MINI-TUTORIAL ON SEMI-ALGEBRAIC PROOF SYSTEMS

Albert Atserias

Universitat Politècnica de Catalunya
Barcelona

Part I

CONVEX POLYTOPES

Convex polytopes as linear inequalities

Polytope:

$$
P=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A} \mathbf{x} \geq \mathbf{b}\right\}
$$

Convex polytopes as convex hulls

Polytope:

$$
P=\operatorname{conv}\left(\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}\right)
$$

Integer hull

Integer hull of $P \subseteq \mathbb{R}^{n}$:

Integer hull

Integer hull of $P \subseteq \mathbb{R}^{n}$:

$$
P_{I}=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

Case of special interest: relaxations of 0-1 problems

Polytopes inscribed in the unit cube:

$$
\operatorname{conv}\left\{\mathbf{x} \in\{0,1\}^{n}: \mathbf{A} \mathbf{x} \geq \mathbf{b}\right\}=\operatorname{conv}\left(\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}\right\}\right)
$$

Case of special interest: relaxations of 0-1 problems

Polytopes inscribed in the unit cube:

$$
\operatorname{conv}\left\{\mathbf{x} \in\{0,1\}^{n}: \mathbf{A} \mathbf{x} \geq \mathbf{b}\right\}=\operatorname{conv}\left(\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}\right\}\right)
$$

Obvious relaxation:

- What's available: $P=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A x} \geq \mathbf{b}, \mathbf{0} \leq \mathbf{x} \leq \mathbf{e}\right\}$
- What we want: P_{I}

Part II

EXPLICIT REPRESENTATIONS OF P_{I}

Gomory-Chvátal cuts: $C(P)$

Inference rules:

$$
\begin{gather*}
\frac{\mathbf{a}_{1}^{\mathrm{T}} \mathbf{x} \geq b_{1} \quad \cdots \quad \mathbf{a}_{m}^{\mathrm{T}} \mathbf{x} \geq b_{m}}{\sum_{i=1}^{m} c_{i} \mathbf{a}_{i}^{\mathrm{T}} \mathbf{x} \geq \sum_{i=1}^{m} c_{i} b_{i}} \quad\left(c_{1}, \ldots, c_{m} \in \mathbb{R}^{+}\right) \tag{1}\\
\frac{\mathbf{a}^{\mathrm{T}} \mathbf{x} \geq b}{\mathbf{a}^{\mathrm{T}} \mathbf{x} \geq\lceil b\rceil} \quad\left(\mathbf{a} \in \mathbb{Z}^{n}\right) \tag{2}
\end{gather*}
$$

New polytope:

1. start at inequalities defining P
2. first close them under (1)
3. then close them under (2)
$C(P)$ is defined by resulting inequalities

Completeness

Completeness [Chvátal 1973]:

$$
P \supseteq C(P) \supseteq C(C(P)) \supseteq \cdots \supseteq C^{(t)}(P)=P_{1}
$$

Completeness

Completeness [Chvátal 1973]:

$$
P \supseteq C(P) \supseteq C(C(P)) \supseteq \cdots \supseteq C^{(t)}(P)=P_{1}
$$

(with $t \leq n^{2} \log n$ if $P \subseteq[0,1]^{n}[E S O 3]$).

Chvátal's "slogan"

Slogan:

$$
\text { combinatorics }=\text { linear programming }+ \text { number theory }
$$

(the box is Chvátal's)

A little problem

Theorem [Eisenbrand 1999]:
Given P as input, the separation problem for $C(P)$ is NP-hard

Lift-and-project methods and semialgebraic proofs

In the 1990's:

- Sherali and Adams. "A hierarchy of relaxations between the continuous and [...] 0-1 programming problems", 1990.
- Lovász and Schrijver. "Cones of Matrices and Set-Functions and 0-1 Optimization", 1991.
- Balas, Ceria, and Cornuéjols. "A lift-and-project cutting plane algorithm for mixed 0-1 programs", 1993.

Lift-and-project methods and semialgebraic proofs

In the 1990's:

- Sherali and Adams. "A hierarchy of relaxations between the continuous and [...] 0-1 programming problems", 1990.
- Lovász and Schrijver. "Cones of Matrices and Set-Functions and 0-1 Optimization", 1991.
- Balas, Ceria, and Cornuéjols. "A lift-and-project cutting plane algorithm for mixed 0-1 programs", 1993.

Semi-algebraic proof systems:

- Grigoriev and Vorobyov. "Complexity of Null- and Positivstellensatz Proofs", 2001.
- Grigoriev, Hirsch, and Pasechnik. "Complexity of semi-algebraic proofs", 2002.

Lift-and-project cuts, graphically

3D-graphics by Mathematica

Steps:

1. lift by products and new variables $y_{i j}\left(=x_{i} x_{j}\right)$
2. linearize by using $x_{i}=x_{i}^{2}=y_{i}$ and forgetting products
3. project by a linear map that eliminates y-variables

Lift-and-project cuts: $N(P)$

Inference rules:

$$
\begin{gather*}
\frac{L(\mathbf{x}) \geq 0}{L(\mathbf{x}) x_{i} \geq 0} \quad \frac{L(\mathbf{x}) \geq 0}{L(\mathbf{x})\left(1-x_{i}\right) \geq 0} \tag{3}\\
\frac{\emptyset}{x_{i}^{2}-x_{i} \geq 0} \quad \frac{\emptyset}{x_{i}-x_{i}^{2} \geq 0} \tag{4}\\
\frac{Q_{1}(\mathbf{x}) \geq 0 \quad \cdots \quad Q_{m}(\mathbf{x}) \geq 0}{\sum_{i=1}^{m} c_{i} Q_{i}(\mathbf{x}) \geq 0} \quad\left(c_{1}, \ldots, c_{m} \in \mathbb{R}^{+}\right) \tag{5}
\end{gather*}
$$

New polytope:

1. Start at inequalities defining P,
2. first lift them through (3) and (4) to degree 2 ,
3. then project them through (5):
$N(P)$ is defined by resulting linear inequalities.

Example: $x-1 / 4 \geq 0$ with $x \geq 0$ and $1-x \geq 0$

Add a new dimension $y\left(=x^{2}\right)$

Add $y \geq 0$ and $1-y \geq 0$

Add $(x-1 / 4) x \geq 0$ and $(x-1 / 4)(1-x) \geq 0$

Add $y=x$ to enforce $x^{2}=x$

Project back to dimension x

Completeness and algorithmic goodness

Completeness [Lovász-Schrijver]:

$$
P \supseteq N(P) \supseteq N(N(P)) \supseteq \cdots \supseteq N^{(n)}(P)=P_{l}
$$

Tractable separation problem [Lovász-Schrijver]:
For $N(P)$, solvable in time poly $(s+n)$. For $N^{(d)}(P)$, solvable in time $\operatorname{poly}\left(s+n^{d}\right)$.
(s is the bit-size of the given representation of P)

Lift-and-project degree- d cuts: $N_{d}(P)$

Lift-and-project degree-d cuts: $N_{d}(P)$

Inference rules:

$$
\begin{gather*}
\frac{Q(\mathbf{x}) \geq 0}{Q(\mathbf{x}) x_{i} \geq 0} \quad \frac{Q(\mathbf{x}) \geq 0}{Q(\mathbf{x})\left(1-x_{i}\right) \geq 0} \tag{6}\\
\frac{\emptyset}{x_{i}^{2}-x_{i} \geq 0} \quad \frac{\emptyset}{x_{i}-x_{i}^{2} \geq 0} \tag{7}\\
\frac{Q_{1}(\mathbf{x}) \geq 0 \quad \cdots \quad Q_{m}(\mathbf{x}) \geq 0}{\sum_{i=1}^{m} c_{i} Q_{i}(\mathbf{x}) \geq 0} \quad\left(c_{1}, \ldots, c_{m} \in \mathbb{R}^{+}\right) \tag{8}
\end{gather*}
$$

New polytope:

1. Start at inequalities defining P,
2. first lift them through (6) and (7) up to degree d,
3. then project them through (8):
$N_{d}(P)$ is defined by resulting linear inequalities.

Lift-and-project degree-d semidefinite cuts: $N_{d,+}(P)$

Inference rules:

$$
\begin{gather*}
\frac{Q(\mathbf{x}) \geq 0}{Q(\mathbf{x}) x_{i} \geq 0} \quad \frac{Q(\mathbf{x}) \geq 0}{Q(\mathbf{x})\left(1-x_{i}\right) \geq 0} \tag{9}\\
\frac{\emptyset}{x_{i}^{2}-x_{i} \geq 0} \quad \frac{\emptyset}{x_{i}-x_{i}^{2} \geq 0} \quad \frac{\emptyset}{Q(\mathbf{x})^{2} \geq 0} \tag{10}\\
\frac{Q_{1}(\mathbf{x}) \geq 0 \quad \cdots \quad Q_{m}(\mathbf{x}) \geq 0}{\sum_{i=1}^{m} c_{i} Q_{i}(\mathbf{x}) \geq 0} \quad\left(c_{1}, \ldots, c_{m} \in \mathbb{R}^{+}\right) \tag{11}
\end{gather*}
$$

New polytope:

1. Start at inequalities defining P,
2. first lift them through (9) and (10) up to degree d,
3. then project them through (11):
$N_{d,+}(P)$ is defined by resulting linear inequalities.

Comparison

Sandwich:

$$
P \supseteq N^{(d)}(P) \supseteq N_{d}(P) \supseteq N_{d,+}(P) \supseteq P_{l}
$$

for every $d \geq 2$.

Tractable separation problem:
For $N_{d,+}(P)$, solvable in time $\operatorname{poly}\left(s+n^{d}\right)$.
(again s is the bit-size of the given representation of P)

Measures

Lovász-Schrijver rank / LS semidefinite rank:

- min k such that $N^{(k)}(P)=\emptyset$
- $\min k$ such that $N_{+}^{(k)}(P)=\emptyset$

Sherali-Adams degree / Lasserre degree:

- min d such that $N_{d}(P)=\emptyset$
- min d such that $N_{d,+}(P)=\emptyset$

Measures

Lovász-Schrijver rank / LS semidefinite rank:

- min k such that $N^{(k)}(P)=\emptyset$
- min k such that $N_{+}^{(k)}(P)=\emptyset$

Sherali-Adams degree / Lasserre degree:

- min d such that $N_{d}(P)=\emptyset$
- min d such that $N_{d,+}(P)=\emptyset$

Part III

UPPER BOUNDS

Stable set polytope

$\operatorname{STAB}(G)$ and $\operatorname{FRAC}(G)$ for a graph $G=(V, E)$:

$$
\begin{array}{lr}
0 \leq x_{u} \leq 1 & \text { for every vertex } u \in V \\
1-x_{u}-x_{v} \geq 0 & \text { for every edge }\{u, v\} \in E
\end{array}
$$

Clique constraints are valid for $\operatorname{STAB}(G)$:

$$
1-\sum_{u \in S} x_{u} \geq 0 \quad \text { for every clique } S \text { in } G
$$

Question:
What is smallest $d \geq 1$ so that
all clique constraints are valid in $N_{d,+}(\operatorname{FRAC}(G))$?

Stable set polytope (cntd)

Answer is $d=2$! [Lovász-Schrijver]:

Stable set polytope (cntd)

Answer is $d=2$! [Lovász-Schrijver]:

$$
\left(1-x_{u}-x_{v}\right) x_{u} \quad\left(x_{u}^{2}-x_{u}\right)
$$

$$
\left(1-\sum_{u} x_{u}\right)^{2}
$$

Stable set polytope (cntd)

Answer is $d=2$! [Lovász-Schrijver]:
$\sum_{u} \sum_{v: v \neq u}\left(1-x_{u}-x_{v}\right) x_{u}+\sum_{u}\left(x_{u}^{2}-x_{u}\right)(n-2)+\left(1-\sum_{u} x_{u}\right)^{2}$

Stable set polytope (cntd)

Answer is $d=2$! [Lovász-Schrijver]:

$$
\begin{gathered}
\sum_{u} \sum_{v: v \neq u}\left(1-x_{u}-x_{v}\right) x_{u}+\sum_{u}\left(x_{u}^{2}-x_{u}\right)(n-2)+\left(1-\sum_{u} x_{u}\right)^{2} \\
=
\end{gathered}
$$

Stable set polytope (cntd)

Answer is $d=2$! [Lovász-Schrijver]:

$$
\begin{gathered}
\sum_{u} \sum_{v: v \neq u}\left(1-x_{u}-x_{v}\right) x_{u}+\sum_{u}\left(x_{u}^{2}-x_{u}\right)(n-2)+\left(1-\sum_{u} x_{u}\right)^{2} \\
= \\
1-\sum_{u} x_{u}
\end{gathered}
$$

Stable set polytope (cntd)

Answer is $d=2$! [Lovász-Schrijver]:

$$
\begin{gathered}
\sum_{u} \sum_{v: v \neq u}\left(1-x_{u}-x_{v}\right) x_{u}+\sum_{u}\left(x_{u}^{2}-x_{u}\right)(n-2)+\left(1-\sum_{u} x_{u}\right)^{2} \\
= \\
1-\sum_{u} x_{u}
\end{gathered}
$$

Corollary [Grötschel-Lovász-Schrijver 1981]:
The weighted maximum independent set problem is solvable in polynomial time on perfect graphs.

Pigeonhole principle $n+1$ to n

Representing the usual clauses:

$$
\begin{aligned}
& \text { a. } \quad x_{i, 1} \vee \cdots \vee x_{i, n} \\
& \text { b. } \neg x_{i, k} \vee \neg x_{j, k}
\end{aligned}>\sum_{k} x_{i, k}-1 \geq 0,1-x_{i, k}-x_{j, k} \geq 0
$$

Pigeonhole principle $n+1$ to n

Representing the usual clauses:

$$
\begin{aligned}
& \text { a. } \quad x_{i, 1} \vee \cdots \vee x_{i, n} \Longrightarrow \sum_{k} x_{i, k}-1 \geq 0 \\
& \text { b. } \neg x_{i, k} \vee \neg x_{j, k} \quad \Longrightarrow 1-x_{i, k}-x_{j, k} \geq 0
\end{aligned}
$$

But wait!:

Pigeonhole principle $n+1$ to n

Representing the usual clauses:

$$
\begin{aligned}
& \text { a. } \quad x_{i, 1} \vee \cdots \vee x_{i, n} \\
& \text { b. } \neg x_{i, k} \vee \neg x_{j, k} \Longrightarrow \sum_{k} x_{i, k}-1 \geq 0 \\
& 1-x_{i, k}-x_{j, k} \geq 0
\end{aligned}
$$

But wait!:

$1-\sum_{i} x_{i, k} \geq 0$
from b. in one N_{+}round as in clique

Pigeonhole principle $n+1$ to n

Representing the usual clauses:

$$
\begin{aligned}
& \text { a. } \quad x_{i, 1} \vee \cdots \vee x_{i, n} \\
& \text { b. } \neg x_{i, k} \vee \neg x_{j, k} \Longrightarrow \sum_{k} x_{i, k}-1 \geq 0 \\
& 1-x_{i, k}-x_{j, k} \geq 0
\end{aligned}
$$

But wait!:

$$
\begin{aligned}
& 1-\sum_{i} x_{i, k} \geq 0 \\
& n-\sum_{k} \sum_{i} x_{i, k} \geq 0
\end{aligned}
$$

from b. in one N_{+}round as in clique from previous by addition

Pigeonhole principle $n+1$ to n

Representing the usual clauses:

$$
\begin{aligned}
& \text { a. } \quad x_{i, 1} \vee \cdots \vee x_{i, n} \\
& \text { b. } \neg x_{i, k} \vee \neg x_{j, k} \Longrightarrow \sum_{k} x_{i, k}-1 \geq 0 \\
& 1-x_{i, k}-x_{j, k} \geq 0
\end{aligned}
$$

But wait!:

$$
\begin{array}{ll}
1-\sum_{i} x_{i, k} \geq 0 & \text { from } b . \text { in one } N_{+} \text {round as in clique } \\
n-\sum_{k} \sum_{i} x_{i, k} \geq 0 & \text { from previous by addition } \\
\sum_{i} \sum_{k} x_{i, k}-(n+1) \geq 0 & \text { from a. by addition }
\end{array}
$$

Pigeonhole principle $n+1$ to n

Representing the usual clauses:

$$
\begin{aligned}
& \text { a. } \quad x_{i, 1} \vee \cdots \vee x_{i, n} \\
& \text { b. } \neg x_{i, k} \vee \neg x_{j, k} \Longrightarrow \sum_{k} x_{i, k}-1 \geq 0 \\
& 1-x_{i, k}-x_{j, k} \geq 0
\end{aligned}
$$

But wait!:

$$
\begin{array}{ll}
1-\sum_{i} x_{i, k} \geq 0 & \text { from } b \text {. in one } N_{+} \text {round as in clique } \\
n-\sum_{k} \sum_{i} x_{i, k} \geq 0 & \text { from previous by addition } \\
\sum_{i} \sum_{k} x_{i, k}-(n+1) \geq 0 & \text { from a. by addition } \\
-1 \geq 0 & \text { from previous two by addition }
\end{array}
$$

Some additional facts

Proof complexity:

- width-w resolution ref. $\Rightarrow N_{w}=\emptyset$
- size-s resolution ref. \Rightarrow size- $O(s)$ LS ref. [Pudlák 1999]
- tree-size-s LS ref. $\Rightarrow N^{(\sqrt{n \log s})}=\emptyset$ [Pitassi-Segerlind 2012]

Some additional facts

Proof complexity:

- width-w resolution ref. $\Rightarrow N_{w}=\emptyset$
- size-s resolution ref. \Rightarrow size- $O(s)$ LS ref. [Pudlák 1999]
- tree-size-s LS ref. $\Rightarrow N^{(\sqrt{n \log s})}=\emptyset$ [Pitassi-Segerlind 2012]

Combinatorial problems:

- $N_{2,+}$ on MAX-CUT gives 0.878 -approximation [GW96]
- $N_{9,+}$ solves all its known gap examples [Mossel 2013]
- N_{15} solves graph isomorphism on planar graphs [AM12]

Some additional facts

Proof complexity:

- width-w resolution ref. $\Rightarrow N_{w}=\emptyset$
- size-s resolution ref. \Rightarrow size- $O(s)$ LS ref. [Pudlák 1999]
- tree-size-s LS ref. $\Rightarrow N^{(\sqrt{n \log s})}=\emptyset$ [Pitassi-Segerlind 2012]

Combinatorial problems:

- $N_{2,+}$ on MAX-CUT gives 0.878 -approximation [GW96]
- $N_{9,+}$ solves all its known gap examples [Mossel 2013]
- N_{15} solves graph isomorphism on planar graphs [AM12]

Interpolation:
LS has feasible interpolation [Pudlák 1999] LS ${ }_{+}$has feasible interpolation [Dash 2001]

Part IV

LOWER BOUNDS

How to prove lower bounds?

Goal:

> Build a feasible solution for $N_{d}(P)$ by patching together local (i.e. partial) fractional solutions

Useful observation:
local fractional solution \equiv prob. dist. on local 0-1 solutions

How to prove lower bounds? (cntd)

System of d-local distributions for P :

$$
H=\left\{\mu_{X}: X \subseteq[n],|X| \leq d\right\}
$$

such that

1. μ_{X} : a prob. dist. on $\{0,1\}^{X}$ with support in $\left.P\right|_{X} \cap\{0,1\}^{X}$
2. $\mu_{X}(\mathbf{x})=\sum_{\mathbf{y}: \mathbf{y} \supseteq \mathbf{x}} \mu_{Y}(\mathbf{y}) \quad$ for each $X \subseteq Y$ and $\mathbf{x} \in\{0,1\}^{X}$

How to prove lower bounds? (cntd)

System of d-local distributions for P :

$$
H=\left\{\mu_{X}: X \subseteq[n],|X| \leq d\right\}
$$

such that

1. μ_{X} : a prob. dist. on $\{0,1\}^{X}$ with support in $\left.P\right|_{X} \cap\{0,1\}^{X}$
2. $\mu_{X}(\mathbf{x})=\sum_{\mathbf{y}: \mathbf{y} \supseteq \mathrm{x}} \mu_{Y}(\mathbf{y}) \quad$ for each $X \subseteq Y$ and $\mathbf{x} \in\{0,1\}^{X}$

Theorem: The following are equivalent:

1. there is a system of d-local distributions for P,
2. $N_{d}(P) \neq \emptyset$.
(analogue for $N_{d,+}$ too)

3-XOR-SAT

Systems of linear equations mod 2:

$$
\left[\begin{array}{ccc}
x_{i_{1}} \oplus x_{j_{1}} \oplus x_{k_{1}} & = & a_{1} \\
& \vdots & \\
x_{i_{m}} \oplus x_{j_{m}} \oplus x_{k_{m}} & = & a_{m}
\end{array}\right]
$$

Encoding:

Each equation in CNF, then as a polytope in \mathbb{R}^{3}.

From Gaussian-width to N_{+}-degree

Gaussian calculus:

$$
\frac{\bigoplus_{i \in I} x_{i}=a \quad \bigoplus_{j \in J} x_{j}=b}{\bigoplus_{k \in I \triangle J} x_{k}=a \oplus b}
$$

Lemma [Schoenebeck 2008]

> If refuting S requires Gaussian-width $>d$, then $N_{d / 2,+}(S) \neq \emptyset$.

Corollary [Schoenebeck 2008, Grigoriev 2001]:
Tseitin formulas, random systems mod 2, etc require Lasserre degree $\Omega(n)$ and tree-like LS ${ }_{+}$size $2^{\Omega(n)}$.

Schoenebeck's construction

Define:

- Let \mathcal{C} be all (A, a) such that $S \vdash_{d} \bigoplus_{i \in A} x_{i}=a$,
- let $\pi(A):=(-1)^{a}$ if $(A, a) \in \mathcal{C}$ (note: $\left.(A, 1-a) \notin \mathcal{C}\right)$,
- let $A \sim B$ if $(A \triangle B, c) \in \mathcal{C}$ for some c for $|A|,|B| \leq d / 2$,
- and

$$
\mu_{X}(\mathbf{x}):=\sum_{[A]}\left(\sum_{B \sim A} \pi(B) \widehat{I}_{X=\mathbf{x}}(B)\right)^{2}
$$

Part V

SOME OPEN PROBLEMS

Open problems

Use it for SAT:

Can we integrate semialgebraic methods into symbolic solvers?

Open problems

Use it for SAT:

Can we integrate semialgebraic methods into symbolic solvers?

Lower bounds on LS size:
Prove a superpolynomial lower bound for dag-like LS ${ }_{+}$(or LS)

Open problems

Use it for SAT:

Can we integrate semialgebraic methods into symbolic solvers?

Lower bounds on LS size:
Prove a superpolynomial lower bound for dag-like LS ${ }_{+}$(or LS)
"Learning" the linear transformation?:
Under $y_{i}:=1-2 x_{i}$, parities are $\prod_{i \in I} y_{i}= \pm 1$. Useful?

Open problems

Use it for SAT:

Can we integrate semialgebraic methods into symbolic solvers?

Lower bounds on LS size:
Prove a superpolynomial lower bound for dag-like LS ${ }_{+}$(or LS)
"Learning" the linear transformation?:

$$
\text { Under } y_{i}:=1-2 x_{i} \text {, parities are } \prod_{i \in I} y_{i}= \pm 1 \text {. Useful? }
$$

Find MAX-CUT gaps or improve over GW:
Does degree- $n^{o(1)}$ Lasserre leave a 0.878 gap for MAX-CUT?

