SELECTED TOPICS ON SEMI-ALGEBRAIC PROOF COMPLEXITY
 $$
\frac{1}{2} X^{2}+\frac{1}{2} Y^{2}-X Y=\frac{1}{2}(X-Y)^{2}
$$

Albert Atserias
Universitat Politècnica de Catalunya Barcelona

Subsets of $\{0,1\}^{n}$ defined by polynomial inequalities

Variables:

$$
X_{1}, \ldots, X_{n} \text { and } \bar{X}_{1}, \ldots, \bar{X}_{n}
$$

Polynomial inequalities (coefficients in \mathbb{R}):

$$
P_{1} \geq 0, \ldots, P_{m} \geq 0
$$

Axioms:

$$
\begin{array}{ll}
X_{i} \geq 0 & X_{i}^{2}-X_{i}=0 \\
1-X_{i} \geq 0 & 1-X_{i}-\bar{X}_{i}=0
\end{array}
$$

Obviously positive polynomials

Squares:

$$
Q^{2}
$$

Non-negative juntas (nn-juntas):

$$
\sum_{\substack{I, J \subseteq K \\ I \cap J=\emptyset}} a_{I, J} \prod_{i \in I} X_{i} \prod_{j \in J} \bar{X}_{j}
$$

where $K \subseteq[n]$ and $a_{I, J} \geq 0$ for all $I, J \subseteq K$ with $I \cap J=\emptyset$.

Obviously positive polynomials

Squares:

$$
Q^{2}
$$

Non-negative juntas (nn-juntas):

$$
\sum_{\substack{I, J \subseteq K \\ I \cap J=\emptyset}} a_{I, J} \prod_{i \in I} X_{i} \prod_{j \in J} \bar{X}_{j}
$$

where $K \subseteq[n]$ and $a_{I, J} \geq 0$ for all $I, J \subseteq K$ with $I \cap J=\emptyset$.
Sums of such things:
sos: "sums of squares"
sosonnj: "sums of squares or nn-juntas"

Inferences

given

$$
P_{1} \geq 0, \ldots, P_{m} \geq 0
$$

and

$$
\begin{aligned}
& Q_{0}, Q_{1}, \ldots, Q_{m} \text { that are sums of squares or nn-juntas } \\
& \qquad Q_{0}+P_{1} Q_{1}+\cdots+P_{m} Q_{m}=P
\end{aligned}
$$

infer

$$
P \geq 0 .
$$

degree of the inference:

$$
\max \left\{\operatorname{deg}\left(Q_{0}\right), \operatorname{deg}\left(P_{i} Q_{i}\right): i=1, \ldots, m\right\}
$$

Proof systems for this talk

LS: twin variables, Boolean axioms, and sums of nn-juntas only. LS ${ }^{+}$: twin variables, Boolean axioms, and sosonnj.

Proof systems for this talk

LS: twin variables, Boolean axioms, and sums of nn-juntas only. LS ${ }^{+}$: twin variables, Boolean axioms, and sosonnj.

Proofs:

$$
P_{1} \geq 0, \ldots, P_{t} \geq 0
$$

where each $P_{i} \geq 0$ is
a) an axiom, or
b) a given inequality, or
c) is derived by an inference.

Proof systems for this talk

LS: twin variables, Boolean axioms, and sums of nn-juntas only. LS ${ }^{+}$: twin variables, Boolean axioms, and sosonnj.

Proofs:

$$
P_{1} \geq 0, \ldots, P_{t} \geq 0
$$

where each $P_{i} \geq 0$ is
a) an axiom, or
b) a given inequality, or
c) is derived by an inference.

Refutations:
proofs of unsatisfiability \equiv derivations of $-1 \geq 0$

Shape of a proof

$$
P_{1} \geq 0, \ldots, P_{t} \geq 0
$$

DAG TREE STAR

Dag-like: unrestricted shape, as long as acyclic.
Tree-like: tree; derived inequalities are used at most once. Star-like (aka static): star; a single inference.

Complexity measures of a proof

$$
P_{1} \geq 0, \ldots, P_{t} \geq 0
$$

Measures:

Size: bit-size of all coefficients (explicit sums of monomials), Monomial size: number of monomials, Length: number of inequalities, Degree: largest degree of all polynomials and inferences. Height: longest path from an assumption to the conclusion.

Complexity measures of a proof

$$
P_{1} \geq 0, \ldots, P_{t} \geq 0
$$

Measures:

Size: bit-size of all coefficients (explicit sums of monomials), Monomial size: number of monomials, Length: number of inequalities, Degree: largest degree of all polynomials and inferences. Height: longest path from an assumption to the conclusion.

Notation:

$$
P_{1} \geq 0, \ldots, P_{m} \geq 0 \quad \vdash_{D}^{H} \quad P \geq 0
$$

Notes

Original Lovasz-Schrijver \equiv dag-like degree-2 LS and LS ${ }^{+}$

Notes

Original Lovasz-Schrijver \equiv dag-like degree-2 LS and LS ${ }^{+}$

Sherali-Adams \equiv star-like LS

Lasserre/SOS \equiv star-like LS ${ }^{+}$

Notes

Original Lovasz-Schrijver \equiv dag-like degree-2 LS and LS ${ }^{+}$

$$
\text { Sherali-Adams } \equiv \text { star-like LS }
$$

$$
\begin{aligned}
\text { Lasserre/SOS } & \equiv \text { star-like } \mathrm{LS}^{+} \\
\qquad A \vdash_{D}^{H} \quad B & \Longrightarrow A \vdash_{H D}^{1} \quad B
\end{aligned}
$$

Dual view of inferences

Degree- d pseudoexpectations for LS:

$\mathcal{E}_{d}(S)$: set of linear functionals $E: \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]_{d} \rightarrow \mathbb{R}$ s.t.

1. $E(1)=1$,
2. $E(Q) \geq 0$ for nn-junta Q with $\operatorname{deg}(Q) \leq d$,
3. $E(P Q) \geq 0$ for $P \in S$, and nn-junta Q with $\operatorname{deg}(P Q) \leq d$.

Dual view of inferences

Degree- d pseudoexpectations for LS:

$\mathcal{E}_{d}(S)$: set of linear functionals $E: \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]_{d} \rightarrow \mathbb{R}$ s.t.

1. $E(1)=1$,
2. $E(Q) \geq 0$ for nn-junta Q with $\operatorname{deg}(Q) \leq d$,
3. $E(P Q) \geq 0$ for $P \in S$, and nn-junta Q with $\operatorname{deg}(P Q) \leq d$.

Theorem:

$$
\max \left\{c: S \vdash_{d}^{1} \quad P \geq c \text { in LS }\right\}=\min \left\{E(P): E \in \mathcal{E}_{d}(S)\right\}
$$

Dual view of inferences

Degree- d pseudoexpectations for LS:

$\mathcal{E}_{d}(S)$: set of linear functionals $E: \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]_{d} \rightarrow \mathbb{R}$ s.t.

1. $E(1)=1$,
2. $E(Q) \geq 0$ for nn-junta Q with $\operatorname{deg}(Q) \leq d$,
3. $E(P Q) \geq 0$ for $P \in S$, and nn-junta Q with $\operatorname{deg}(P Q) \leq d$.

Theorem:

$$
\max \left\{c: S \vdash_{d}^{1} \quad P \geq c \text { in LS }\right\}=\min \left\{E(P): E \in \mathcal{E}_{d}(S)\right\}
$$

Corollary:
If $\mathcal{E}_{d}^{+}(S) \neq \emptyset$ then $S \vdash_{d}^{1}-1 \geq 0$ in LS.

Dual view of inferences

Degree- d pseudoexpectations for LS ${ }^{+}$:

$\mathcal{E}_{d}^{+}(S)$: set of linear functionals $E: \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]_{d} \rightarrow \mathbb{R}$ s.t.

1. $E(1)=1$,
2. $E(Q) \geq 0$ for square $/ \mathrm{nnj} Q$ with $\operatorname{deg}(Q) \leq d$,
3. $E(P Q) \geq 0$ for $P \in S$ and square/nnj Q with $\operatorname{deg}(P Q) \leq d$.

Dual view of inferences

Degree- d pseudoexpectations for LS ${ }^{+}$:

$\mathcal{E}_{d}^{+}(S)$: set of linear functionals $E: \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]_{d} \rightarrow \mathbb{R}$ s.t.

1. $E(1)=1$,
2. $E(Q) \geq 0$ for square $/ \mathrm{nnj} Q$ with $\operatorname{deg}(Q) \leq d$,
3. $E(P Q) \geq 0$ for $P \in S$ and square/nnj Q with $\operatorname{deg}(P Q) \leq d$.

Theorem:

$$
\max \left\{c: S \vdash_{d}^{1} \quad P \geq c \text { in } \mathrm{LS}^{+}\right\} \leq \min \left\{E(P): E \in \mathcal{E}_{d}^{+}(S)\right\}
$$

Dual view of inferences

Degree- d pseudoexpectations for LS ${ }^{+}$:

$\mathcal{E}_{d}^{+}(S)$: set of linear functionals $E: \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]_{d} \rightarrow \mathbb{R}$ s.t.

1. $E(1)=1$,
2. $E(Q) \geq 0$ for square $/$ nnj Q with $\operatorname{deg}(Q) \leq d$,
3. $E(P Q) \geq 0$ for $P \in S$ and square/nnj Q with $\operatorname{deg}(P Q) \leq d$.

Theorem:
$\max \left\{c: S \vdash_{d}^{1} P \geq c\right.$ in $\left.\mathrm{LS}^{+}\right\} \leq \min \left\{E(P): E \in \mathcal{E}_{d}^{+}(S)\right\}$

Corollary:

$$
\text { If } \mathcal{E}_{d}^{+}(S) \neq \emptyset \text { then } S \nvdash_{d}^{1}-1 \geq 0 \text { in } \mathrm{LS}^{+} .
$$

Some upper bounds

1. basic counting: pigeonhole principle
2. advanced counting: expansion of the noisy hypercube

Basic counting in LS

From

$$
X_{i}+X_{j} \leq 1 \quad \text { for all } i, j \in[n], i \neq j
$$

it is possible to derive

$$
X_{1}+\cdots+X_{n} \leq 1
$$

in size- $O\left(n^{3}\right)$ degree- 2 height- $2 n$ LS

Basic counting (from 2 to 3)

From

$$
\begin{gathered}
X+Y \leq 1 \\
Y+Z \leq 1 \\
X+Z \leq 1
\end{gathered}
$$

it is possible to derive

$$
X+Y+Z \leq 1
$$

in size- $O(1)$ degree-2 height-2 LS.
[exercise]

Basic counting (from k to $k+1$)

From

$$
\begin{array}{ccccccc}
X_{i}+X_{i+1} & +\cdots & +X_{i+k-1} & & \leq 1 \\
& X_{i+1} & +\cdots & +X_{i+k-1} & + & X_{i+k} & \leq 1 \\
X_{i} & & & + & & X_{i+k} & \leq 1
\end{array}
$$

it is possible to derive

$$
X_{i}+X_{i+1}+\cdots+X_{i+k-1}+X_{i+k} \leq 1
$$

in size- $O(k)$ degree- 2 height-2 LS.
[mimic the 2-to-3 derivation]

Pigeonhole principle

From

$$
\begin{aligned}
& X_{i, k}+X_{j, k} \leq 1 \\
& X_{i, 1}+\cdots+X_{i, n-1} \geq 1
\end{aligned}
$$

$$
\text { for all } i, j \in[n], i \neq j, k \in[n-1]
$$

$$
\text { for all } i \in[n]
$$

it is possible to derive

$$
-1 \geq 0
$$

Pigeonhole principle

From

$$
\begin{aligned}
& X_{i, k}+X_{j, k} \leq 1 \\
& X_{i, 1}+\cdots+X_{i, n-1} \geq 1
\end{aligned}
$$

$$
\text { for all } i, j \in[n], i \neq j, k \in[n-1]
$$

$$
\text { for all } i \in[n]
$$

it is possible to derive

$$
-1 \geq 0
$$

in size- $O\left(n^{4}\right)$ degree- 2 height- $2 n$ LS

Pigeonhole principle

From

$$
\begin{aligned}
& X_{i, k}+X_{j, k} \leq 1 \\
& X_{i, 1}+\cdots+X_{i, n-1} \geq 1
\end{aligned}
$$

$$
\text { for all } i, j \in[n], i \neq j, k \in[n-1]
$$

$$
\text { for all } i \in[n]
$$

it is possible to derive

$$
-1 \geq 0
$$

in size- $O\left(n^{4}\right)$ degree- 2 height- $2 n$ LS and also
in size- $O\left(n^{4}\right)$ degree- $2 n$ height- 1 LS

Pigeonhole principle

From

$$
\begin{aligned}
& X_{i, k}+X_{j, k} \leq 1 \\
& X_{i, 1}+\cdots+X_{i, n-1} \geq 1
\end{aligned}
$$

$$
\text { for all } i, j \in[n], i \neq j, k \in[n-1]
$$

$$
\text { for all } i \in[n]
$$

it is possible to derive

$$
-1 \geq 0
$$

in size- $O\left(n^{4}\right)$ degree- 2 height- $2 n$ LS
and also
in size- $O\left(n^{4}\right)$ degree- $2 n$ height- 1 LS (relies on twin variables!)

Tightness (up to constants)

Theorem:
Every height-1 LS-refutation of PHP_{n-1}^{n} has degree $\geq n$. Every degree-2 LS-refutation PHP_{n-1}^{n} has height $\geq n / 2$.

Lower bound for PHP_{n-1}^{n}

Define a degree- $(n-1)$ pseudoexpectation for LS:

$$
E\left(\prod_{\ell=1}^{d} X_{i_{\ell}, j_{\ell}}^{c_{\ell}}\right):=?
$$

Lower bound for PHP_{n-1}^{n}

Define a degree- $(n-1)$ pseudoexpectation for LS:

$$
E\left(\prod_{\ell=1}^{d} X_{i_{\ell}, j_{\ell}}^{c_{\ell}}\right):=?
$$

1. choose $i^{*} \in[n]-\left\{i_{1}, \ldots, i_{d}\right\}$ arbitrarily (use $d \leq n-1$)

Lower bound for PHP_{n-1}^{n}

Define a degree- $(n-1)$ pseudoexpectation for LS:

$$
E\left(\prod_{\ell=1}^{d} X_{i_{\ell}, j_{\ell}}^{c_{\ell}}\right):=?
$$

1. choose $i^{*} \in[n]-\left\{i_{1}, \ldots, i_{d}\right\}$ arbitrarily (use $d \leq n-1$)
2. consider 1-1 maps $\alpha:[n]-\left\{i^{*}\right\} \xrightarrow{1-1}[n-1]$

Lower bound for PHP_{n-1}^{n}

Define a degree- $(n-1)$ pseudoexpectation for LS:

$$
E\left(\prod_{\ell=1}^{d} X_{i_{\ell}, j_{\ell}}^{c_{\ell}}\right):=?
$$

1. choose $i^{*} \in[n]-\left\{i_{1}, \ldots, i_{d}\right\}$ arbitrarily (use $d \leq n-1$)
2. consider 1-1 maps $\alpha:[n]-\left\{i^{*}\right\} \xrightarrow{1-1}[n-1]$
3. define

$$
E\left(\prod_{\ell=1}^{d} X_{i_{\ell}, j_{\ell}}^{c_{\ell}}\right):=\operatorname{Pr}_{\alpha}\left[\alpha\left(i_{1}\right)=j_{1}, \ldots, \alpha\left(i_{d}\right)=j_{d}\right]
$$

with α chosen u.a.r. as in 2 .

Basic counting in LS^{+}

Lemma:

There is a size- $O\left(n^{2}\right)$ degree- 2 height- $1 \mathrm{LS}^{+}$-derivation of

$$
X_{1}+\cdots+X_{n} \leq 1 \text { from } X_{i}+X_{j} \leq 1
$$

Basic counting in LS^{+}

Lemma:

There is a size- $O\left(n^{2}\right)$ degree- 2 height- $1 \mathrm{LS}^{+}$-derivation of $X_{1}+\cdots+X_{n} \leq 1$ from $X_{i}+X_{j} \leq 1$

$$
\begin{gathered}
\sum_{i \neq j}\left(1-X_{i}-X_{j}\right) X_{j}+(n-2) \sum_{i}\left(X_{i}^{2}-X_{i}\right)+\left(1-\sum_{i} X_{i}\right)^{2} \\
= \\
1-\sum_{i} X_{i}
\end{gathered}
$$

Basic counting in LS^{+}

Lemma:

There is a size- $O\left(n^{2}\right)$ degree- 2 height- $1 \mathrm{LS}^{+}$-derivation of $X_{1}+\cdots+X_{n} \leq 1$ from $X_{i}+X_{j} \leq 1$

$$
\begin{gathered}
\sum_{i \neq j}\left(1-X_{i}-X_{j}\right) X_{j}+(n-2) \sum_{i}\left(X_{i}^{2}-X_{i}\right)+\left(1-\sum_{i} X_{i}\right)^{2} \\
= \\
1-\sum_{i} X_{i}
\end{gathered}
$$

Corollary:
There is a size- $O\left(n^{3}\right)$ degree- 2 height-1 LS^{+}-refutation of PHP_{n-1}^{n}.

Advanced counting: SSE of δ-noisy hypercube

Vertices:

$$
V:=\{+1,-1\}^{m}
$$

Edge-weights:

$$
W(a, b):=\operatorname{Pr}_{\substack{\mathbf{u} \sim V \\ \mathbf{v} \sim N_{\delta}(\mathbf{u})}}[\mathbf{u}=a \text { and } \mathbf{v}=b]
$$

Advanced counting: SSE of δ-noisy hypercube

Vertices:

$$
V:=\{+1,-1\}^{m}
$$

Edge-weights:

$$
W(a, b):=\operatorname{Pr}_{\substack{\mathbf{u} \sim V \\ \mathbf{v} \sim N_{\delta}(\mathbf{u})}}[\mathbf{u}=a \text { and } \mathbf{v}=b]
$$

Note:

$$
W(A, B)=\underset{\substack{\mathbf{u} \sim V \\ \mathbf{v} \sim N_{\delta}(\mathbf{u})}}{\mathbb{E}}[A(\mathbf{u}) B(\mathbf{v})] \quad \text { and } \quad W(A, V)=\frac{|A|}{2^{m}}
$$

Advanced counting: SSE of δ-noisy hypercube

Vertices:

$$
V:=\{+1,-1\}^{m}
$$

Edge-weights:

$$
W(a, b):=\operatorname{Pr}_{\substack{\mathbf{u} \sim V \\ \mathbf{v} \sim N_{\delta}(\mathbf{u})}}[\mathbf{u}=a \text { and } \mathbf{v}=b]
$$

Note:

$$
W(A, B)=\underset{\substack{\mathbf{u} \sim V \\ \mathbf{v} \sim N_{\delta}(\mathbf{u})}}{\mathbb{E}}[A(\mathbf{u}) B(\mathbf{v})] \quad \text { and } \quad W(A, V)=\frac{|A|}{2^{m}}
$$

Theorem:

$$
W(A, \bar{A}) \geq \frac{|A|}{2^{m}}\left(1-\sqrt[1+\delta]{\frac{|A|}{2^{m}}}\right)
$$

Motivation

Small-Set Expansion (SSE (ϵ, δ) Problem):

Given a weighted n-vertex regular graph $G=(V, E, W)$, distinguish between:

YES: all $A \subseteq V$ with $|A|=\delta n$ have $W(A, \bar{A}) \geq(1-\epsilon) \delta$,
NO: exists $A \subseteq V$ with $|A|=\delta n$ such that $W(A, \bar{A}) \leq \epsilon \delta$.

Motivation

Small-Set Expansion (SSE (ϵ, δ) Problem):

Given a weighted n-vertex regular graph $G=(V, E, W)$, distinguish between:

YES: all $A \subseteq V$ with $|A|=\delta n$ have $W(A, \bar{A}) \geq(1-\epsilon) \delta$,
NO: exists $A \subseteq V$ with $|A|=\delta n$ such that $W(A, \bar{A}) \leq \epsilon \delta$.

SSE Hypothesis:

$$
\forall \epsilon>0 \exists \delta>0 \text { s.t. } \operatorname{SSE}(\epsilon, \delta) \text { is NP-hard. }
$$

Motivation

Small-Set Expansion (SSE (ϵ, δ) Problem):

Given a weighted n-vertex regular graph $G=(V, E, W)$, distinguish between:

YES: all $A \subseteq V$ with $|A|=\delta n$ have $W(A, \bar{A}) \geq(1-\epsilon) \delta$,
NO: exists $A \subseteq V$ with $|A|=\delta n$ such that $W(A, \bar{A}) \leq \epsilon \delta$.

SSE Hypothesis:

$$
\forall \epsilon>0 \exists \delta>0 \text { s.t. } \operatorname{SSE}(\epsilon, \delta) \text { is NP-hard. }
$$

Question:
Noisy hypercube is a YES instance. Can low-degree SOS certify so?

Version to be proved in SOS

Case $\delta=1 / 3$ of SSE:

$$
W(A, \bar{A}) \geq \frac{|A|}{2^{m}}\left(1-\sqrt[\frac{4}{3}]{\frac{|A|}{2^{m}}}\right)
$$

Version to be proved in SOS

Case $\delta=1 / 3$ of SSE:

$$
W(A, \bar{A}) \geq \frac{|A|}{2^{m}}\left(1-\sqrt[\frac{4}{3}]{\frac{|A|}{2^{m}}}\right)
$$

We'll prove:

$$
W(A, A) \leq \frac{|A|}{2^{m}}\left(\frac{3 \epsilon}{4}+\frac{1}{4 \epsilon^{3}} \frac{|A|}{2^{m}}\right) \quad \text { for all } \epsilon>0
$$

Version to be proved in SOS

Case $\delta=1 / 3$ of SSE:

$$
W(A, \bar{A}) \geq \frac{|A|}{2^{m}}\left(1-\sqrt[\frac{4}{3}]{\frac{|A|}{2^{m}}}\right)
$$

We'll prove:

$$
W(A, A) \leq \frac{|A|}{2^{m}}\left(\frac{3 \epsilon}{4}+\frac{1}{4 \epsilon^{3}} \frac{|A|}{2^{m}}\right) \quad \text { for all } \epsilon>0
$$

which, by choosing $\epsilon=\sqrt[4]{|A| / 2^{m}}$, implies:

$$
W(A, \bar{A}) \geq \frac{|A|}{2^{m}}\left(1-\sqrt[4]{\frac{|A|}{2^{m}}}\right)
$$

Statement of small-set expansion

If $X_{a} \equiv " a$ is in the set A ", then

$$
W(A, A)=\sum_{a \in V} \sum_{b \in V} W(a, b) X_{a} X_{b} \quad \text { and } \quad \frac{|A|}{2^{m}}=\sum_{a \in V} \frac{1}{2^{m}} X_{a}
$$

Statement of small-set expansion

If $X_{a} \equiv$ " a is in the set A ", then

$$
W(A, A)=\sum_{a \in V} \sum_{b \in V} W(a, b) X_{a} X_{b} \quad \text { and } \quad \frac{|A|}{2^{m}}=\sum_{a \in V} \frac{1}{2^{m}} X_{a}
$$

Theorem: For every $\epsilon>0$,
$\sum_{a \in V} \sum_{b \in V} W(a, b) X_{a} X_{b} \leq\left(\sum_{a \in V} \frac{1}{2^{m}} X_{a}\right)\left(\frac{3 \epsilon}{4}+\frac{1}{4 \epsilon^{3}}\left(\sum_{a \in V} \frac{1}{2^{m}} X_{a}\right)\right)$
has a size-2 ${ }^{O(m)}$ degree- 8 height- $1 \mathrm{LS}^{+}$-derivation.

How is it proved?

by induction on m and Cauchy-Schwartz

(and, believe it or not, that's it)

$$
\begin{gathered}
X Y \leq \frac{1}{2} X^{2}+\frac{1}{2} Y^{2} \\
\text { or } \\
\frac{1}{2} X^{2}+\frac{1}{2} Y^{2}-X Y=\frac{1}{2}(X-Y)^{2}
\end{gathered}
$$

How is it proved?

by induction on m and Cauchy-Schwartz

(and, believe it or not, that's it)

$$
\begin{gathered}
X Y \leq \frac{1}{2} X^{2}+\frac{1}{2} Y^{2} \\
\text { or } \\
\frac{1}{2} X^{2}+\frac{1}{2} Y^{2}-X Y=\frac{1}{2}(X-Y)^{2} \\
X^{3} Y \leq \frac{3}{4} X^{4}+\frac{1}{4} Y^{4} \\
\text { or } \\
\frac{3}{4} X^{4}+\frac{1}{4} Y^{4}-X^{3} Y=\frac{1}{2} X^{2}(X-Y)^{2}+\frac{1}{4}\left(X^{2}-Y^{2}\right)^{2}
\end{gathered}
$$

Human-readable proof

$$
W(A, A)=\underset{\substack{\mathbf{u} \sim V \\ \mathbf{v} \sim N_{\delta}(\mathbf{u})}}{\mathbb{E}}[A(\mathbf{u}) A(\mathbf{v})]
$$

Human-readable proof

$$
W(A, A)=\underset{\substack{\mathbf{u} \sim V \\ \mathbf{v} \sim N_{\delta}(\mathbf{u})}}{\mathbb{E}}[A(\mathbf{u}) A(\mathbf{v})]=\underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u}) \mathrm{T}_{\delta} A(\mathbf{u})\right]
$$

Human-readable proof

$$
\begin{aligned}
W(A, A) & =\underset{\substack{\mathbf{u} \sim N_{\delta}(\mathbf{u})}}{\mathbb{E}}[A(\mathbf{u}) A(\mathbf{v})]=\underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u}) \mathrm{T}_{\delta} A(\mathbf{u})\right] \\
& \leq \frac{3 \epsilon}{4} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u})^{2}\right]+\frac{1}{4 \epsilon^{3}} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[\left(\mathrm{~T}_{\delta} A(\mathbf{u})\right)^{4}\right]
\end{aligned}
$$

Human-readable proof

$$
\begin{aligned}
W(A, A) & =\underset{\substack{\mathbf{v} \sim N_{\delta}(\mathbf{u})} \underset{\mathbb{E}}{\mathbb{E}}[A(\mathbf{u}) A(\mathbf{v})]=\underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u}) \mathrm{T}_{\delta} A(\mathbf{u})\right]}{ } \\
& \leq \frac{3 \epsilon}{4} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u})^{2}\right]+\frac{1}{4 \epsilon^{3}} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[\left(\mathrm{~T}_{\delta} A(\mathbf{u})\right)^{4}\right] \\
& \leq \frac{3 \epsilon}{4} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u})^{2}\right]+\frac{1}{4 \epsilon^{3}} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u})^{2}\right]^{2}
\end{aligned}
$$

Human-readable proof

$$
\begin{aligned}
W(A, A) & =\underset{\substack{\mathbf{v} \sim N_{\delta}(\mathbf{u})}}{\mathbb{E}}[A(\mathbf{u}) A(\mathbf{v})]=\underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u}) \mathrm{T}_{\delta} A(\mathbf{u})\right] \\
& \leq \frac{3 \epsilon}{4} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u})^{2}\right]+\frac{1}{4 \epsilon^{3}} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[\left(\mathrm{~T}_{\delta} A(\mathbf{u})\right)^{4}\right] \\
& \leq \frac{3 \epsilon}{4} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u})^{2}\right]+\frac{1}{4 \epsilon^{3}} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u})^{2}\right]^{2} \\
& =\underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u})^{2}\right]\left(\frac{3 \epsilon}{4}+\frac{1}{4 \epsilon^{3}} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u})^{2}\right]\right)
\end{aligned}
$$

Human-readable proof

$$
\begin{aligned}
W(A, A) & =\underset{\substack{\mathbf{u} \sim N_{\delta}(\mathbf{u})} \mathbb{E}}{\mathbb{E}}[A(\mathbf{u}) A(\mathbf{v})]=\underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u}) \mathrm{T}_{\delta} A(\mathbf{u})\right] \\
& \leq \frac{3 \epsilon}{4} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u})^{2}\right]+\frac{1}{4 \epsilon^{3}} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[\left(\mathrm{~T}_{\delta} A(\mathbf{u})\right)^{4}\right] \\
& \leq \frac{3 \epsilon}{4} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u})^{2}\right]+\frac{1}{4 \epsilon^{3}} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u})^{2}\right]^{2} \\
& =\underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u})^{2}\right]\left(\frac{3 \epsilon}{4}+\frac{1}{4 \epsilon^{3}} \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[A(\mathbf{u})^{2}\right]\right)
\end{aligned}
$$

2-to-4 hypercontractivity; two-function version:

$$
\underset{\mathbf{u} \sim V}{\mathbb{E}}\left[\left(\mathrm{~T}_{\delta} F(\mathbf{u})\right)^{2}\left(\mathrm{~T}_{\delta} G(\mathbf{u})\right)^{2}\right] \leq \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[F(\mathbf{u})^{2}\right] \underset{\mathbf{u} \sim V}{\mathbb{E}}\left[G(\mathbf{u})^{2}\right]
$$

Roadmap for rest of the talk

1. size-degree trade-offs
2. expanding systems of parity equations
3. interpolation
4. some open problems
5. credit

Trade-offs

Let F be an unsatisfiable 3-CNF on N variables.
Then:

$$
D=O(\sqrt{N \log (S)}) \quad \text { or } \quad S=2^{\Omega\left(D^{2} / N\right)}
$$

Trade-offs

Let F be an unsatisfiable 3-CNF on N variables.
Then:

$$
D=O(\sqrt{N \log (S)}) \quad \text { or } \quad S=2^{\Omega\left(D^{2} / N\right)}
$$

for Resolution:

S : minimum length of resolution refutations of F
D : minimum width of resolution refutation of F

Trade-offs

Let F be an unsatisfiable 3-CNF on N variables.
Then:

$$
D=O(\sqrt{N \log (S)}) \quad \text { or } \quad S=2^{\Omega\left(D^{2} / N\right)}
$$

for Resolution:

S : minimum length of resolution refutations of F
D : minimum width of resolution refutation of F

for PC:

S : minimum monomial-size of PC refutations of F
D : minimum degree of PC refutations of F

Size-degree trade-off for height-1 LS

Theorem: For height-1 LS-refutations of a 3-CNF F we have

$$
D=O(\sqrt{N \log S}) \quad \text { or } \quad S=2^{\Omega\left(D^{2} / N\right)}
$$

where
S : minimum monomial-size of height-1 LS-refutations of F D : minimum degree of height-1 LS-refutations of F

Sanity checks

Check 1:

S of EPHP_{n-1}^{n} is $O\left(n^{4}\right)$
D of EPHP_{n-1}^{n} is n
BUT
N of EPHP_{n-1}^{n} is $\geq n^{2}$.

Sanity checks

Check 1:

```
\(S\) of \(\mathrm{EPHP}_{n-1}^{n}\) is \(O\left(n^{4}\right)\)
\(D\) of \(\mathrm{EPHP}_{n-1}^{n}\) is \(n\)
BUT
\(N\) of \(\mathrm{EPHP}_{n-1}^{n}\) is \(\geq n^{2}\).
```

Check 2:
S of $G-\mathrm{PHP}_{n-1}^{n}$ is $O\left(n^{4}\right)$
N of $G-\mathrm{PHP}_{n-1}^{n}$ is $\leq n \cdot \operatorname{maxdeg}(G)$
BUT
D of $G-\mathrm{PHP}_{n-1}^{n}$ is $O(\operatorname{maxdeg}(G)) \quad$ [exercise]

Proof of size-degree trade-off

Proof strategy:

refutation of F with $\leq S$ many monomials of degree $\geq D$
\Downarrow
refutation of F with degree $\leq D+(N / D) \ln (S)$

Proof of size-degree trade-off

Proof strategy:

$$
\begin{gathered}
\text { refutation of } F \text { with } \leq S \text { many monomials of degree } \geq D \\
\Downarrow \\
\text { refutation of } F \text { with degree } \leq D+(N / D) \ln (S)
\end{gathered}
$$

Once this is proved, set:

$$
D=\sqrt{N \ln (S)}
$$

The inductive argument

Proof by induction on N :

refutation of F with $\leq S$ many monomials of degree $\geq D$
\Downarrow
refutation of F with degree $\leq D+(N / D) \ln (S)$

The inductive argument

Proof by induction on N :

refutation of F with $\leq S$ many monomials of degree $\geq D$
\Downarrow
refutation of F with degree $\leq D+(N / D) \ln (S)$

1. Start at a refutation Π with exactly $T \leq S$ monomials of degree $\geq D$.

The inductive argument

Proof by induction on N :

refutation of F with $\leq S$ many monomials of degree $\geq D$
\Downarrow
refutation of F with degree $\leq D+(N / D) \ln (S)$

1. Start at a refutation Π with exactly $T \leq S$ monomials of degree $\geq D$.
2. Find a variable X that appears $\geq D T / N$ many such monomials.

The inductive argument

Proof by induction on N :

refutation of F with $\leq S$ many monomials of degree $\geq D$
\Downarrow
refutation of F with degree $\leq D+(N / D) \ln (S)$

1. Start at a refutation Π with exactly $T \leq S$ monomials of degree $\geq D$.
2. Find a variable X that appears $\geq D T / N$ many such monomials.
3. Apply induction hypothesis to $\left.\Pi\right|_{X=0}$ and $\left.\Pi\right|_{X=1}$.

The inductive argument

Proof by induction on N :
refutation of F with $\leq S$ many monomials of degree $\geq D$
\Downarrow
refutation of F with degree $\leq D+(N / D) \ln (S)$

1. Start at a refutation Π with exactly $T \leq S$ monomials of degree $\geq D$.
2. Find a variable X that appears $\geq D T / N$ many such monomials.
3. Apply induction hypothesis to $\left.\Pi\right|_{X=0}$ and $\left.\Pi\right|_{X=1}$.
4. (note: $\left.\Pi\right|_{X=0}$ has $\leq T(1-D / N) \leq S(1-D / N)$ such monomials).

The inductive argument

Proof by induction on N :
refutation of F with $\leq S$ many monomials of degree $\geq D$
\Downarrow
refutation of F with degree $\leq D+(N / D) \ln (S)$

1. Start at a refutation Π with exactly $T \leq S$ monomials of degree $\geq D$.
2. Find a variable X that appears $\geq D T / N$ many such monomials.
3. Apply induction hypothesis to $\left.\Pi\right|_{X=0}$ and $\left.\Pi\right|_{X=1}$.
4. (note: $\left.\Pi\right|_{X=0}$ has $\leq T(1-D / N) \leq S(1-D / N)$ such monomials).
5. (note: $\left.\Pi\right|_{X=1}$ has still $\leq T \leq S$ such monomials).

The inductive argument

Proof by induction on N :
refutation of F with $\leq S$ many monomials of degree $\geq D$
\Downarrow
refutation of F with degree $\leq D+(N / D) \ln (S)$

1. Start at a refutation Π with exactly $T \leq S$ monomials of degree $\geq D$.
2. Find a variable X that appears $\geq D T / N$ many such monomials.
3. Apply induction hypothesis to $\left.\Pi\right|_{X=0}$ and $\left.\Pi\right|_{X=1}$.
4. (note: $\left.\Pi\right|_{X=0}$ has $\leq T(1-D / N) \leq S(1-D / N)$ such monomials).
5. (note: $\left.\Pi\right|_{X=1}$ has still $\leq T \leq S$ such monomials).
6. I.H. for $\left.F\right|_{X=0}$ gives degree $\leq D+(N / D) \ln (S)-1$.

The inductive argument

Proof by induction on N :
refutation of F with $\leq S$ many monomials of degree $\geq D$
\Downarrow
refutation of F with degree $\leq D+(N / D) \ln (S)$

1. Start at a refutation Π with exactly $T \leq S$ monomials of degree $\geq D$.
2. Find a variable X that appears $\geq D T / N$ many such monomials.
3. Apply induction hypothesis to $\left.\Pi\right|_{X=0}$ and $\left.\Pi\right|_{X=1}$.
4. (note: $\left.\Pi\right|_{X=0}$ has $\leq T(1-D / N) \leq S(1-D / N)$ such monomials).
5. (note: $\left.\Pi\right|_{X=1}$ has still $\leq T \leq S$ such monomials).
6. I.H. for $\left.F\right|_{X=0}$ gives degree $\leq D+(N / D) \ln (S)-1$.
7. I.H. for $\left.F\right|_{X=1}$ gives degree $\leq D+(N / D) \ln (S)$.

The inductive argument

Proof by induction on N :
refutation of F with $\leq S$ many monomials of degree $\geq D$
\Downarrow
refutation of F with degree $\leq D+(N / D) \ln (S)$

1. Start at a refutation Π with exactly $T \leq S$ monomials of degree $\geq D$.
2. Find a variable X that appears $\geq D T / N$ many such monomials.
3. Apply induction hypothesis to $\left.\Pi\right|_{X=0}$ and $\left.\Pi\right|_{X=1}$.
4. (note: $\left.\Pi\right|_{X=0}$ has $\leq T(1-D / N) \leq S(1-D / N)$ such monomials).
5. (note: $\left.\Pi\right|_{X=1}$ has still $\leq T \leq S$ such monomials).
6. I.H. for $\left.F\right|_{X=0}$ gives degree $\leq D+(N / D) \ln (S)-1$.
7. I.H. for $\left.F\right|_{X=1}$ gives degree $\leq D+(N / D) \ln (S)$.
8. Combine into degree $\leq D+(N / D) \ln (S)$ for F.

Combination lemma

Combination lemma:

Combination lemma

Combination lemma:

$$
\begin{array}{lll}
\left.F\right|_{X=0} & \vdash-1 \geq 0 & \text { degree- }(D-1), \text { height-1 } \\
\left.F\right|_{X=1} & \vdash-1 \geq 0 & \text { degree- } D, \text { height-1 }
\end{array}
$$

Combination Iemma

Combination lemma:

$$
\begin{array}{lll}
\left.F\right|_{X=0} & \vdash-1 \geq 0 \\
\left.F\right|_{X=1} & \vdash-1 \geq 0
\end{array}
$$

$$
\begin{array}{ll}
F & \vdash X \geq \epsilon \\
F & \vdash X \leq 1-\delta
\end{array}
$$

degree- $(D-1)$, height-1
degree- D, height-1
degree- $(D-1)$, height- 1 , for some $\epsilon>0$ degree- D, height-1, for some $\delta>0$

Combination Iemma

Combination Iemma:

$$
\begin{array}{lll}
\left.F\right|_{X=0} & \vdash-1 \geq 0 & \text { degree- }(D-1), \text { height-1 } \\
\left.F\right|_{X=1} & \vdash-1 \geq 0 & \text { degree- } D, \text { height-1 } \\
F & \vdash X \geq \epsilon & \text { degree- }(D-1), \text { height-1, } \\
F & \vdash X \leq 1-\delta & \text { degree- } D, \text { height-1, } \\
& \vdash X \\
F & \vdash X \bar{X} \geq \epsilon \bar{X} & \text { degree- } D, \text { height-1 } \\
F & \vdash \epsilon X \leq \epsilon(1-\delta) & \text { degree- } D, \text { height-1 }
\end{array}
$$

Combination Iemma

Combination Iemma:

$$
\begin{array}{lll}
\left.F\right|_{X=0} & \vdash-1 \geq 0 & \text { degree- }(D-1), \text { height-1 } \\
\left.F\right|_{X=1} & \vdash-1 \geq 0 & \text { degree- } D, \text { height-1 } \\
F & \vdash X \geq \epsilon & \text { degree- }(D-1), \text { height-1, } \\
F & \vdash X \leq 1-\delta & \text { degree- } D, \text { height-1, } \\
F & \vdash X \bar{X} \geq \epsilon \bar{X} & \text { degree- } D, \text { height-1 } \\
F & \vdash \epsilon X \leq \epsilon(1-\delta) & \text { degree- } D, \text { height-1 } \\
F & \vdash X \bar{X} \geq \epsilon \delta & \text { degree- } D, \text { height-1 }
\end{array}
$$

Combination Iemma

Combination lemma:

$$
\begin{array}{lll}
\left.F\right|_{X=0} & \vdash-1 \geq 0 & \text { degree- }(D-1), \text { height-1 } \\
\left.F\right|_{X=1} & \vdash-1 \geq 0 & \text { degree- } D, \text { height-1 } \\
F & \vdash X \geq \epsilon & \text { degree- }(D-1), \text { height-1, } \\
F & \vdash X \leq 1-\delta & \text { degree- } D, \text { height-1, } \\
F & \vdash X \bar{X} \geq \epsilon \bar{X} & \text { degree- } D, \text { height-1 } \\
F & \vdash \epsilon X \leq \epsilon(1-\delta) & \text { degree- } D, \text { height-1 } \\
F & \vdash X \bar{X} \geq \epsilon \delta & \text { degree- } D, \text { height-1 } \\
F & \vdash & \\
F & \vdash 0 \geq \epsilon \delta & \text { degree- } D, \text { height-1 }
\end{array}
$$

Unrestricting lemma

Unrestricting lemma:

$$
\begin{aligned}
& \left.F\right|_{X=0} \vdash_{D}^{1}-1 \geq 0 \\
& \Downarrow \\
& F \cup\{X \leq 0\} \vdash_{D}^{1}-1 \geq 0 \\
& \Downarrow \\
& \min \left\{E(X): E \in \mathcal{E}_{D}(F)\right\}>0 \\
& \forall \\
& \max \left\{c: F \vdash_{D}^{1} X \geq c\right\}>0
\end{aligned}
$$

Unrestricting lemma

Unrestricting lemma:

$$
\begin{aligned}
& \left.F\right|_{X=0} \vdash_{D}^{1}-1 \geq 0 \\
& \forall \\
& F \cup\{X \leq 0\} \vdash_{D}^{1}-1 \geq 0 \\
& \Downarrow \\
& \min \left\{E(X): E \in \mathcal{E}_{D}(F)\right\}>0 \\
& \Downarrow \\
& \max \left\{c: F \vdash_{D}^{1} X \geq c\right\}>0
\end{aligned}
$$

Consequences: I.b.'s for tree-like LS

Corollary (if done carefully):
Setting
L : minimum length of tree-like degree-2 LS-refutations of F D : minimum degree of height-1 LS-refutation of F
we have

$$
D=O(\sqrt{N \log L}) \quad \text { or } \quad L=2^{\Omega\left(D^{2} / N\right)}
$$

Feasible interpolation

Problem statement:

Feasible interpolation

Problem statement:

Given a refutation of

$$
A_{0}\left(\mathbf{a}, \mathrm{y}_{0}\right) \wedge A_{1}\left(\mathbf{a}, \mathbf{y}_{1}\right)
$$

find $i \in\{0,1\}$ so that

$$
A_{i}\left(\mathbf{a}, \mathbf{y}_{i}\right) \text { is unsatisfiable. }
$$

Feasible interpolation for degree-2 LS

The goal is to convert

$$
\begin{aligned}
& K_{1}(\mathbf{y})+L_{1}(\mathbf{z})+c_{1} \geq 0 \\
& K_{2}(\mathbf{y})+L_{2}(\mathbf{z})+c_{2} \geq 0 \\
& \vdots \\
& c_{m} \geq 0
\end{aligned}
$$

into

$$
\begin{array}{ll}
K_{1}(\mathbf{y})+a_{1} \geq 0 & L_{1}(\mathbf{z})+b_{1} \geq 0 \\
K_{2}(\mathbf{y})+a_{2} \geq 0 & L_{2}(\mathbf{z})+b_{2} \geq 0 \\
\vdots & \vdots \\
a_{m} \geq 0 & b_{m} \geq 0
\end{array}
$$

where

$$
c_{i}=a_{i}+b_{i} \text { for all } i=1, \ldots, m
$$

One inference step:

$$
\begin{array}{ll}
\sum_{i, j} c_{i}^{1} \cdot\left(K_{i}(\mathbf{y})+L_{i}(\mathbf{z})+c_{i}\right) \cdot y_{j} & + \\
\sum_{i, j} c_{i}^{2} \cdot\left(K_{i}(\mathbf{y})+L_{i}(\mathbf{z})+c_{i}\right) \cdot \bar{y}_{j} & + \\
\sum_{i, j} c_{i}^{3} \cdot\left(K_{i}(\mathbf{y})+L_{i}(\mathbf{z})+c_{i}\right) \cdot z_{j} & + \\
\sum_{i, j} c_{i}^{4} \cdot\left(K_{i}(\mathbf{y})+L_{i}(\mathbf{z})+c_{i}\right) \cdot \bar{z}_{j} & + \\
\sum_{i} c_{i}^{5} \cdot\left(K_{i}(\mathbf{y})+L_{i}(\mathbf{z})+c_{i}\right) & + \\
\sum_{j} c_{i}^{6} \cdot\left(y_{j}^{2}-y_{j}\right) & + \\
\sum_{j} c_{i}^{7} \cdot\left(z_{j}^{2}-z_{j}\right) & \\
= & \\
K_{t}(\mathbf{y})+L_{t}(\mathbf{z})+c_{t} &
\end{array}
$$

Inductively $c_{i}=a_{i}+b_{i}$, so also:

$$
\begin{array}{llll}
\sum_{i, j} c_{i}^{1} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot y_{j} & + & \sum_{i, j} c_{i}^{1} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot y_{j} & + \\
\sum_{i, j} c_{i}^{2} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot \bar{y}_{j} & + & \sum_{i, j} c_{i}^{2} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot \bar{y}_{j} & + \\
\sum_{i, j} c_{i}^{3} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot z_{j} & + & \sum_{i, j} c_{i}^{3} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot z_{j} & + \\
\sum_{i, j}^{4} c_{i}^{4} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot \bar{z}_{j} & + & \sum_{i, j}^{4} c_{i}^{4} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot \bar{z}_{j} & + \\
\sum_{i} c_{i}^{5} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) & + & \sum_{i} c_{i}^{5} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) & + \\
\sum_{j} c_{i}^{6} \cdot\left(y_{j}^{2}-y_{j}\right) & + & \\
\sum_{j} c_{i}^{7} \cdot\left(z_{j}^{2}-z_{j}\right) & & \\
= & & \\
K_{t}(\mathbf{y})+L_{t}(\mathbf{z})+c_{t} & &
\end{array}
$$

$$
\begin{array}{ll}
\sum_{i, j} c_{i}^{1} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot y_{j}+ & \sum_{i, j} c_{i}^{3} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot z_{j}+ \\
\sum_{i, j} c_{i}^{2} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot \bar{y}_{j}+ & \sum_{i, j} c_{i}^{4} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot \bar{z}_{j}+ \\
\sum_{i} c_{i}^{5} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right)+ & \sum_{i} c_{i}^{5} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right)+ \\
\sum_{j} c_{i}^{6} \cdot\left(y_{j}^{2}-y_{j}\right) & \sum_{j} c_{i}^{7} \cdot\left(z_{j}^{2}-z_{j}\right) \\
= & = \\
= & L_{t}^{\prime}(\mathbf{z})+b^{\prime}
\end{array}
$$

$$
\begin{aligned}
& \sum_{i, j} c_{i}^{1} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot y_{j}+ \\
& \sum_{i, j} c_{i}^{2} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot \bar{y}_{j}+ \\
& \sum_{i, j} c_{i}^{3} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot z_{j}+ \\
& \sum_{i, j} c_{i}^{4} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot \bar{z}_{j} \\
& = \\
& K_{t}^{\prime \prime}(\mathbf{y})+L_{t}^{\prime \prime}(\mathbf{z})+c^{\prime \prime}
\end{aligned}
$$

$$
\begin{array}{ll}
\sum_{i, j} c_{i}^{1} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot y_{j}+ & \sum_{i, j} c_{i}^{3} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot z_{j}+ \\
\sum_{i, j} c_{i}^{2} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot \bar{y}_{j}+ & \sum_{i, j} c_{i}^{4} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot \bar{z}_{j}+ \\
\sum_{i} c_{i}^{5} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right)+ & \sum_{i} c_{i}^{5} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right)+ \\
\sum_{j} c_{i}^{6} \cdot\left(y_{j}^{2}-y_{j}\right) & \sum_{j} c_{i}^{7} \cdot\left(z_{j}^{2}-z_{j}\right) \\
= & = \\
K_{t}^{\prime}(\mathbf{y})+a^{\prime} & L_{t}^{\prime}(\mathbf{z})+b^{\prime}
\end{array}
$$

$$
\begin{aligned}
& \left\{K_{i}(\mathbf{y})+a_{i} \geq 0\right\} \\
& \left\{L_{i}(\mathbf{z})+b_{i} \geq 0\right\} \quad \models_{\mathbb{R}} \quad K_{t}^{\prime \prime}(\mathbf{y})+L_{t}^{\prime \prime}(\mathbf{z})+c^{\prime \prime} \geq 0 \\
& \left\{0 \leq y_{j} \leq 1\right\} \\
& \left\{0 \leq z_{j} \leq 1\right\}
\end{aligned}
$$

$$
\begin{array}{ll}
\sum_{i, j} c_{i}^{1} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot y_{j}+ & \sum_{i, j} c_{i}^{3} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot z_{j}+ \\
\sum_{i, j} c_{i}^{2} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot \bar{y}_{j}+ & \sum_{i, j} c_{i}^{4} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot \bar{z}_{j}+ \\
\sum_{i} c_{i}^{5} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right)+ & \sum_{i} c_{i}^{5} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right)+ \\
\sum_{j} c_{i}^{6} \cdot\left(y_{j}^{2}-y_{j}\right) & \sum_{j} c_{i}^{7} \cdot\left(z_{j}^{2}-z_{j}\right) \\
= & = \\
K_{t}^{\prime}(\mathbf{y})+a^{\prime} & L_{t}^{\prime}(\mathbf{z})+b^{\prime}
\end{array}
$$

$$
\begin{aligned}
& \left\{K_{i}(\mathbf{y})+a_{i} \geq 0\right\} \\
& \left\{L_{i}(\mathbf{z})+b_{i} \geq 0\right\} \quad \models_{\mathbb{R}} \quad K_{t}^{\prime \prime}(\mathbf{y})+L_{t}^{\prime \prime}(\mathbf{z})+c^{\prime \prime} \geq 0 \\
& \left\{0 \leq y_{j} \leq 1\right\} \\
& \left\{0 \leq z_{j} \leq 1\right\}
\end{aligned} \quad \begin{aligned}
& \\
& \{0
\end{aligned}
$$

Apply Farkas' Lemma!

$$
\begin{array}{ll}
\sum_{i, j} c_{i}^{1} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot y_{j}+ & \sum_{i, j} c_{i}^{3} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot z_{j}+ \\
\sum_{i, j} c_{i}^{2} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot \bar{y}_{j}+ & \sum_{i, j} c_{i}^{4} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot \bar{z}_{j}+ \\
\sum_{i} c_{i}^{5} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right)+ & \sum_{i} c_{i}^{5} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right)+ \\
\sum_{j} c_{i}^{6} \cdot\left(y_{j}^{2}-y_{j}\right) & \sum_{j} c_{i}^{7} \cdot\left(z_{j}^{2}-z_{j}\right) \\
= & = \\
K_{t}^{\prime}(\mathbf{y})+a^{\prime} & L_{t}^{\prime}(\mathbf{z})+b^{\prime}
\end{array}
$$

$$
\begin{aligned}
& \sum_{i} c_{i}^{8} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right)+ \\
& \sum_{i} c_{i}^{9} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \\
& = \\
& K_{t}^{\prime \prime}(\mathbf{y})+L_{t}^{\prime \prime}(\mathbf{z})+c^{\prime \prime}
\end{aligned}
$$

$$
\begin{array}{ll}
\sum_{i, j} c_{i}^{1} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot y_{j}+ & \sum_{i, j} c_{i}^{3} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot z_{j}+ \\
\sum_{i, j} j_{i}^{2} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot \bar{y}_{j}+ & \sum_{i, j} c_{c}^{4} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot \bar{z}_{j}+ \\
\sum_{i}^{5} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right)+ & \sum_{i} c_{i}^{5} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right)+ \\
\sum_{j} c_{i}^{6} \cdot\left(y_{j}^{2}-y_{j}\right) & \sum_{j} c_{i}^{7} \cdot\left(z_{j}^{2}-z_{j}\right) \\
= & = \\
K_{t}^{\prime}(\mathbf{y})+a^{\prime} & L_{t}^{\prime}(\mathbf{z})+b^{\prime}
\end{array}
$$

$$
\begin{aligned}
& \sum_{i} c_{i}^{8} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right)+ \\
& \sum_{i} c_{i}^{9} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \\
& =K_{t}^{\prime \prime}(\mathbf{y})+L_{t}^{\prime \prime}(\mathbf{z})+c^{\prime \prime}
\end{aligned}
$$

Split!

$$
\begin{array}{ll}
\sum_{i, j} c_{i}^{1} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot y_{j}+ & \sum_{i, j} c_{i}^{3} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot z_{j}+ \\
\sum_{i, j} c_{i}^{2} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \cdot \bar{y}_{j}+ & \sum_{i, j} c_{i}^{4} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \cdot \bar{z}_{j}+ \\
\sum_{i} c_{i}^{5} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right)+ & \sum_{i} c_{i}^{5} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right)+ \\
\sum_{j} c_{i}^{6} \cdot\left(y_{j}^{2}-y_{j}\right) & \sum_{j} c_{i}^{7} \cdot\left(z_{j}^{2}-z_{j}\right) \\
= & = \\
K_{t}^{\prime}(\mathbf{y})+a^{\prime} & L_{t}^{\prime}(\mathbf{z})+b^{\prime}
\end{array}
$$

$$
\begin{aligned}
& \sum_{i} c_{i}^{8} \cdot\left(K_{i}(\mathbf{y})+a_{i}\right) \\
& = \\
& K_{t}^{\prime \prime}(\mathbf{y})+a^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i} c_{i}^{9} \cdot\left(L_{i}(\mathbf{z})+b_{i}\right) \\
& = \\
& L_{t}^{\prime \prime}(\mathbf{z})+b^{\prime \prime}
\end{aligned}
$$

where $a^{\prime \prime}+b^{\prime \prime}=c^{\prime \prime}$.

Consequences: conditional I.b.'s for dag-like

Corollary:

If explicit one-way permutations exist, then there are explicit 3-CNFs that are hard for (size of) dag-like degree-2 LS and LS+.

Consequences: conditional I.b.'s for dag-like

Corollary:

If explicit one-way permutations exist, then there are explicit 3-CNFs that are hard for (size of) dag-like degree-2 LS and LS ${ }^{+}$.

$$
\left(F(Y)=X \wedge Y_{i}=0\right) \wedge\left(F(Z)=X \wedge Z_{i}=1\right)
$$

Open problems

Open problems

1. unconditional size lower bounds for dag-like LS and LS ${ }^{+}$?

Open problems

1. unconditional size lower bounds for dag-like LS and LS^{+}?
2. degree- $\omega(1)$ SOS I.b. for SSE and UG problems?

Open problems

1. unconditional size lower bounds for dag-like LS and LS ${ }^{+}$?
2. degree- $\omega(1)$ SOS I.b. for SSE and UG problems?
3. degree- $\omega(1)$ SOS I.b. for 1.99-approx. of vertex cover?

Open problems

1. unconditional size lower bounds for dag-like LS and LS ${ }^{+}$?
2. degree- $\omega(1)$ SOS I.b. for SSE and UG problems?
3. degree- $\omega(1)$ SOS I.b. for 1.99-approx. of vertex cover?
4. degree- $\Omega(n)$ SA I.b. for 1.99-approx. of vertex cover?

Open problems

1. unconditional size lower bounds for dag-like LS and LS ${ }^{+}$?
2. degree- $\omega(1)$ SOS I.b. for SSE and UG problems?
3. degree- $\omega(1)$ SOS I.b. for 1.99-approx. of vertex cover?
4. degree- $\Omega(n)$ SA I.b. for 1.99-approx. of vertex cover?
5. candidates missing! [SOS killed them]

References (1 of 2)

- Lovasz-Schrijver 1991: degree-2 inferences only; iterate.
- Sherali-Adams 1990: nn-juntas without twin variables; do not iterate.
- Parrilo 2000: beyond 0-1, thus sos only; do not iterate.
- Lasserre 2000: beyond 0-1 via primal-dual approach; do not iterate.
- Pudlak 1997: explicit inference rules for original LS.
- Grigoriev-Vorobyov 1999: Positivstellensatz calculus inspired by PC.
- Grigoriev-Hirsch-Pasechnik 2002: many variants, systematic,...
- Dantchev 2007: Sherali-Adams with twin variables.

References (2 of 2)

- Upper bounds for $\sum_{i=1}^{n} X_{i} \leq 1$ and PHP in LS: Pudlak.
- Upper bounds for PHP in SA: Dantchev-Martin-Rhodes 2009.
- Upper bounds for $\sum_{i=1}^{n} X_{i} \leq 1$ in SOS: Lovasz-Schrijver.
- Upper bounds for PHP in SOS: Grigoriev-Hirsch-Pasechnik.
- Lower bound PHP for SA: Dantchev-Martin-Rhodes 2009.
- SSE problem: Raghavendra-Steurer .
- Hypercontractivity in SOS: Barak et al. 2012, O’Donnell-Zhu 2012.
- Degree-size tradeoff for LS and LS+: Pitassi-Segerlind 2009-2012.
- Interpolation for degree-2 LS: Pudlak 1997.
- Interpolation for degree-2 LS+: Dash 2000.
- Lower bound Tseitin: Grigoriev 1999.
- Lower bound random 3-XOR: Schoenebeck 2008.

