Of the fifteen variables, six are originally continuous and nine are nominal, and there are
nominal variables with small number of possibilities (just two) and with a large number (up
to fourteen). There is also a tiny amount of missing information.

Particular comments: For this dataset, the meaning of the individual attributes has been
kept confidential, so that there is no knowledge about existing orderings on discrete variables
or about the exact nature of numerical information. For this reason, all discrete variables are

2Documentation explicitly says not to treat this feature as ordered.

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 256

taken as nominal. A preliminary experiment was carried out in the original data, by treating
numerical variables as crisp or fuzzy numbers. A moderate amount of fuzziness (0.5%) was
used, in order to better assess its influence. The results showed a similar generalization
performance, with the fuzzy model showing a much better approximation ability, signaling a
possible source of uncertainty in the continuous variables. The decision is taken therefore in
favour of this last option.

Total: 6 fuzzy numbers (0.5% fuzziness) and 9 nominal variables. Percentage of missing
information: 0.65%.

Heart Disease

The Heart Disease database contains information to diagnose a heart disease by deciding
whether at least one of four major vessels is reduced in diameter by more than a 50%. It
consists of a mixture of personal data, subjective patient descriptions and the results of
several medical examinations. The task is to make a decision about “negative patients” (no
vessel is reduced) and positive ones (one or more vessels reduced). Of the 920 records, 411
(44.7%) correspond to negative patients and 509 (55.3%) to positive ones.

This data set is in fact obtained as the union® of four independent locations:

1. Cleveland Clinic Foundation (303 records)

2. Hungarian Institute of Cardiology, Budapest (294 records)
3. University Hospital, Zurich, Switzerland (123 records)

4. V.A. Medical Center, Long Beach, CA (200 records)

While the databases have 76 raw attributes, only 14 of them have been actually used in
past experiments (including the output one).

This data set shows also a very good variety of heterogeneity and a considerable amount of
missing information (16.2%), affecting most of the variables. Of the thirteen variables, three
are originally continuous, six are nominal and four are ordinal variables.

Particular comments: Similar arguments as those for Pima Indians and Horse Colic are
applied to this data set. Variables number 1, 8 and 12 are ordinal because it makes much
more sense than consider them as continuous, and the original measurements are always
natural numbers. Their crisp nature makes them ordinal variables. The other ordinal variable
(number 11) has not been converted to linguistic variable because the value boundaries appear
to be crisp. The imprecise continuous variable, number 10, is converted into fuzzy numbers
as usual, with a low fuzziness of a 0.5%. Variable number 6 is taken as nominal because again
we are not interested in the order, but in the distinction of the two possible values. Absence
of knowledge about possible ordering relations (not very likely, on the other hand) are the
reason to take variables 3, 7 and 13 as nominal.

3Thanks to Andras Janosi, William Steinbrunn, Matthias Pfisterer and Robert Detrano, members of these
institutions, for collecting the data.-

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 257

A description follgws:

10.
11.
12.

13.

)

. Age in years [ordinal
. Sex (male, female) [nominal

. Chest pain type (typical angina, atypical angina, non-anginal pain, asymptomatic)

[nominal]

. Resting blood pressure (mm Hg) [continuous]
. Serum cholesterol (mg/dl) [continuous]
. Fasting blood sugar (less or more than 120 mg/dl) [nominal]

. Resting electrocardiographic results (normal, ST-T wave abnormality, left ventricular

hypertrophy) [nominal]

. Maximum heart rate achieved [ordinal]

. Exercise induced angina (yes, no) [nominal]

ST depression induced by exercise relative to rest [continuous — fuzzy number]
Slope of the peak exercise ST segment (downsloping, flat, upsloping) [ordinal]
Number of major vessels colored by flourosopy [ordinal]

Heart test (normal, fixed defect, reversable defect) [nominal|

Total: 2 continuous variables, 1 fuzzy number (0.5% fuzziness), 4 ordinal and 6 nominal
variables. Percentage of missing information: 16.2%.

Solar Flares

The Solar Flares database contains information relevant for the prediction of solar activity.
The task is to guess the number of solar flares of small, medium and large size that will
happen during the next 24-hour period in a fixed and active region of the surface. The
database consists of variables describing previous solar activity and the type and history of
the region.

The distribution of the 1066 records is as follows:

0 1 2 3 4 5 6 7 8 Total
C-class flares 884 112 3320 9 4 3 0 1 1066
M-class flares 1030 29 3 2 1 0 1 O O 1066
X-class flares 1061 4 1 0 0 0 0 0 O 1066

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 258

This data set_is interesting in that there is no continuous information. Of the nine
variables, five are nominal and four are ordinal variables. In addition, the information is
complete. Notice that 81% of the cases are zero in all three output values. We have removed
original attribute number 10, which happened to be constant for all the records.

Particular comments: The ordinal variables, as in other data sets, have been considered as
linguistic because they represent subjective appreciations.

A description follows:
1. Code for class (modified Zurich class) (A,B,C,D,E,F,H) [nominal]
2. Code for largest spot size (X,R,S,A,H,K) [nominal]
3. Code for spot distribution (X,0,1,C) [nominal]
4. Activity (reduced, unchanged) [ordinal — linguistic]
5. Evolution (decay, stationary, growth) [ordinal — linguistic]

6. Previous 24 hour flare activity code (nothing as big as an M1, one M1, more activity
than one M1) [ordinal — linguistic]

7. Historically complex (yes, no) [nominal]

8. Did region become historically complex on this pass across the sun’s disk (yes, no)
[nominal]

9. Area (small, large) [ordinal — linguistic]

From all these features three classes of flares are predicted, which are represented in the
three outputs:

e C-class flares production. Number in the following 24 hours (common flares)
e M-class flares production. Number in the following 24 hours (moderate flares)

e X-class flares production. Number in the following 24 hours (severe flares)

Total: 5 nominal and 4 linguistic variables. Percentage of missing information: 0.0%.

The following two tasks are characterized by a lack of data heterogeneity ~the two variables
are perfectly continuous— and the absence of missing information.

Sinus-Cosinus

This task is a two-dimensional benchmark function cited in [Bersini and Bontempi, 97], where
it is used for the comparison of several multimodeling approaches. It is defined as:

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 259

f:-,+1P >R
where
f(z1,x2) = 4sin(mwzy) + 2cos(mzq) + N(0,0.5) (9.1)
with N(0,0.5) a normal noise with zero mean and 0.5 standard deviation.

A learning data set of 400 input/output pairs is constructed by uniformly sampling the
domain [-1,+1]%

Total: 2 continuous variables. Percentage of missing information: 0.0%.

SISO-Bench

This task is included as a representative of a continuous non-linear system identification
problem (Single-input/Single-output), out of a number of points obtained by consecutively
sampling the function dynamics. It has been used as a two-dimensional benchmark function
elsewhere [Su and Sheen, 92, De Falco et al., 97]. It is defined as:

y(k) = y1(k — 1) 4+ y2(k - 1)

where

n(k) = 2.5y(k)8in[7re"“2(k)"y2(k)]v
pa(k) = (R4 ()] 02)

The output y(k) depends on the previous input u(k — 1) and on the previous output
y(k = 1). A learning data set of 500 input/output pairs is constructed by setting y(0) = 0
and randomly exciting the system using a signal w(k) uniformly drawn from [~2.0, 2.0].

Total: 2 continuous variables. Percentage of missing information: 0.0%.

9.3 Experimental methodology

Comparability of the obtained results is assured by the fact that all the experiments are per-
formed in exactly the same experimental conditions, in what regards to the general method-
ology, training procedure and original data sets. We have also made an effort to supply all
relevant information, so that the experiments can be reproduced or extended. The method-
ology followed is in general accordance with suggested guidelines for neural network training
experiments and presentation of results [Flexer, 95].

9.3.1 General methodology

The network architectures are fixed to one single layer of h; neurons plus as many output
units as required by the task, sigmoidal for classification problems and linear otherwise.

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 260

The explored architectures are those with h; € {4,8,12,16} neurons in the hidden layer.
The intention here is not to search for the best model (in the sense of the best number of hid-
den layers and units per layer), which would need a full model selection process [Moody, 94].
Rather, the intention is to show how the results are consistent across different reasonable
choices for the architecture. In addition, the obtained results could surely be improved by
several means; for instance, using other error measures for classification problems (as the
cross-entropy, the number of misclassified examples or a combination thereof). There is also
the possibility that a more powerful form of evolutionary algorithm (as Evolution Strategies)
or even a method based on derivative information could outperform the one used in these
experiments. None the less, these are factors external to the neuron models, having to do
with the learning algorithm.

The training methodology used is a simplified form of nested k-fold non-stratified cross-
validation [Ripley, 92]. Non-stratified means that there is no guarantee that the folds are
balanced with respect to the classes —in case it is a classification task— or to any other
criterion. This can lead to significatively different results for the various partitions. To
avoid predetermined initial arrangements, the data sets are randomly shuffled prior to the
application of the methodology. Early stopping is used in conjunction with this technique
because is simple and has been reported to be superior to regularization methods in many
cases (e.g. [Finnof, Hergert and Zimmermann, 93]).

The basic idea behind k-fold cross-validation (CV) dates from the early seventies
[Stone, 74]. Cross-validation is a very general framework using no special model assump-
tions. Although it cannot “validate” a model, it gives an unbiased estimate of generalization
ability. The entire data set in divided into k pieces (the folds); one of them is kept for vali-
dation and the remaining k — 1 are used for training. This is repeated k times changing the
validation fold, and the results on these folds are averaged. Common values for k are 5 or 10.

The main advantage of using these resampling techniques is that they do not depend
on assumptions on data statistics or on specific forms or properties of the approximating
functions (i.e., by the different neural networks). Among their problems —besides the high
computational demands— are the high variability and the need of a third and independent
group of data to assess the actual performance of the models (since the method is biased to
the validation data) and the difficulty to establish a stopping criterion for the training parts.
The need for a third, test set, comes from the fact that, since the validation set is used in the
training process, its error is not a reliable estimate of generalization error and can also lead
to some overfit in the validation data. The obvious solution, consisting in holding back this
third test set is data wasteful, since it should be sufficiently large, to be of any use.

The idea of nested or double cross-validation again dates from the seventies
[Mosteller and Tukey, 78], and works as follows: divide the whole data set into k; pieces,
keeping each back in turn for independent testing, and using the rest for ko-fold CV. This
fits k1ko models. If we use one of the k; pieces for test, one for validation and the remaining
ky — 2 for training, this is equivalent to set ko = k; — 1, so that a total of ky(k; — 1) fits are
to be done.

This scheme has two advantages. First, it offers a test set, different for each partition, not
used in its corresponding training process, on which to estimate generalization performance.

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 261

Repeated use of a single test set for evaluating different models can lead to an overestimation
of performance of a particular method; hence, retaining multiple test sets is a prudent measure
[Fiesler and Beale, 97]. It also offers a validation set to be used to stop training, following
a determined user criterion. The measured error on the unseen test set is then an unbiased
estimate of generalization error [Cherkassky and Mulier, 98]. Second, it exploits available
data to a greater extent than CV, and the size of the validation and test folds can be made
equally balanced and more significant in size than would have been in a 10-fold CV (only
10% of the data), so that the error generalization estimate is more accurate. In particular,
[Michie, Spiegelhalter and Taylor, 94] recommend to hold back approximately a 20% of the
data for testing.

Early stopping is used in conjunction with cross-validation as follows. The network is
trained on the training part while keeping track of the best validation error. In each fit, the
network can be trained to convergence or to end of resources. Both criteria can be utilised in
general, regardless of the particular training algorithm, or else they can be combined. In the
present case, we use the convention introduced in Chapter (6), given by a maximum number
of error function evaluations. Strictly speaking, there is no early stopping here because
the process is not halted when a minimum of the validation error is attained. Rather, the
networks are always trained to end of resources because we are interested in assessing both
the ability to approximate and the ability to generalize of each model. After the process has
ended, the first measure is given by the final error attained on the training part, while the
second is given by the error on the test part using the network that produced the lowest error
in the validation part. Incidentally, this scheme avoids the problem of deciding when to halt
training in an early stopping process [Prechelt, 98].

In general, the number of resulting fits F'(k) is obtained by considering the possible ways
of selecting 2 sets (test and validation) out of & parts of the entire data set, and where the
order of the former two is important. That is,

F(k) = 2(’;) = k(k - 1)

In these experiments, we work out a simplification to avoid an excessive computational
overhead, by performing only a number of the computations involved. In particular, we set
k = 5, so that three folds go for training, one for validation and one for the test (thus forming
60%-20%-20% partitions). A representative half (ten possibilities) of the total amount (F(5)
or twenty) can be obtained by selecting a balanced subset of combinations such that each
of the 5 folds appears twice as a validation fold, twice as a test, and 6 times (three times
two) in one of the three training positions. It is also ensured that no two training parts are
generated out of the same three folds but in a different order. This could certainly make a
difference for learning algorithms that are dependent on the order of presentation of training
data (such as on-line versions of backpropagation). It is not an issue here because the BGA
is insensitive to such order.

The resulting method is analogous to simple 10-fold CV in what regards the amount of
computation and number of fits, and allows the use of both validation and test sets, making
full treatment of the data available. For each of the ten selected partitions, ten runs are

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 262

carried out, varying the random initial population of the BGA. This means that a total of
100 fits per dataset, architecture and model are performed.

9.3.2 Models tested

For each architecture and data set, three instances of the general heterogeneous neuron
model are compared. Two of them correspond to the P-neuron and R-neuron commonly
used in MLP and RBF networks, respectively, as defined in Chapter (2.1.2). These will be
generally referred to as the standard or classical models. The third neural model is obtained
by application of the proposed approach in accordance with the decisions taken in (§9.2.2).
This one will be simply referred to as the H-neuron. Specifically, given an input pattern &
the models compute the following functions F;(Z):

P-neuron The standard scalar-product neuron plus a bias weight, using a logistic as acti-
vation function:

Fi(&) = g(Z - i + 6;) (9.3)

where 0; is the weight vector of neuron i, g(z) = %ﬁ’—f 4 0.5 is a sigmoidal similar to

the logistic (though smoother and cheaper to compute) and 6; is the bias weight.

R-neuron A radial basis function neuron based on Euclidean distance, followed by a Gaus-
sian with its own variance (to be learned) as activation function:

Fi() = 9(l|F - will2) (9-4)

©

z

Nj—
q

where g(z) = e *° and o? is the variance.

H-neuron An heterogeneous neuron model based on the measure in (§4.4.1) (with spe, = 1),
obtained as a simple additive similarity aggregation operator, followed by a non-linear
similarity-keeping or § function, acting as a logistic activation function by adapting it
to the real domain [0, 1]. The neuron model is as follows:

>kt Sk(Th, wik) Ok (Z, u')',')) (9.5)

Fi()=3 —
@) (> k=1 Ok(Z, i)
1 farZ2XAy #V
0 otherwise

k)

where §(z) = ¢(z,k) (4.74) with k£ = 0.1, and &(Z,9) = {
being A" the missing information symbol.

The partial similarities s; between the variables are computed using the partial sim-
ilarity measures defined in (4.3), chosen accordingly to each data set as described in
(§9.2.2). Specifically, the partial measures used are those defined in (4.52) for contin-
uous variables (using d = 1, = 4) —corresponding to the function S0.3 in the table
of similarity transforming functions (4.1). For ordinal, nominal, fuzzy and linguistic

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 263

variables, their scores can be computed b;r using the measures in (4.46), (4.45), (4.60)
and (4.63), respectively.

The expression (9.5) is an example of a similarity index designed out of partial measures
of two basic types, distance-based (continuous, ordinal, nominal), and direct (fuzzy
numbers and linguistic variables), whilst the RBF (9.4) and MLP (9.3) models are
examples of measures purely of type (A) and (C), respectively —see (§4.2.4).

We define the network complezity as the number of network free parameters. In general,
this quantity depends on the number 7 of model inputs (per unit) and the number and
disposition of the units. In our present study, given a network with a hidden layer of A
neurons and an output layer of m P-neurons, the complexity p of a network is given by:

For the standard models, # = n; + 1, where n; is the number of standard model inputs.
For the heterogeneous rieurons, #i = n, + n, + n, + 2ny 4 4n,, being n,,n,, 0., ng, Ny the
respective cardinalities of the different data types, as defined in (§4.4), for each considered
problem. Their sum corresponds to the number of heterogeneous model inputs.

9.3.3 Data preparation

The original information is the same for all the models. The decisions taken concerning the
type of each variable is valid for the three models. In other words, the type is decided by
the variable itself. Then, each of them treats this information in its own particular way
until it finally yields performance results. The real-valued input variables are normalized to
[0, 1]. This is not needed by the H-neuron because it computes a normalized measure, but is
beneficial for the standard models. The output is not normalized.

The corresponding data sets for the standard neurons are constructed using the more
widespread and possibly less distorting techniques of those explained in (§2.1.9). Specifically,
ordinal variables are mapped to an equidistant linear scale, a 1-out-of-k encoding is used for
nominal ones and an extra input is added for those variables with missing values.

The weights (including biases and standard deviations) for the classical models are let to
vary in [~10, 10}, a sufficiently wide range given the normalization chosen and the number of
hidden neurons; the same interval is used for the hidden-to-output weights in all the networks.

9.3.4 Training procedure

The training procedure used is the Breeder Genetic Algorithm (BGA) developed in Chapter
(6). It is used with exactly the same parameter setup for all the experiments, regardless of the
architecture, data set or neuron model, to exclude this source of variation from the analysis.
The BGA task is to minimize MSE (mean square error) on the training part, until 30,000
error evaluations are used -end of resources— in each run. As commented, ten independent
runs are performed for each specific training scenario.

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 264

The BGA is set to the following parameters: p = 100, 7 = 25, EIR recombination with
d = 0.45, and continuous mutation with p = 0.5,k = 8, following the recommendations for
ANN optimization found in Chapter (§6), concerning possible parameter sets and genetic
operators. For ordinal variables, Line Recombination (LR) is used. A total of 300 (=
30,000/100) generations are carried out in each run.

9.4 Results

9.4.1 Presentation of results

For each tested model, the main reported quantity is the mean normalized mean square error
(NMSE) given in (7.2), plus/minus one normalized standard deviation, in the usual form.
This measure gives an impression of how good a result is and, being normalized, permits the
comparison across different data sets. Reasonable values are to be expected in [0, 1]. Values
lower than 0.5 indicate fair fits. Good fits are approximately signaled by values lower than
0.1, whereas values greater than 1.0 indicate a poor performance. A value of 1.0 actually
indicates a model as good as the average predictor ; =< §; > in (7.2).

For simplicity, let X in {TR, VA, TE} stand for a training, validation and test part,
respectively. A summary of displayed information follows:

NMSE (X) Mean NMSE across the 100 fits in part X.
% (X) Mean classification accuracy across the 100 fits in part X.
NMSEDb (X) Mean of the best NMSE found across the 10 partitions in part X.

%b (X) Mean of the best classification accuracies found across the 10 partitions in part X.

The full results are presented in table format at the end of the Chapter. For every
model, the first two columns of a table correspond to training results, computed using the
net found at the end of the training process, and collectively measure the approximation
ability of the studied model. Shown are NMSE (TR) and % (TR) (mean performance)
and NMSEb(TR) and %b(TR) (mean of best performances). The training results are
included to assess the extent to which the different models can approximate the training set
(towards the theoretical, though in general undesirable optimum of 100% accuracy or a null
square error). Mean classification accuracies are shown where appropriate.

The next two columns stand for the same information relative to test. The shown values
for NMSE (TE), % (TE), NMSEb (TE) and %b (TE) are computed using the net
found, at any time of each training process, having the lowest NMSE in the VA part, and
collectively measure the generalization ability of the model. The estimations (very likely
to be optimistic) for the VA part are not shown. All mean NMSE values are displayed
plus/minus one normalized standard deviation, as indicated, in the format f + %, where
ft, & denote the sample mean and sample standard deviation over the number of samples
n = 100. These values are the confidence intervals: with 99% probability, the true value

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 265

fo the observed mean will be within g 4 2.58—5';; with 95% probability, it will be within

it 1.96%. Confidence intervals allow to compare the results of two different methods
to the same data. Roughly speaking, if the two intervals are non-overlapping, there is a
statistically significant difference between the two means; otherwise, an adequate test should
be performed [Flexer, 95]. In our case, we will carry out a Mann-Whitney non-parametric
test on performance data [Steel and Torrie, 80].

The most important quantities are undoubtedly NMSE (TE) and % (TE), (the third
column) which indicate the average performance of the models in terms of generalization
ability. They are representative of what can be expected of a single run in an undetermined
partition. The values NMSEb (TE) and %b (TE) (the fourth column) are indicative of
what can be achieved on average in a modest number of runs (ten).

Also shown are the mean initial and final similarities ﬁ;, ,[ff, measures of network sensitiv-
ity, computed as in (4.90) for the initially random and finally trained networks, respectively,
and the network complexity —as number of model inputs # and number of free network pa-
rameters p (the latter in parentheses)— computed according to (9.6). Recall that the number
of problem inputs was shown in Table (9.1).

9.4.2 Summary of results

In general, performance results can be measured across a handful of coordinates: generaliza-
tion ability, model complexity, readability and computational cost.

The obtained generalization results for all architectures, data sets and models explored
are summarized as follows:

1. In Table (9.2), for the networks corresponding to the three studied neuron models,
the obtained NMSE (TE) values are tested for significance under a Mann-Whitney
non-parametric test [Steel and Torrie, 80]. Each entry t[¢, j] in the table expresses the
number of significant tests, with the hypothesis “¢ is less than j”, performed for the
three models on all combinations of data sets and architectures.

P-neurons | R-neurons | H-neurons
P-neurons - 16 (57.1%) | 3 (10.7%)
R-neurons | 12 (42.9%) - 8 (28.6%)
H-neurons | 25 (89.3%) | 20 (71.4%) -

Table 9.2: Number of significant Mann-Whitney tests for “less than” at the 95%
confidence level, among the total performed.

The total number of tests between any two neuron models is n; = 7 x 4 = 28 (7 data
sets and 4 architectures). Note that ¢[i, j] + t[j,?] = ny,7 # j. The percentage (w.r.t.
ng) is given in parentheses.

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS

266

2. In Table (9.3), the results are summarized for the different data sets, averaged over the

four architectures.

Problem P-neuron | R-neuron | H-neuron
Pima Diabetes || 0.6916 0.7738(*) | 0.7001
Horse Colic 0.9255(*) | 0.7137 0.7246
Heart Disease || 0.6611(*) | 0.5857 0.5813
Credit Card 0.6768 0.7397(*) | 0.5330
Solar Flares 1.1816(*) | 0.8553 0.9374
Sinus-Cosinus || 0.0830 0.3839(*) | 0.0424
SISO-Bench | 0.0218 | 0.1145(*) | 0.0234

Table 9.3: Results for each data set, averaged over the four architectures. An
asterisk (*) means the result is clearly worse than any of the other two, in the
sense that, for all of the four architectures, Mann-Whitney tests for “greater than”
are significant at the 95% level, w.r.t. both of the other two models.

For these difficult data sets, there is no result outstandingly better than the other two.
As it can be seen, the cornerstone of the networks grounded on H-neurons relies in its
good average behaviour. The results for these networks are never the worse of the three
(that is, they are always one of the better two) but are the best in 3 out of 7 data sets.
When second best, they are close to the best one.

3. Additionally, in Table (9.4), the results are summarized from the perspective of the
architectures, averaged over the seven data sets (this makes sense because the errors |

are normalized).

Architecture || P-neuron | R-neuron | H-neuron
4 hidden 0.5757 0.6115 0.5056
8 hidden 0.5801 0.5966 0.4991
12 hidden 0.6160 0.5880 0.5037
16 hidden 0.6455 0.5850 0.5157

Table 9.4: Results for the architectures, averaged over the seven data sets.

In this last table an interesting side remark can be made, concerning the way the
different networks behave w.r.t. the number of hidden units.

e The generalization ability of the MLP (based on P-neurons) tends to be worse
with increasing numbers of hidden units.

e The generalization ability of the RBF (based on R-neurons) tends to be better
with increasing numbers of hidden units.

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 267

e The HNN (based on H-neurons) does not show a definite trend. In a sense, it
looks more stable, though this effect should be investigated in detail in further
experiments.

Concerning the network sensitivities (expressing average similarities across all patterns
and hidden neurons), there is much information contained in the initial estimation 3; (ran-
dom, untrained networks) and final 4 ¢ (trained networks), telling us about the nature of the
involved nets:

1. As could be expected, for all neuron models (P, R and H), the B; yield the same value
for same problems, regardless of the number of hidden units. In particular, for the
P-neuron model, these values (in all cases shown rounded to the third decimal) are the
same for all data sets (and approximately equal to 0.5).

2. Concerning the final value for the P-neurons, it shows an increasing trend with in-
creasing numbers of hidden units. The specific values taken are dependent on the data
set.

3. Regarding the initial value for the R-neurons, it always begins at a very low value,
reflecting the initially random placement of the RBF centers in input space. The final
values follow an inverse trend compared to the P-neurons, decreasing with increasing
numbers of hidden units, since neurons in a bigger network can be more specialized.

In general, though, the 8 s are always substantially higher than the B:, showing the
effect of the learning process, which has placed the centers in locations where they yield
a significant response, according to the probability distribution of the training set.

4. The H-neurons do not follow any particular trend with changing numbers of hidden
units. Rather, the final values attained are found to be reasonably similar, as if
there were a preferred range of values for each data set. Specifically, these ranges are:
[0.202,0.226] for Pima Diabetes, [0.103,0.137] for Horse Colic, [0.126,0.195] for Credit
Card, [0.411,0.421) for Heart Disease, {0.050,0.052] for Solar Flares, [0.330,0.336] for
Sinus-Cosinus and [0.286, 0.335] for SISO-Bench.

This behaviour is specific of the HNN (the other two models are also within given
ranges, but these are wider and, as stated, show definite monotonic trends).

Concerning the network complexities, these are lower for the HNN (sometimes sub-
stantially), while the MLP and RBF have equal numbers. It can be argued that, in some
problems, the number of network free parameters p, could well be comparable to that of the
classical models, and even exceed it, specially in the presence of linguistic variables, although
this does not happen in any of the studied datasets. Nonetheless, this would stand to reason;
in the case of linguistic variables, for example, the variable is actually expressing a vague
concept, and this requires a representation with four (or whatever number) real parameters.
Yet, this is not an encoding, but the parameters themselves characterizing the variable. Be-
sides, they are all treated as a whole by the neuron model and the learning algorithm, and
not as separate, independent entities.

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 268

The influence_of having high numbers of network parameters is seen in the results in
various places, as a manifestation of the curse of dimensionality: first, it shows in the obtained
zeros in the RBF results for §; for Horse Colic and Credit Card (the actual values are on
the order of 107%). These two are, by large, the data sets with a bigger number # of input
dimensions (54 and 51, respectively). As a consequence, for these data sets, the input space
is initially seldom sampled.

Second, for 16 hidden units, the effect begins to come into play in the training process
itself. The increase in free parameters leads to values p = 931 for Horse Colic and p = 866
for Credit Card. In general, a bigger number of parameters is less likely to be properly
constrained by a limited size data set [Bishop, 95]. The number of training patterns is 182
and 345, respectively. This translates in the quality of the training results, which for Horse
Colic are worse than those with 12 hidden units, for the MLP, and about the same for the
RBF. The HNN (p = 787) still gives a somewhat lower error than for 12 units. For the
Credit Card problem, analogous results are obtained: both MLP and RBF networks give
worse results, contrary to the HNN, having only p = 370 parameters.

The readability of the obtained solutions is illustrated in Table (9.5) as follows. We
show the heterogeneous weights of a hidden neuron taken at random from one of the hundred
networks delivered by cross-validation for the Horse Colic problem. This task is chosen
because it displays a good amount of heterogeneity —see (9.2.2) for a description of the
variables.

The (triangular) fuzzy numbers are shown in numerical form —rounded to one decimal-
for clarity. Note how the obtained linguistic terms are symmetric, a characteristic found by
the network itself. Although it would require an expert judgement, by looking at the obtained
weights, the neuron could be regarded as the soft prototype of a somewhat “standard” young
horse, showing values within normal tolerances for the considered variables.

An added advantage comes from the fact that we know how this information is used by
the neuron to yield an output value s in presence of an input vector Z: s is a similarity degree
in [0, 1] between & and the weights w°, whose precise form is set a priori by the network
designer. Particular choices for the similarities between the different data types were chosen,
and the overall result is, in this case, the average of their outcomes. This permits to assign
a well-defined meaning to a neuron outcome and at the same time to interpret the trained
network in the original input domain (e.g., a set of measurements about horses).

In contrast, the weight vector for a hidden P-neuron or R-neuron consists for this problem
of 467 real numbers in the interval [—10,10]. That is, for these neurons all values are inde-
pendently and equally treated, in the form Zj w;;z; and Zj(“’ij — z;)?, respectively, where
&, are points in R*7,

The computational cost associated to each neuron model is estimated as follows. From
the total CPU time of each training session (for all data sets and architectures) the total time
taken by a hidden neuron is computed, normalizing by the number of patterns, and averaging
across the different data sets. The resulting quantity is then divided by the number of times a
neuron is asked to process the entire data set which, in this study, amounts to 10 x 10 x 30, 000
(10 folds, 10 runs per fold, 30,000 data set evaluations per run). The obtained quantities are

»

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 269
| Name - Type Value
AGE
1| Age linguistic yf)ung adult
2 | Rectal temperature (celsius) fuzzy number 37.3+2.1
3 | Pulse (beats per minute) ordinal 70
4 | Respiratory rate (times per minute) ordinal 64
TEMPERATURE :
5 | (Subjective) temperature of extremities | linguistic il oo sorm warm
PERIPHERAL PULSE
'X% >< ! H
6 | (Subjective) peripheral pulse linguistic absent reduced nomal increased
7 | Mucous membranes color nominal normal pink
8 | Capillary refill time judgement nominal less than 3 secs.
9 | (Subjective) pain estimation nominal no pain/alert
PERISTALSE
10 | Peristalsis: gut activity linguistic dbsent bypomotile normal - hypermotile
ABDOMINAL DISTENSION
11 | Abdominal distension linguistic rone slight moderate - severe
NASOGASTRIC EMISSION
12 | Nasogastric tube gas emission linguistic none slight significant
13 | Nasogastric reflux ordinal none
14 | Nasogastric reflux PH fuzzy number 2.1+£03
FECES EXAMINATION
L XX X
15 | Rectal examination of feces linguistic sbsent dectesed no;mnl incr;nsed
16 | Abdomen nominal distended small intestine
17 | Packed cell volume fuzzy number 34.1+£3.1
18 | Total protein (grs./dl) fuzzy number 73.6£19.8
19 | Abdominocentesis appearance nominal cloudy
20 | Abdominocentesis total protein (grs./dl) | fuzzy number 14+14

Table 9.5: Heterogeneous weights of a hidden neuron corresponding to one of the networks
obtained for the Horse Colic problem.

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 270

reported in Table (9.6), as the average number of CPU milliseconds that a hidden neuron
takes to evaluate one pattern of the training set, across all the data sets®.

P-neuron | R-neuron | H-neuron
time (ms) || 0.00125 0.00184 0.00175

Table 9.6: Average number of CPU milliseconds that a hidden neuron takes to evaluate one
pattern of the training set.

It has to be noted that the activation function used by the P-neuron (9.3) was chosen
for its cheap cost (it only involves a division as a non-trivial operation) against the classical
logistic (which involves an ezp operation and a division). The R-neuron (9.3) uses a Gaussian
activation involving the costly ezp operation. The H-neuron uses (9.5) uses a cheap (4.74)
as activation (involving only a division as a non-trivial operation) thus comparable to that
of the P-neuron. However, some of the partial similarities are almost free (e.g. for nominal
variables) while others are costly (e.g. for linguistic ones). For ordinal and real-valued
variables, implying a subtraction and a division, the cost is comparable to the P-neuron,
since the normalization factors for the distances (the denominators), being constant, can be
pre-calculated in the form of its inverses (thus converting the division to a multiplication).

9.5 Detailed results

The complete results follow. They are displayed in Tables (9.7). to (9.34) for the different
data sets, architectures and models explored.

*The machine used for the experiments is a dedicated SUNT™ Enterprise E-250 (2 CPU ULTRA-SPARCI!
at 400Mhz, 128Mb RAM), rated at 16.8 SPECint95 and 13.5 SPECint.base95 marks.

»

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS

Neuron NMSE NMSEDb NMSE NMSEb B; A
Model % (TR) %b (TR) % (TE) %b (TE) || 8¢ (p)
P-neuron || 0.5296 + 0.0036 | 0.5095 0.6759+0.0109 | 0.6119] 0.500 | 13
80.93 83.16 75.05 78.56 0.229 | (66)
R-neuron || 0.7714 £ 0.0035 | 0.7300 0.7856 + 0.0060 | 0.7464 || 0.022 | 13
69.31 73.20 68.82 72.75 0.271 | (66)
H-neuron || 0.5068 £ 0.0038 | 0.4839 0.6826 L 0.0004 | 0.6342° | 0.191 | 10
82.43 83.85 75.13 77.91 0.226 | (50)
Table 9.7: Problem: Pima Diabetes. Architecture: 4 hidden.
Neuron NMSE NMSEDb NMSE NMSEDb B; f
Model % (TR) %b (TR) % (TE) %b (TE) || 8 (p)
P-neuron || 0.5042+ 0.0035 | 0.4805 0.6777+0.0102 | 0.6258 [0.502 | 13
82.00 ° 83.55 75.08 78.17 0.272 | (130)
R-neuron || 0.7567 & 0.0036 | 0.7143 0.7724+0.0060 | 0.7319 || 0.022 [13
70.50 74.46 70.14 73.86 0.176 | (130)
H-neuron || 0.4609 + 0.0037 | 0.4360 || 0.6885+0.0110 | 0.6312 || 0.191 | 10
84.69 86.30 75.27 78.04 0.212 | (98)
Table 9.8: Problem: Pima Diabetes. Architecture: 8 hidden.
Neuron NMSE NMSEb NMSE NMSEb B; 7
Model % (TR) %b (TR) % (TE) %b (TE) | 8 ()
P-neuron || 0.4919+ 0.0034 | 0.4659 0.7012+£0.0121 | 0.6407 | 0.501 | 13
82.82 84.63 74.71 78.10 0.326 | (194)
R-neuron || 0.7514 £ 0.0036 | 0.7117 0.7677 £0.0059 | 0.7251 0.022 | 13
71.06 74.70 70.55 74.12 0.125 | (194)
H-neuron || 0.4393 & 0.0040 | 0.4081 0.7082 £ 0.0127 | 0.6495 0.191 | 10
85.67 87.38 74.71 77.52 0.202 | (146)
Table 9.9: Problem: Pima Diabetes. Architecture: 12 hidden.
Neuron NMSE NMSEDb NMSE NMSEDb B; 7l
Model % (TR) %b (TR) % (TE) %b (TE) || 5 (p)
P-neuron || 0.4909 % 0.0037 | 0.4638 0.7115+0.0124 | 0.6466] 0.501 | 13
83.10 85.04 75.12 78.37 0.373 | (258)
R-neuron || 0.7535+ 0.0036 | 0.7142 0.7695 £ 0.0055 | 0.7336 || 0.022 | 13
70.88 74.50 70.42 73.92 0.106 | (258)
H-neuron || 0.4244 £ 0.0038 | 0.3945 0.7210 £ 0.0135 | 0.6536 | 0.191 | 10
86.48 88.29 74.58 77.39 0.202 | (194)

Table 9.10: Problem: Pima Diabetes. Architecture: 16 hidden.

271

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS

Neuron NMSE NMSEb NMSE NMSEb B; f
| Model % (TR) %b (TR) % (TE) %b (TE) || 3, (p)
P-neuron || 0.3317 £0.0052 | 0.2599 || 0.8035+0.0089 | 0.7190 | 0.498 | 54
85.71 89.50 62.69 67.22 0.389 | (235)
R-neuron || 0.6887 & 0.0046 | 0.6441 0.7228 £0.0051 | 0.6941 || 0.000 | 54
65.01 68.95 63.57 65.97 0.168 | (235)
H-neuron || 0.4734+0.0031 | 0.4357 || 0.7196-+0.0060 | 0.6717 | 0.080 | 46 _
79.20 81.95 64.65 69.86 0.137 | (199)
Table 9.11: Problem: Horse Colic. Architecture: 4 hidden.
Neuron NMSE NMSEb NMSE NMSEb B; A
Model % (TR) %b (TR) % (TE) %b (TE) || 5 (p)
P-neuron || 0.3128 £ 0.0065 | 0.2218 || 0.92604+0.0112] 0.8026 || 0.499 | 54
85.45 91.59 62.32 67.64 0.444 | (467)
R-neuron || 0.6667 %+ 0.0031 | 0.6434 || 0.7091 £ 0.0050 | 0.6893 || 0.000 | 54
66.55 68.86 64.25 66.39 0.110 | (467)
H-neuron || 0.3970 % 0.0027 | 0.3668 || 0.7179 £0.0073 | 0.6509 || 0.080 | 46
83.86 86.55 65.67 70.69 0.119 | (395)
Table 9.12: Problem: Horse Colic. Architecture: 8 hidden.
Neuron NMSE NMSEb NMSE NMSEb | 4 7l
Model % (TR) %b (TR) % (TE) %b (TE) || A (p)
P-neuron || 0.3444 £ 0.0079 | 0.2331 0.9808 £0.0116 | 0.8523 || 0.501 | 54
82.15 89.64 62.42 67.92 0.478 | (699)
R-neuron || 0.6695 & 0.0029 | 0.6468 || 0.7119+ 0.0049 | 0.6933 |[0.000 | 54
65.91 68.36 64.26 66.25 0.073 | (699)
H-neuron || 0.3666 % 0.0029 | 0.3405 || 0.7239+0.0076 | 0.6610 | 0.080 | 46
85.70 87.91 65.24 70.42 0.110 | (591)
Table 9.13: Problem: Horse Colic. Architecture: 12 hidden.
Neuron NMSE NMSEb NMSE NMSEb | 4 A
Model % (TR) %b (TR) % (TE) %b (TE) || B (p)
P-neuron || 0.4002+ 0.0104 | 0.2802 | 0.9915+0.0122 | 0.8687 | 0.500 | 54
78.14 86.23 62.54 67.08 0.488 | (931)
R-neuron || 0.6677 £ 0.0021 | 0.6503 || 0.7111+0.0050 | 0.6955 || 0.000 | b4
66.28 68.32 64.26 65.97 0.057 | (931)
H-neuron || 0.3506 & 0.0029 | 0.3224 || 0.7370 £ 0.0079 | 0.6761 || 0.080 | 46
86.61 89.05 64.75 68.61 0.103 | (787)

Table 9.14:-Problem: Horse Colic. Architecture: 16 hidden.

272

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS

Neuron NMSE NMSEb NMSE NMSEb B; f
Model % (TR) %b (TR) % (TE) %b (TE) || 3, (p)
P-neuron || 0.3682+ 0.0029 | 0.3387 || 0.6104+0.0077 | 0.5226 || 0.409 | 33
88.21 90.45 79.94 83.75 0.298 | (146)
R-neuron || 0.5827 + 0.0020 | 0.5496 || 0.6002+0.0034 | 0.5684 || 0.001 | 33
81.79 82.52 80.11 81.41 0.271 | (146)
H-neuron || 0.4423 % 0.0022 | 0.4253 0.5552 £ 0.0062 | 0.5054 || 0.373 | 14
85.37 86.41 80.91 83.37 0.421 | (74)
Table 9.15: Problem: Heart Disease. Architecture: 4 hidden.
Neuron NMSE NMSEb NMSE NMSEDb Bi A
Model % (TR) %b (TR) % (TE) %b (TE) || 4, ()
P-neuron || 0.3203+ 0.0032 | 0.2854 0.6390 £ 0.0086 | 0.5562 || 0.500 | 33
: 90.44 92.05 80.13 82.50 0.349 | (290)
R-neuron || 0.5635 =+ 0.0025 | 0.5301 0.5834 £ 0.0029 | 0.5531 0.001 | 33
81.91 82.64 80.11 81.41 0.171 | (290)
H-neuron || 0.4143+ 0.0023 | 0.3939 0.5742+0.0073 | 0.5197 || 0.373 | 14
87.22 88.44 81.12 83.26 0.414 | (130)
Table 9.16: Problem: Heart Disease. Architecture: 8 hidden.
Neuron NMSE NMSEb NMSE NMSEb B; 7
Model % (TR) %b (TR) % (TE) %b (TE) | B (p)
P-neuron || 0.3065 + 0.0033 | 0.2723 0.6767 £ 0.0094 | 0.5792] 0.499 | 54
91.37 92.84 80.28 82.99 0.388 | (434)
R-neuron || 0.5593 4 0.0027 | 0.5205 0.5793+0.0034 | 0.5483 | 0.001 | 54
81.97 82.74 80.09 81.47 0.124 | (434)
H-neuron || 0.4045+ 0.0024 | 0.3827 0.5817 +0.0082 | 0.5207 | 0.373 [46
87.91 88.97 81.42 84.02 0.411 | (194)
Table 9.17: Problem: Heart Disease. Architecture: 12 hidden.
Neuron NMSE NMSEDb NMSE NMSEDb B; f
Model % (TR) %b (TR) % (TE) %b (TE) || 3, (p)
P-neuron || 0.3083 £ 0.0033 | 0.2714 0.7183 £0.0087 | 0.6303 | 0.500 | 33
91.57 92.79 79.77 82.55 0.418 | (578)
R-neuron || 0.5610 & 0.0027 | 0.5277 0.5800 £ 0.0029 | 0.5513 |[0.001 | 33
81.89 82.68 80.23 81.74 0.094 | (578)
H-neuron || 0.3959 & 0.0023 | 0.3691 0.6142 % 0.0088 | 0.5448 0.373 | 14
88.62 89.62 80.82 83.04 0.419 | (258)

Table 9.18: Problem: Heart Disease. Architecture: 16 hidden.

273

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS

Neuron NMSE NMSEb NMSE NMSEDb Bi)
Model % (TR) %b (TR) % (TE) %b (TE) || 5 »)
P-neuron || 0.1793+ 0.0072 | 0.1495 | 0.6754+0.0288 | 0.518% | 0.498 | 51
95.10 96.26 79.78 85.58 0.363 | (218)
R-neuron || 0.61824 0.0099 | 0.5442 || 0.7660+ 0.0211 | 0.6679 || 0.000 | 51
83.54 87.51 73.67 82.10 0.209 | (218)
H-neuron || 0.2711+ 0.0062 | 0.2479 || 0.5446 & 0.0207 | 0.4766 || 0.087 | 21 _
92.07 93.38 81.08 84.06 0.195 | (94)
Table 9.19: Problem: Credit Card. Architecture: 4 hidden.
Neuron NMSE NMSEDb NMSE NMSEb Bi A
Model % (TR) %b (TR) % (TE) %b (TE) || 4 ()
P-neuron || 0.1521 +0.0057 | 0.1250 | 0.6592+0.0308 | 0.5018 || 0.499 | 51
96.06 96.91 81.07 85.58 0.391 | (434)
R-neuron || 0.5865 =+ 0.0068 | 0.5467 || 0.7290 £ 0.0161 | 0.6727 || 0.000 | 51
85.42 87.20 76.80 80.72 0.129 | (434)
H-neuron || 0.2166 &+ 0.0066 | 0.1923 || 0.5273 £0.0252 | 0.4590 || 0.087 | 21
94.07 95.10 81.94 85.22 0.153 | (186)
Table 9.20: Problem: Credit Card. Architecture: 8 hidden.
Neuron NMSE NMSEb NMSE NMSEb B; A
Model % (TR) %b (TR) % (TE) %b (TE) || 4 ()
P-neuron || 0.1528 + 0.0055 | 0.1230 || 0.6923+0.0321 | 0.5551 [} 0.500 | 54
96.08 97.00 80.51 84.57 0.425 | (650)
R-neuron || 0.5883 £ 0.0064 | 0.5527 || 0.7317+0.01564 | 0.6865 || 0.000 | 54
85.66 87.15 77.25 80.36 0.088 | (650)
H-neuron || 0.1981 4 0.0068 0.1744 0.5236 £ 0.0246 0.4582 0.087 46
94.90 95.97 82.23 85.14 0.137 | (278)
Table 9.21: Problem: Credit Card. Architecture: 12 hidden.
Neuron NMSE NMSEDb NMSE NMSEb B; f
Model % (TR) %b (TR) % (TE) %b (TE) | 4 ()
P-neuron || 0.1596 4 0.0058 | 0.1292 || 0.6802+0.0317 | 0.5528 || 0.500 [51
95.91 96.86 81.64 85.65 0.422 | (866)
R-neuron || 0.5904 =+ 0.0063 | 0.5520 || 0.7321+0.0158 | 0.6651 | 0.000 | 51
85.49 87.13 77.01 81.59 0.066 | (866)
H-neuron || 0.1910 £ 0.0069 | 0.1743 || 0.5365 + 0.0269 | 0.4638 || 0.087 | 21
95.20 96.04 82.10 85.00 0.126 | (370)

Table 9.22: Problem: Credit Card. Architecture: 16 hidden.

-y

4

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS

Neuron NMSE NMSED NMSE NMSEDb Bi nl
Model - - - - 8y ()
P-neuron || 0.6445+ 0.0126 0.5958 1.0779 £ 0.0627 0.8413 0.500 23
- - - - 0.101 | (111)
R-neurcn || 0.7790+£ 0.0158 0.7626 0.8568 & 0.0463 0.8284 0.003 23
- ; ; - 0.083 | (111)
H-neuron || 0.7731 4 0.0164 0.7484 0.9177 + 0.0469 0.8623 0.091 21
- - - - 0.050 | (99)
Table 9.23: Problem: Solar Flares. Architecture: 4 hidden.
Neuron NMSE NMSEDb NMSE NMSEDbL ,é,- n
Model - - - - B; (p)
P-neuron }{ 0.6056 % 0.0123 0.5645 1.0903 £+ 0.0616 0.8528 0.501 23
- - - - 0.123 | (219)
R-neuron {j 0.7803 % 0.0162 0.7641 0.8563 + 0.0457 0.8248 0.003 23
- - - - 0.047 | (219)
H-neuron || 0.7714 £ 0.0162 0.7484 0.9298 + 0.0472 0.8623 0.091 21
- - - - 0.050 | (195)
Table 9.24: Problem: Solar Flares. Architecture: 8 hidden.
Neuron NMSE NMSEDb NMSE NMSEb B,- n
Model — - — - B, (p)
P-neuron |} 0.6044+ 0.0117 0.5612 1.1888 £ 0.0720 0.8722 0.500 51
- - - - 0.194 | (327)
R-neuron || 0.7803 4 0.0161 0.7683 0.8518 + 0.0455 0.8275 0.003 51
])]] 0.031 | (327)
H-neuron || 0.77124 0.0163 0.7466 0.9430 + 0.0470 0.8632 0.091 21
] _ - - 0.051 | (291)
Table 9.25: Problem: Solar Flares. Architecture: 12 hidden.
Neuron NMSE NMSEb NMSE NMSEDb || 4 0
Model — - - - ,@f (p)
P-neuron || 0.6487 % 0.0168 0.5667 1.3694 £ 0.0844 0.9018 0.501 23
- - - - 0.248 | (435)
R-neuron || 0.7825+ 0.0163 0.7670 0.8564 &+ 0.0458 0.8303 0.003 23
- - - - 0.023 | (435)
H-neuron {| 0.7783 % 0.0162 0.7517 0.9591 + 0.0481 0.8668 0.091 21
_) . ; 0.052 | (387)

Table 9.26: Problem: Solar Flares. Architecture: 16 hidden.

275

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS

Neuron NMSE NMSEDb NMSE NMSEDb B; n
Model - - - - B, | (B
P-neuron || 0.1417 + 0.0056 0.0872 0.1641 4+ 0.0070 0.0985 0.505 2
- -] - 0.373 | (17)
R-neuron || 0.3810% 0.0127 0.2341 0.4249 +0.0156 0.2678 0.350 2
_) o ; 0.296 | (13)
H-neuron || 0.0515+ 0.0012 0.0372 0.0602 £ 0.0016 0.0441 |} 0.332 2
- - - - 0.336 | (13)
Table 9.27: Problem: Sinus-Cosinus. Architecture: 4 hidden.
Neuron NMSE NMSEb NMSE NMSEb || & | 4
Model - - - — Bf (P)
P-neuron || 0.0563 + 0.0024 | 0.0311 [0.0686 £0.0029 | 0.0378 | 0.500 | 2
_] - ; 0.338 | (33)
R-neuron || 0.3768 + 0.0106 0.2265 0.4101 4+ 0.0132 0.2453 0.351 2
- - - ; 0.272 | (33)
H-neuron || 0.0321 4 0.0006 0.0255 0.0412 + 0.0012 0.0310 0.331 2
- . - ; 0.330 | (25)
Table 9.28: Problem: Sinus-Cosinus. Architecture: 8 hidden.
Neuron NMSE NMSEDb NMSE NMSEDb ,8, n
Model - - - - B; |)
P_neuron || 0.0406 %+ 0.0014 | 0.0288 || 0.0513 +0.0021 | 0.0345 | 0499 [5
- - - - 0.362 | (49)
R-neuron || 0.3347 + 0.0107 0.2175 0.3633 - 0.0109 0.2345 0.351 b)
- - - - 0.266 | (49)
H-neuron || 0.0266 + 0.0004 0.0232 0.0353 +0.0010 0.0291 0.331 2
- - - - 0.332 | (37)
Table 9.29: Problem: Sinus-Cosinus. Architecture: 12 hidden.
Neuron NMSE NMSEb NMSE NMSEDb | £ n
Model - - - - B | (9
P-neuron |} 0.0389 4 0.0012 0.0286 0.0479 4 0.0015 0.0337 0.500 2
; - - ; 0.377 | (65)
R-neuron || 0.3078 £+ 0.0104 0.1816 0.3375+£0.0116 0.2015 0.350 2
]) i - 0.256 | (65)
H-neuron || 0.0240 + 0.0003 0.0219 0.0328 £ 0.0008 0.0286 0.331 2
- - - - 0.333 | (49)

Table 9.30: Problem: Sinus-Cosinus. Architecture: 16 hidden,

276

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS

Neuron NMSE NMSEDb NMSE NMSEDb B; n
Model - - - - B; | (p)
P-neuron || 0.0217 & 0.0002 0.0196 0.0228 + 0.0005 0.0200 0.505 2
- - - - 0.324 | (17)
R-neuron || 0.1193 4 0.0011 0.1045 0.1239 £+ 0.0017 0.1074 0.350 2
- - -) 0.408 | (17)
H-neuron | 0.0525 + 0.0022 0.0280 0.0595 £ 0.0027 0.0311 0.348 2
- - - _ 0.286 | (13)
Table 9.31: Problem: SISO-Bench. Architecture: 4 hidden.
Neuron NMSE NMSEDb NMSE NMSEDb B; n
Model - — - - B; | ()
P-neuron || 0.0200 % 0.0002 0.0177 0.0216 + 0.0005 0.0190 0.500 2
- - - - 0.325 | (33)
R-neuron || 0.1092 4 0.0009 0.0942 0.1158 £ 0.0016 0.0996 0.352 2
- - -] 0.363 | (33)
H-neuron || 0.0126 & 0.0004 0.0076 0.0145 + 0.0006 0.0088 0.348 2
- - - - 0.309 | (25)
Table 9.32: Problem: SISO-Bench. Architecture: 8 hidden.
Neuron NMSE NMSEb NMSE NMSEb || 5 7
Model - — — - ,@f (P)
P-neuron { 0.0196 + 0.0002 0.0174 0.0216 + 0.0005 0.0183 0.498 b}
- - - - 0.360 | (49)
R-neuron || 0.1059 4 0.0010 0.0894 0.1101 £ 0.0013 0.0920 0.351 5
- - - - 0.335 | (49)
H-neuron || 0.0087 4 0.0002 0.0066 0.0101 4 0.0003 0.0074 0.348 2
- - - - 0.325 | (37)
Table 9.33: Problem: SISO-Bench. Architecture: 12 hidden.
Neuron NMSE NMSEDb NMSE NMSEDb B; n
Model - - - - B; |)
P-neuron || 0.0191 4+ 0.0002 0.0167 0.0213 £ 0.0005 0.0175 0.500 2
]] - - 0.362 | (65)
R-neuron |} 0.1025 4 0.0011 0.0832 0.1084 + 0.0014 0.0906 0.351 2
R)] - 0.336 | (65)
H-neuron || 0.0079 4 0.0002 0.0063 0.0094 £ 0.0003 0.0072 0.347 2
])] - 0.335 | (49)

Table 9.34: Problem: SISO-Bench. Architecture: 16 hidden.

277

CHAPTER 9. EXPERIMENTAL RESULTS ON BENCHMARKING PROBLEMS 278
9.6 Conclusions and outlook

Unfortunately, the resuits are not directly comparable with those existent in the literature
since, to begin with, they correspond to other training algorithms (mostly back-propagation).
Besides, the training regimes (number of partitions, partition sizes and precise composition
of folds) are all different. Nonetheless, the results are much in the line or above average when
confronted with other reported outcomes, using a more elaborate model selection process
[Prechelt, 94], [Wilson and Martinez, 97}, [Wilson and Martinez, 96]. This also points the
BGA as a reliable network optimizer.

The proposed approach can be said to be satisfactory in a number of senses:

1. The generalization ability is significantly better on the average across all the data sets.
2. The number of parameters, for same numbers of hidden units, is lower.

3. The readability of the obtained solutions is enhanced, because it is amenable of a direct
interpretation in terms of the original problem inputs, and the measure computed by
the hidden neurons has been specifically designed previous to network training.

4. The possibility of adding prior domain knowledge (or at least part of it) can be used
to explore the effect in performance.

5. There is no need for encoding schemes, or pre-treatments for missing value imputation.

On the other side of the balance, there can be no guarantee that the solutions obtained
are to conform with point 1. above, since we may not know what are the “optimum” choices
in order to design an H-neuron. In this sense, the experiments presented constitute worked
examples of use, for which a complete domain knowledge was not available and some design
decisions had to be made. Therefore, there might be situations for which a different decision
on how to treat a given variable could have been made, because there may be more than one
reasonable way to regard it. This is, however, one of the advantages of the approach. It is our
conjecture that the incorporation of correct prior knowledge, together with a methodology
that respects the nature of the data, and endows the networks with a clear semantics are on
the basis of the superior results.

Chapter 10

Conclusions and Future Work

In this last chapter we set forth some reflections and concluding remarks about the work. We
also summarize the contributions of the work as described in the dissertation and finally, we
discuss some extensions and avenues for future research or development.

10.1 Conclusions

In many real-world problems knowledge comes in the form of heterogeneous information,
which may be very different in nature (e.g., continuous or discrete, ordered or lacking an
order, precise or vague) and may not be complete. In this Thesis, we have presented a
general framework for the development of new neuron models to be used in artificial neural
networks. These models are cast into the common conceptual view of computing a kind of
similarity measure between inputs and weights, accounting for heterogeneity or other data,
peculiarities. Many of the standard neuron models fall within one of the derived instances,

In a general sense, we have laid the foundations of a theoretical framework for a class
of heterogeneous neuron models, of which concrete instances and realizations have been set
forth. These models are characterized by their built-in treatment of information coming
from heterogeneous sources (perhaps missing) and make use of an explicit similarity measure
between entities, specific for each data source.

We have applied several instances of the framework to specific problems, most of them
real-world ones, with encouraging success. The possibility of adding prior knowledge in the
design of the models and the elimination of the need of a preprocessing or encoding mechanism
have been shown to be beneficial for the networks. On the one hand, because it permits to
express part of the solution to a given task in terms of the solving method. Op the other
hand, it alleviates to a reasonable extent known problems as the curse of dimensio

nali .
the difficulty of finding a structure in the data. ality or

A driving motivation of the work has been general-purpose applicability. To achieve this
several universal measures for different data types are provided. Therefore, the proble)
) ms

worked out can be best seen as application examples rather than fully-solved problems. Th
. The

279

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 280

results could be even better by devising problem-specific neuron models, making a careful
selection of partial measures, and using the full available domain knowledge and expertise.
We hence believe that our contributions can be effective in a broad spectrum of situations,
and at the same time offering the possibility to be tailored to specific problems.

The work has some recognized limitations. The present methodology is possibly not
enough to discern what is the most convenient similarity measure for a given problem or
class of problems. The precise effect on performance of the different aggregation operators
(e.g., is a weighted average a desirable measure in general?) and the effect of the proposed
way of coping with missing values should be clarified. Currently, there is a design process
only guided by the knowledge on the problem.

In this line of thought, it is certain that no specific neuron model is going to yield superior
results for all the problems to which it is applied, but this characteristic affected also the
standard models existent in the literature. Rather, what is offered is precisely to widen the
choice, by letting the designer free to construct whatever measure is considered adequate and
revise it in light of the obtained results which, in addition, can be more directly amenable to
interpretation than in previous models.

Other decisions were deliberately taken from the outset. For instance, we have limited
the scope of the work to feed-forward architectures, though nothing prevents the use of
recurrent networks or heterogeneous unsupervised networks. Moreover, the design of other
kinds of similarities, either taken from the literature or devised ez profeso could be considered
adequate in the future, motivated by their use in a particular task.

It is sensible to expect that these more adapted and problem-specific models, not only
can lead to artificial networks capable of more satisfactory performance, but provide the user
with a more flexible and manageable tool for neural modeling.

10.2 Contributions

A summary of the dissertation and the main contributions follows:

e In chapter (3), the initial concepts about similarity-driven and heterogeneous artificial
neural networks (ANN) are outlined. The strong points of the general idea and the
relation with current models are discussed. The chapter serves also as an informal
motivation for many of the ideas unfolded later on.

¢ In chapter (4), we construct a comprehensive framework where the notions of simi-
larity and heterogeneity are characterized in the context of ANN. We proceed to the
development of heterogeneous neuron models based on similarity relations or S-neurons,
derived from a somewhat larger and abstract class of models (called H-neurons). We set
forth explicit ways of designing heterogeneous similarity measures by the introduction
of concepts like similarity aggregation operators and transformation functions. Missing
information and semantic considerations are explicitly taken into account. We then
express classical neuron models —as those used in RBF or MLP networks~ as forms of

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 281

computing a kind of similarity measure iﬁ real Euclidean space. An additional contri-
bution is the development of new neuron models based on scalar product.

Similarity measures for sets different than the real continuum are identified. The notion
of a heterogeneous space is then defined as a cartesian product of single spaces of mixed
variables. As a consequence, heterogeneous similarity measures can be devised in this
space, using specific forms for aggregation operators, leading to the generic concept
of a S-neuron and to Heterogeneous Neural Networks (HNN). As a particularly useful
instance of S-neurons of the real kind (that is, models for which the codomain is a subset
of the reals), a collection of new models is derived, based on a distinguished generic
measure grounded on Gower’s classical similarity index [Gower, 71].

e Chapter (5) explores the theoretical approximation properties of some of the introduced
families of neuron models. From a theoretical point of view, the property is important
‘because it ensures that a satisfactory solution is always to exist, and has been already
proved for standard neuron models. Since a common and general proof is not amenable
to be obtained, we assuming precise decompositions about the specific similarity func-
tions being computed by the network. We show that, under certain conditions, several
types of feed-forward HNN share the universal approximation property.

e Chapter (6) is devoted to the investigation of Evolutionary Algorithms (EA) in the prob-
lem of training a HNN. Specifically, the standard genetic algorithm (GA) [Goldberg, 89]
and the Breeder genetic algorithm (BGA) [Miihlenbein and Schlierkamp-Voosen, 93]
are enhanced in a number of ways, to accept and manipulate heterogeneous variables in
their chromosomic material. Proposals for its main parameters when used in the weight
optimization task are made based on extensive experimentation on a difficult bench-
mark dataset and in previous investigations in classical testbed optimization problems.

e Experimental work is possibly the best means to assess the validity of the work. The
neuron models derived from the approach have been tested empirically in a variety of
situations and experimental conditions, and explored in basically three general kinds of
problems:

— In real-world problems —Chapter (7)- using data and some amount of expertise
directly available to the author, and where there was a motivation to apply the
ideas developed in the work.

— In a specific industrial setting, the operation and control of WasteWater Treatment,
Plants (WWTP) [Lean and Hinrichsen, 94], of great industrial and social relevance
—Chapter (8).

— In well-known neural benchmarking databases [Prechelt, 94] displaying variable
degrees of heterogeneity —Chapter (9). These experiments are carried out in a
very controlled experimental setting.

In most cases, valuable models are found that can be said to be satisfactory in a
number of senses: absence of coding schemes, generalization ability, number of model
parameters, and readability of the obtained solutions.

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 282

10.3 Future research

The work described in this dissertation leaves a number of avenues for future research and
improvement and thus can be continued in many interesting directions.

e In relation with studying the effect of specific neuron models, an immediate work is the
analysis of the space spanned by the outputs of the hidden units. Given a hidden layer
1 of h; units, let S = [O,Smax]h‘, where Synq, 1s the maximum similarity yielded by the
hidden neurons. Some questions naturally arise. Given a trained network:

1. Is S uniformly covered? If not, how are the vectors of similarities § € S distributed
for a given training or test set of input patterns?

2. How does the distribution change along the training process?

3. Is the distribution different for well-trained networks? (i.e., for networks yielding
superior performance).

4. How does this relate to the notions of neuron and network sensitivity developed
in chapter (4)?

The answer to these questions will help in studying the effect of setting different neuron
models for a given problem and possibly for choosing among certain generic choices of
aggregation operators, similarity transforming functions, etc.

e A long-term research goal is contemplated in the study of models where the output
heterogeneous space, which is also the codomain of the similarity measure, is a different
space than a subset of R. For example, neuron models of the fuzzy kind imply the
use of fuzzy arithmetic and would compute a fuzzy similarity measure, giving rise to
heterogeneous fully fuzzy networks. This is of interest whenever there is a quantifiable
uncertainty in the available samples of the target function. To this end, fuzzy similarity
measures between fuzzy numbers should be devised. There are two basic ways of doing
this:

1. Given a similarity defined for reals (that is, for crisp values), compute it in fuzzy
arithmetic by considering fuzzy arguments.

2. Given a crisp similarity defined for fuzzy numbers, such as the one proposed in
this work, extend it to yield also a fuzziness for the similarity judgement, based
on the fuzziness of the arguments. '

Whatever the choice, the extension of additive aggregation operators should be done
also by working in simple fuzzy arithmetic. For instance, the average of n fuzzy numbers
is also a fuzzy number. Non-fuzzy similarities would be considered as crisp numbers.
In this respect, notice that the overall function computed by the network is still a
heterogeneous measure, in the sense that not all the inputs need to be fuzzy.

Of special interest is the further extension to fuzzy quantities, in which case the sim-
ilarity neural network would be yielding linguistic terms as outputs, very well suited

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 283

for imprecis@ classification tasks. In this case, the source of imprecision is the absence
of sharply defined criteria of class membership [Zadeh, 76], e.g., a person could be la-
belled as “tall”. Here there is an interesting possibility in establishing links to other
neurofuzzy classifiers [Nauck, Klawonn and Kruse, 97].

The overall motivation behind these extensions is that it is reasonable that a function
with fuzzy arguments gives a fuzzy outcome. This may be of help in creating more
flexible mappings and of great interest to the approximation of fuzzy functions.

Other models, of the ordinal or nominal kind, with the correspondingly defined similar-
ity measures, are possible. The nominal case is particularly indicated for classical crisp
classification tasks, for which the task of the classifier is to assign categorical symbols
to given input patterns.

In the case of ordinal similarity measures, the value supplied is an ordered and discrete
judgement —e.g. “four” children— which is not necessarily numerical -e.g., “January” in
the set of months of the year, or “H” in the set of letters of the latin alphabet. These
extensions collectively form a big area of development of potential practical interest.

e Another important area of potential improvement consists in grouping subsets of vari-
ables by a single similarity relation. In all the models set forth in this work, the compu-
tation of similarity for heterogeneous entities is constructed as a weighted combination
of partial similarities over single variables, although any problem-specific partition over
subsets of variables (and not singletons) is conceivable.

Note that these could be regarded as higher-order models. For R-neurons (units of RBF
networks) this involves the computation of weighted distance measures, where all the
(quadratic) cross-products are included, and to the most general form for a RBF unit
-see p. 133. For the P-neuron, the scalar product (containing no cross-product terms)
can be generalized to a real quadratic form (an homogeneous polynomial of second
degree with real coefficients) or even further to higher degrees, leading to so-called TI1
units [Durbin and Rumelhart, 89]. For the introduced heterogeneous neuron models
or H-neurons, higher-order measures have a nice conceptual interpretation as overall
measures defined over partial ones on subsets of variables. An additional important
consideration is that this scheme need not involve an increase in free parameters.

Criteria for grouping subsets of variables in order to define a single similarity can be
either syntactic or semantic. In the former case, the grouping could based on the
data type: many heterogeneous distance measures have worked out this idea, which
is possibly too restrictive. An alternative is to consider semantic criteria, that is,
to use domain knowledge. For instance, one might be interested in defining a single
similarity measure among a collection of variables that are known (or believed) to
be strongly related. This process could be seen as the creation of macrovariables or
features. Examples abound:

— It is common to use delayed information in the inputs of a neural network, by
means of a moving window or delay line. These networks are known as time-
delay neural networks [Hertz, I(rogh and Palmer, 91]. Consider the following three
variables as part of the inputs of such a network:

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 284

z(t—1),y(t—1),2(t - 1)
z(t —2),y(t —-2),2(t - 2)

Looking at them in a horizontal way, we know that these variables (in two groups
of three) share a common underlying dimension, which is equal for each group:
time. Looking at them from the vertical point of view (three groups of two), we
know that these different inputs are in fact the same measured variable, though
at different times. This extra information can be supplied to the network in the
form of partial measures defined on specific subsets of variables.

— In many practical situations —for example in data sets coming from street poils,
or questionnaires collecting personal data— if the answer to question, say, number .
three is “a)”, then the fourth question must be skipped (incidentally, this is a
source of missing information). These two variables should not be considered as
independent, because there is a relation that is known and, hence, modelable. A
partial measure could take into account both variables at once and output a single
similarity measurement.

e The possibility of incorporating prior knowledge into the design of the neuron model
entails with it the counterpart: the eztraction of knowledge out of a trained network.
This is a clear avenue for new research. Some work has already been done for classical
RBF networks, possibly the more amenable a priori to a clear interpretation, due to the
local nature of the hidden units [Andrews and Geva, 96]. In our case, this interpretation
accompanied by a rule extraction process is made much easier by the characteristics of
the proposed neuron models.

e The consideration, as already mentioned, of more abstract input spaces. In this sense,
a partially ordered subspace is an immediate extension. It is not uncommon, in prac-
tical cases, the existence of incomparable elements. In ordinal spaces, this entails the
existence of partial orders. A distinguished situation is a laftice: a set where, for every
pair of elements, there exist a supremum and an infimum (e.g., the totality of subsets
of a set is a lattice by the partial ordering given by set inclusion). Other data types
could include trees, graphs or strings in an alphabet, for which similarity relations can
be found in the literature —e.g., [Honavar, 92].

e The work done concerning the universal approximation property should be considered
as a preliminary study on especially interesting or representative classes of models. The
generalization to more abstract classes and the integration of heterogeneous information
is probably a thesis in itself. Specifically, the work on nominal information could need
the definition of new topologies in these spaces. The fulfilment of the property in this
and other cases, as for linguistic variables, remains an open question.

e Finally, the application of this research to real-world problems —perhaps revising some
previous results in light of new advances- is undoubtedly an avenue of continuous fur-
ther work. In particular, the contribution to the operation and control of wastewater
treatment plants, although it has already produced some very valuable results, is cur-
rently being subject of new work.

	TLABM00001.pdf
	TLABM00166.pdf
	TLABM00167.pdf
	TLABM00168.pdf
	TLABM00169.pdf
	TLABM00170.pdf
	TLABM00171.pdf
	TLABM00172.pdf
	TLABM00173.pdf
	TLABM00174.pdf
	TLABM00175.pdf
	TLABM00176.pdf
	TLABM00177.pdf
	TLABM00178.pdf
	TLABM00179.pdf
	TLABM00180.pdf
	TLABM00181.pdf
	TLABM00182.pdf
	TLABM00183.pdf
	TLABM00184.pdf
	TLABM00185.pdf
	TLABM00186.pdf
	TLABM00187.pdf
	TLABM00188.pdf
	TLABM00189.pdf
	TLABM00190.pdf
	TLABM00191.pdf
	TLABM00192.pdf
	TLABM00193.pdf
	TLABM00194.pdf
	TLABM00195.pdf
	TLABM00196.pdf
	TLABM00197.pdf
	TLABM00198.pdf
	TLABM00199.pdf
	TLABM00200.pdf
	TLABM00201.pdf
	TLABM00202.pdf
	TLABM00203.pdf
	TLABM00204.pdf
	TLABM00205.pdf
	TLABM00206.pdf
	TLABM00207.pdf
	TLABM00208.pdf
	TLABM00209.pdf
	TLABM00210.pdf
	TLABM00211.pdf
	TLABM00212.pdf
	TLABM00213.pdf
	TLABM00214.pdf
	TLABM00215.pdf
	TLABM00216.pdf
	TLABM00217.pdf
	TLABM00218.pdf
	TLABM00219.pdf
	TLABM00220.pdf
	TLABM00221.pdf
	TLABM00222.pdf
	TLABM00223.pdf
	TLABM00224.pdf
	TLABM00225.pdf
	TLABM00226.pdf
	TLABM00227.pdf
	TLABM00228.pdf
	TLABM00229.pdf
	TLABM00230.pdf
	TLABM00233.pdf
	TLABM00234.pdf
	TLABM00235.pdf
	TLABM00236.pdf
	TLABM00237.pdf
	TLABM00238.pdf
	TLABM00239.pdf
	TLABM00240.pdf
	TLABM00241.pdf
	TLABM00242.pdf
	TLABM00243.pdf
	TLABM00244.pdf
	TLABM00245.pdf
	TLABM00246.pdf
	TLABM00247.pdf
	TLABM00248.pdf
	TLABM00249.pdf
	TLABM00252.pdf
	TLABM00253.pdf
	TLABM00254.pdf
	TLABM00255.pdf
	TLABM00256.pdf
	TLABM00257.pdf
	TLABM00258.pdf
	TLABM00259.pdf
	TLABM00260.pdf
	TLABM00261.pdf
	TLABM00262.pdf
	TLABM00263.pdf
	TLABM00264.pdf
	TLABM00265.pdf
	TLABM00266.pdf
	TLABM00267.pdf
	TLABM00268.pdf
	TLABM00269.pdf
	TLABM00270.pdf
	TLABM00271.pdf
	TLABM00272.pdf
	TLABM00273.pdf
	TLABM00274.pdf
	TLABM00275.pdf
	TLABM00276.pdf
	TLABM00277.pdf
	TLABM00278.pdf
	TLABM00279.pdf
	TLABM00280.pdf
	TLABM00281.pdf
	TLABM00282.pdf
	TLABM00283.pdf
	TLABM00284.pdf
	TLABM00285.pdf

