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Subsets of {0, 1}n defined by polynomial inequalities

Variables:

X1, . . . , Xn and X1, . . . , Xn

Polynomial inequalities (coefficients in R):

P1 ≥ 0, . . . , Pm ≥ 0

Axioms:
Xi ≥ 0 X2

i −Xi = 0

1−Xi ≥ 0 1−Xi −Xi = 0



Obviously positive polynomials

Squares:

Q2

Non-negative juntas (nn-juntas):∑
I,J⊆K
I∩J=∅

aI,J
∏
i∈I

Xi

∏
j∈J

Xj

where K ⊆ [n] and aI,J ≥ 0 for all I, J ⊆ K with I ∩ J = ∅.

Sums of such things:

sos: “sums of squares”
sosonnj: “sums of squares or nn-juntas”
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Inferences

given

P1 ≥ 0, . . . , Pm ≥ 0

and

Q0, Q1, . . . , Qm that are sums of squares or nn-juntas
with

Q0 + P1Q1 + · · ·+ PmQm = P

infer

P ≥ 0.

degree of the inference:

max{deg(Q0),deg(PiQi) : i = 1, . . . ,m}



Proof systems for this talk

LS: twin variables, Boolean axioms, and sums of nn-juntas only.
LS+: twin variables, Boolean axioms, and sosonnj.

Proofs:

P1 ≥ 0, . . . , Pt ≥ 0

where each Pi ≥ 0 is

a) an axiom, or
b) a given inequality, or
c) is derived by an inference.

Refutations:

proofs of unsatisfiability ≡ derivations of −1 ≥ 0
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Shape of a proof

P1 ≥ 0, . . . , Pt ≥ 0

DAG TREE STAR

Dag-like: unrestricted shape, as long as acyclic.
Tree-like: tree; derived inequalities are used at most once.
Star-like (aka static): star; a single inference.



Complexity measures of a proof

P1 ≥ 0, . . . , Pt ≥ 0

Measures:

Size: bit-size of all coefficients (explicit sums of monomials),
Monomial size: number of monomials,
Length: number of inequalities,
Degree: largest degree of all polynomials and inferences.
Height: longest path from an assumption to the conclusion.

Notation:
P1 ≥ 0, . . . , Pm ≥ 0 `HD P ≥ 0
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Notes

Original Lovasz-Schrijver ≡ dag-like degree-2 LS and LS+

Sherali-Adams ≡ star-like LS

Lasserre/SOS ≡ star-like LS+

A `HD B =⇒ A `1
HD B
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Dual view of inferences
Degree-d pseudoexpectations for LS:

Ed(S): set of linear functionals E : R[X1, . . . , Xn]d → R s.t.

1. E(1) = 1,

2. E(Q) ≥ 0 for nn-junta Q with deg(Q) ≤ d,

3. E(PQ) ≥ 0 for P ∈ S, and nn-junta Q with deg(PQ) ≤ d.

Theorem:

max{ c : S `1
d P ≥ c in LS } = min{ E(P ) : E ∈ Ed(S) }

Corollary:

If E+
d (S) 6= ∅ then S 6`1

d −1 ≥ 0 in LS.
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Some upper bounds

1. basic counting: pigeonhole principle

2. advanced counting: expansion of the noisy hypercube



Basic counting in LS

From

Xi +Xj ≤ 1 for all i, j ∈ [n], i 6= j

it is possible to derive

X1 + · · ·+Xn ≤ 1

in size-O(n3) degree-2 height-2n LS



Basic counting (from 2 to 3)

From

X + Y ≤ 1

Y + Z ≤ 1

X + Z ≤ 1

it is possible to derive

X + Y + Z ≤ 1

in size-O(1) degree-2 height-2 LS.

[exercise]



Basic counting (from k to k + 1)

From

Xi + Xi+1 + · · · + Xi+k−1 ≤ 1
Xi+1 + · · · + Xi+k−1 + Xi+k ≤ 1

Xi + Xi+k ≤ 1

it is possible to derive

Xi + Xi+1 + · · · + Xi+k−1 + Xi+k ≤ 1

in size-O(k) degree-2 height-2 LS.

[mimic the 2-to-3 derivation]



Pigeonhole principle

From

Xi,k +Xj,k ≤ 1 for all i, j ∈ [n], i 6= j, k ∈ [n− 1]
Xi,1 + · · ·+Xi,n−1 ≥ 1 for all i ∈ [n]

it is possible to derive

−1 ≥ 0

in size-O(n4) degree-2 height-2n LS
and also
in size-O(n4) degree-2n height-1 LS (relies on twin variables!)
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Tightness (up to constants)

Theorem:

Every height-1 LS-refutation of PHPnn−1 has degree ≥ n.
Every degree-2 LS-refutation PHPnn−1 has height ≥ n/2.



Lower bound for PHPn
n−1

Define a degree-(n− 1) pseudoexpectation for LS:

E
( d∏
`=1

Xc`
i`,j`

)
:= ?

1. choose i∗ ∈ [n]− {i1, . . . , id} arbitrarily (use d ≤ n− 1)

2. consider 1-1 maps α : [n]− {i∗} 1−1−→ [n− 1]

3. define

E
( d∏
`=1

Xc`
i`,j`

)
:= Pr

α

[
α(i1) = j1, . . . , α(id) = jd

]
with α chosen u.a.r. as in 2.
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Basic counting in LS+

Lemma:

There is a size-O(n2) degree-2 height-1 LS+-derivation of
X1 + · · ·+Xn ≤ 1 from Xi +Xj ≤ 1

∑
i 6=j

(1−Xi −Xj)Xj + (n− 2)
∑
i

(X2
i −Xi) +

(
1−

∑
i

Xi

)2
=

1−
∑
i

Xi

Corollary:

There is a size-O(n3) degree-2 height-1 LS+-refutation of PHPnn−1.
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Advanced counting: SSE of δ-noisy hypercube
Vertices:

V := {+1,−1}m

Edge-weights:

W (a, b) := Pr
u∼V

v∼Nδ(u)

[
u = a and v = b

]

Note:

W (A,B) = E
u∼V

v∼Nδ(u)

[
A(u)B(v) ] and W (A, V ) =

|A|
2m

Theorem:

W (A,A) ≥ |A|
2m

(
1−

1+δ

√
|A|
2m

)
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Motivation

Small-Set Expansion (SSE(ε,δ) Problem):

Given a weighted n-vertex regular graph G = (V,E,W ),
distinguish between:

YES: all A ⊆ V with |A| = δn have W (A,A) ≥ (1− ε)δ,
NO: exists A ⊆ V with |A| = δn such that W (A,A) ≤ εδ.

SSE Hypothesis:

∀ε > 0 ∃δ > 0 s.t. SSE(ε,δ) is NP-hard.

Question:

Noisy hypercube is a YES instance.
Can low-degree SOS certify so?
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Version to be proved in SOS

Case δ = 1/3 of SSE:

W (A,A) ≥ |A|
2m

(
1−

4
3

√
|A|
2m

)

We’ll prove:

W (A,A) ≤ |A|
2m

(
3ε

4
+

1

4ε3
|A|
2m

)
for all ε > 0

which, by choosing ε = 4
√
|A|/2m, implies:

W (A,A) ≥ |A|
2m

(
1− 4

√
|A|
2m

)
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Statement of small-set expansion

If Xa ≡ “a is in the set A”, then

W (A,A) =
∑
a∈V

∑
b∈V

W (a, b)XaXb and
|A|
2m

=
∑
a∈V

1

2m
Xa

Theorem: For every ε > 0,

∑
a∈V

∑
b∈V

W (a, b)XaXb ≤

(∑
a∈V

1

2m
Xa

)(
3ε

4
+

1

4ε3

(∑
a∈V

1

2m
Xa

))

has a size-2O(m) degree-8 height-1 LS+-derivation.



Statement of small-set expansion

If Xa ≡ “a is in the set A”, then

W (A,A) =
∑
a∈V

∑
b∈V

W (a, b)XaXb and
|A|
2m

=
∑
a∈V

1

2m
Xa

Theorem: For every ε > 0,

∑
a∈V

∑
b∈V

W (a, b)XaXb ≤

(∑
a∈V

1

2m
Xa

)(
3ε

4
+

1

4ε3

(∑
a∈V

1

2m
Xa

))

has a size-2O(m) degree-8 height-1 LS+-derivation.



How is it proved?

by induction on m
and Cauchy-Schwartz

(and, believe it or not, that’s it)

XY ≤ 1
2X

2 + 1
2Y

2

or
1
2X

2 + 1
2Y

2 −XY = 1
2(X − Y )2

X3Y ≤ 3
4X

4 + 1
4Y

4

or
3
4X

4 + 1
4Y

4 −X3Y = 1
2X

2(X − Y )2 + 1
4(X2 − Y 2)2
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Human-readable proof

W (A,A) = E
u∼V

v∼Nδ(u)

[
A(u)A(v) ]

= E
u∼V

[
A(u)TδA(u) ]

≤ 3ε

4
E

u∼V

[
A(u)2

]
+

1

4ε3
E

u∼V

[
(TδA(u))4

]
≤ 3ε

4
E

u∼V

[
A(u)2

]
+

1

4ε3
E

u∼V

[
A(u)2

]2
= E

u∼V

[
A(u)2

](3ε

4
+

1

4ε3
E

u∼V

[
A(u)2

])

2-to-4 hypercontractivity; two-function version:

E
u∼V

[
(TδF (u))2 (TδG(u))2

]
≤ E

u∼V

[
F (u)2

]
E

u∼V

[
G(u)2

]
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Roadmap for rest of the talk

1. size-degree trade-offs

2. expanding systems of parity equations

3. interpolation

4. some open problems

5. credit



Trade-offs

Let F be an unsatisfiable 3-CNF on N variables.
Then:

D = O(
√
N log(S)) or S = 2Ω(D2/N)

for Resolution:

S: minimum length of resolution refutations of F
D: minimum width of resolution refutation of F

for PC:

S: minimum monomial-size of PC refutations of F
D: minimum degree of PC refutations of F



Trade-offs

Let F be an unsatisfiable 3-CNF on N variables.
Then:

D = O(
√
N log(S)) or S = 2Ω(D2/N)

for Resolution:

S: minimum length of resolution refutations of F
D: minimum width of resolution refutation of F

for PC:

S: minimum monomial-size of PC refutations of F
D: minimum degree of PC refutations of F



Trade-offs

Let F be an unsatisfiable 3-CNF on N variables.
Then:
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Size-degree trade-off for height-1 LS

Theorem: For height-1 LS-refutations of a 3-CNF F we have

D = O(
√
N logS) or S = 2Ω(D2/N)

where

S: minimum monomial-size of height-1 LS-refutations of F
D: minimum degree of height-1 LS-refutations of F



Sanity checks

Check 1:

S of EPHPnn−1 is O(n4)
D of EPHPnn−1 is n
BUT
N of EPHPnn−1 is ≥ n2.

Check 2:

S of G-PHPnn−1 is O(n4)
N of G-PHPnn−1 is ≤ n ·maxdeg(G)
BUT
D of G-PHPnn−1 is O(maxdeg(G)) [exercise]
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Proof of size-degree trade-off

Proof strategy:

refutation of F with ≤ S many monomials of degree ≥ D
⇓

refutation of F with degree ≤ D + (N/D) ln(S)

Once this is proved, set:

D =
√
N ln(S)
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The inductive argument

Proof by induction on N :

refutation of F with ≤ S many monomials of degree ≥ D
⇓

refutation of F with degree ≤ D + (N/D) ln(S)

1. Start at a refutation Π with exactly T ≤ S monomials of degree ≥ D.
2. Find a variable X that appears ≥ DT/N many such monomials.
3. Apply induction hypothesis to Π|X=0 and Π|X=1.
4. (note: Π|X=0 has ≤ T (1−D/N) ≤ S(1−D/N) such monomials).
5. (note: Π|X=1 has still ≤ T ≤ S such monomials).
6. I.H. for F |X=0 gives degree ≤ D + (N/D) ln(S)− 1.
7. I.H. for F |X=1 gives degree ≤ D + (N/D) ln(S).
8. Combine into degree ≤ D + (N/D) ln(S) for F .
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Combination lemma

Combination lemma:

F |X=0 ` −1 ≥ 0 degree-(D − 1), height-1
F |X=1 ` −1 ≥ 0 degree-D, height-1

F ` X ≥ ε degree-(D − 1), height-1, for some ε > 0
F ` X ≤ 1− δ degree-D, height-1, for some δ > 0

F ` XX ≥ εX degree-D, height-1
F ` εX ≤ ε(1− δ) degree-D, height-1

F ` XX ≥ εδ degree-D, height-1

F ` 0 ≥ εδ degree-D, height-1
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Unrestricting lemma

Unrestricting lemma:

F |X=0 `1
D −1 ≥ 0

F |X=1 `1
D −1 ≥ 0

⇓

⇓

F ∪ {X ≤ 0} `1
D −1 ≥ 0

F ∪ {X ≥ 1} `1
D −1 ≥ 0

⇓

⇓

min{E(X) : E ∈ ED(F )} > 0

max{E(X) : E ∈ ED(F )} < 1

⇓

⇓

max{c : F `1
D X ≥ c} > 0

min{c : F `1
D X ≥ c} < 1



Unrestricting lemma

Unrestricting lemma:

F |X=0 `1
D −1 ≥ 0 F |X=1 `1

D −1 ≥ 0
⇓ ⇓

F ∪ {X ≤ 0} `1
D −1 ≥ 0 F ∪ {X ≥ 1} `1

D −1 ≥ 0
⇓ ⇓

min{E(X) : E ∈ ED(F )} > 0 max{E(X) : E ∈ ED(F )} < 1
⇓ ⇓

max{c : F `1
D X ≥ c} > 0 min{c : F `1

D X ≥ c} < 1



Consequences: l.b.’s for tree-like LS

Corollary (if done carefully):

Setting

L: minimum length of tree-like degree-2 LS-refutations of F
D: minimum degree of height-1 LS-refutation of F

we have

D = O(
√
N logL) or L = 2Ω(D2/N)



Feasible interpolation

Problem statement:

Given a refutation of

A0(a, y0) ∧A1(a, y1)

find i ∈ {0, 1} so that

Ai(a, yi) is unsatisfiable.
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Problem statement:
Given a refutation of

A0(a, y0) ∧A1(a, y1)

find i ∈ {0, 1} so that

Ai(a, yi) is unsatisfiable.



Feasible interpolation for degree-2 LS

The goal is to convert

K1(y) + L1(z) + c1 ≥ 0
K2(y) + L2(z) + c2 ≥ 0
...
cm ≥ 0

into

K1(y) + a1 ≥ 0 L1(z) + b1 ≥ 0
K2(y) + a2 ≥ 0 L2(z) + b2 ≥ 0
...

...
am ≥ 0 bm ≥ 0

where

ci = ai + bi for all i = 1, . . . ,m.



One inference step:

∑
i,j c

1
i · (Ki(y) + Li(z) + ci) · yj +∑

i,j c
2
i · (Ki(y) + Li(z) + ci) · ȳj +∑

i,j c
3
i · (Ki(y) + Li(z) + ci) · zj +∑

i,j c
4
i · (Ki(y) + Li(z) + ci) · z̄j +∑

i c
5
i · (Ki(y) + Li(z) + ci) +∑

j c
6
i · (y2

j − yj) +∑
j c

7
i · (z2

j − zj)
=
Kt(y) + Lt(z) + ct



Inductively ci = ai + bi, so also:

∑
i,j c

1
i · (Ki(y) + ai) · yj +

∑
i,j c

1
i · (Li(z) + bi) · yj +∑

i,j c
2
i · (Ki(y) + ai) · ȳj +

∑
i,j c

2
i · (Li(z) + bi) · ȳj +∑

i,j c
3
i · (Ki(y) + ai) · zj +

∑
i,j c

3
i · (Li(z) + bi) · zj +∑

i,j c
4
i · (Ki(y) + ai) · z̄j +

∑
i,j c

4
i · (Li(z) + bi) · z̄j +∑

i c
5
i · (Ki(y) + ai) +

∑
i c

5
i · (Li(z) + bi) +∑

j c
6
i · (y2

j − yj) +∑
j c

7
i · (z2

j − zj)
=
Kt(y) + Lt(z) + ct
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1
i · (Ki(y) + ai) · yj+

∑
i,j c

3
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i,j c
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i,j c

4
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i c
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∑
i c

5
i · (Li(z) + bi)+∑

j c
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i · (y2
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j c
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K ′′t (y) + L′′t (z) + c′′
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{Li(z) + bi ≥ 0}
{0 ≤ yj ≤ 1}
{0 ≤ zj ≤ 1}

|=R K ′′t (y) + L′′t (z) + c′′ ≥ 0

Apply Farkas’ Lemma!
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where a′′ + b′′ = c′′.



Consequences: conditional l.b.’s for dag-like

Corollary:

If explicit one-way permutations exist,
then there are explicit 3-CNFs that are

hard for (size of) dag-like degree-2 LS and LS+.

(F (Y ) = X ∧ Yi = 0) ∧ (F (Z) = X ∧ Zi = 1)
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Open problems

1. unconditional size lower bounds for dag-like LS and LS+?

2. degree-ω(1) SOS l.b. for SSE and UG problems?

3. degree-ω(1) SOS l.b. for 1.99-approx. of vertex cover?

4. degree-Ω(n) SA l.b. for 1.99-approx. of vertex cover?

5. candidates missing! [ SOS killed them ]
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