LIMITS OF LINEAR AND SEMIDEFINITE RELAXATIONS FOR COMBINATORIAL PROBLEMS

Albert Atserias Universitat Politècnica de Catalunya Barcelona, Spain

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- linear and semidefinite programming
- approximation algorithms and computational complexity
- logic and finite model theory

Part I

LINEAR PROGRAMMING RELAXATIONS

Vertex cover

Problem:

Given an undirected graph G = (V, E), find the smallest number of vertices that touches every edge.

Notation:

vc(G).

Observe:

 $A \subseteq V$ is a vertex cover of Giff $V \setminus A$ is an independent set of G

Linear programming relaxation

LP relaxation:

$$\begin{array}{l} \text{minimize } \sum_{u \in V} x_u \\ \text{subject to} \\ x_u + x_v \geq 1 \quad \text{for every } (u, v) \in E, \\ x_u \geq 0 \qquad \qquad \text{for every } u \in V. \end{array}$$

Notation:

 $\operatorname{fvc}(G)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Approximation:

$$\operatorname{fvc}(G) \leq \operatorname{vc}(G) \leq 2 \cdot \operatorname{fvc}(G)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Integrality gap:

$$\sup_{G} \frac{\operatorname{vc}(G)}{\operatorname{fvc}(G)}$$

Approximation:

$$\operatorname{fvc}(G) \leq \operatorname{vc}(G) \leq 2 \cdot \operatorname{fvc}(G)$$

Integrality gap:

$$\sup_{G} \frac{\operatorname{vc}(G)}{\operatorname{fvc}(G)} = 2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Approximation:

$$\operatorname{fvc}(G) \leq \operatorname{vc}(G) \leq 2 \cdot \operatorname{fvc}(G)$$

Integrality gap:

$$\sup_{G} \frac{\operatorname{vc}(G)}{\operatorname{fvc}(G)} = 2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Gap examples:

1.
$$\operatorname{vc}(K_{2n+1}) = 2n$$
,
2. $\operatorname{fvc}(K_{2n+1}) = \frac{1}{2}(2n+1)$.

LP tightenings

Add triangle inequalities:

 $\begin{array}{ll} \text{minimize } \sum_{u \in V} x_u \\ \text{subject to} \\ x_u + x_v \geq 1 & \text{for every } (u, v) \in E, \\ x_u \geq 0 & \text{for every } u \in V, \\ x_u + x_v + x_w \geq 2 & \text{for every triangle } \{u, v, w\} \text{ in } G. \end{array}$

LP tightenings

Add triangle inequalities:

minimize $\sum_{u \in V} x_u$ subject to $x_u + x_v \ge 1$ for every $(u, v) \in E$, $x_u \ge 0$ for every $u \in V$, $x_u + x_v + x_w \ge 2$ for every triangle $\{u, v, w\}$ in G.

Integrality gap:

Remains 2.

Gap examples:

Triangle-free graphs with small independence number.

Sherali-Adams and Lasserre/Sums-of-Squares Hierarchies

Hierarchy:

Systematic ways of generating all linear inequalities that are valid over the integral hull.

Sherali-Adams and Lasserre/Sums-of-Squares Hierarchies

Hierarchy:

Systematic ways of generating all linear inequalities that are valid over the integral hull.

Given a polytope:

$$P = \{x \in \mathbb{R}^n : Ax \ge b\},\$$
$$P^{\mathbb{Z}} = \text{convexhull}\{x \in \{0,1\}^n : Ax \ge b\}.$$

Sherali-Adams and Lasserre/Sums-of-Squares Hierarchies

Hierarchy:

Systematic ways of generating all linear inequalities that are valid over the integral hull.

Given a polytope:

$$P = \{x \in \mathbb{R}^n : Ax \ge b\},\$$

$$P^{\mathbb{Z}} = \text{convexhull}\{x \in \{0, 1\}^n : Ax \ge b\}.$$

Produce explicit nested polytopes:

$$P = P^1 \supseteq P^2 \supseteq \cdots \supseteq P^{n-1} \supseteq P^n = P^{\mathbb{Z}}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Given linear inequalities

 $L_1 \geq 0, \ldots, L_m \geq 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Given linear inequalities

 $L_1 \geq 0, \ldots, L_m \geq 0$

produce all linear inequalities of the form

$$Q_0 + \sum_{j=1}^m L_j Q_j + \sum_{i=1}^n (x_i^2 - x_i) Q_i = L \ge 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given linear inequalities

 $L_1 \geq 0, \ldots, L_m \geq 0$

produce all linear inequalities of the form

$$Q_0 + \sum_{j=1}^m L_j Q_j + \sum_{i=1}^n (x_i^2 - x_i) Q_i = L \ge 0$$

where

$$Q_j = \sum_{\ell \in I} \, Q_{j\ell}^2$$
 with

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given linear inequalities

 $L_1 \geq 0, \ldots, L_m \geq 0$

produce all linear inequalities of the form

$$Q_0 + \sum_{j=1}^m L_j Q_j + \sum_{i=1}^n (x_i^2 - x_i) Q_i = L \ge 0$$

where

$$Q_j = \sum_{\ell \in I} \, Q_{j\ell}^2$$
 with

and

$$\deg(Q_0), \deg(L_jQ_j), \deg((x_i^2 - x_i)Q_i) \le k.$$

Given linear inequalities

 $L_1 \geq 0, \ldots, L_m \geq 0$

produce all linear inequalities of the form

$$Q_0 + \sum_{j=1}^m L_j Q_j + \sum_{i=1}^n (x_i^2 - x_i) Q_i = L \ge 0$$

where

$${\it Q}_j = \sum_{\ell \in {\it I}} {\it Q}_{j\ell}^2$$
 with

and

$$\deg(Q_0), \deg(L_jQ_j), \deg((x_i^2 - x_i)Q_i) \le k.$$

Then:

 $P^{k} = \{x \in \mathbb{R}^{n} : L(x) \ge 0 \text{ for each produced } L \ge 0\}$

P^k: Sherali-Adams (SA) Hierarchy

Given linear inequalities

 $L_1 \geq 0, \ldots, L_m \geq 0$

produce all linear inequalities of the form

$$Q_0 + \sum_{j=1}^m L_j Q_j + \sum_{i=1}^n (x_i^2 - x_i) Q_i = L \ge 0$$

where

$$Q_i = \sum_{\ell \in J} c_\ell \prod_{i \in A_\ell} x_i \prod_{i \in B_\ell} (1-x_i) \quad ext{ with } \quad c_\ell \geq 0$$

and

$$\deg(Q_0), \deg(L_jQ_j), \deg((x_i^2 - x_i)Q_i) \leq k.$$

Then:

 $P^{k} = \{x \in \mathbb{R}^{n} : L(x) \ge 0 \text{ for each produced } L \ge 0\}$

Example: triangles in P^3

For each triangle $\{u, v, w\}$ in G:

$$Q_{0}+ (x_{u} + x_{v} - 1)Q_{1}+ (x_{u} + x_{w} - 1)Q_{2}+ (x_{v} + x_{w} - 1)Q_{3}+ (x_{u}^{2} - x_{u})Q_{4}+ (x_{v}^{2} - x_{v})Q_{5}+ (x_{w}^{2} - x_{w})Q_{5}+ (x_{w}^{2} - x_{w})Q_{6} = ? (x_{u} + x_{v} + x_{w} - 2).$$

 $Q_i = a_i + b_i x_u + c_i x_v + d_i x_w + e_i x_u x_v + f_i x_u x_w + g_i x_v x_w + h_i x_u x_v x_w$

Lift-and-project:

- Step 1: lift from \mathbb{R}^n up to $\mathbb{R}^{(n+1)^k}$ and linearize the problem
- Step 2: project from $\mathbb{R}^{(n+1)^k}$ down to \mathbb{R}^n

Proposition:

Optimization of linear functions over P^k can be solved in time[†] $m^{O(1)}n^{O(k)}$.

Proof:

- 1. for SA- P^k : by linear programming
- 2. for SOS- P^k : by semidefinite programming

Define

 $\operatorname{sa}^k \operatorname{fvc}(G)$: optimum fractional vertex cover of SA- P^k $\operatorname{sos}^k \operatorname{fvc}(G)$: optimum fractional vertex cover of SOS- P^k

Define

 $\operatorname{sa}^k \operatorname{fvc}(G)$: optimum fractional vertex cover of SA- P^k $\operatorname{sos}^k \operatorname{fvc}(G)$: optimum fractional vertex cover of SOS- P^k

Open problem:

$$\sup_{\mathcal{G}} \frac{\operatorname{vc}(\mathcal{G})}{\operatorname{sos}^4 \operatorname{fvc}(\mathcal{G})} \stackrel{?}{<} 2$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Known (conditional hardness):

• 1.0001-approximating vc(G) is NP-hard by PCP Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Known (conditional hardness):

• 1.0001-approximating vc(G) is NP-hard by PCP Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• 1.36-approximating vc(G) is NP-hard

Known (conditional hardness):

• 1.0001-approximating vc(G) is NP-hard by PCP Theorem

- 1.36-approximating vc(G) is NP-hard
- 2-approximating vc(G) is NP-hard assuming UGC

Known (conditional hardness):

• 1.0001-approximating vc(G) is NP-hard by PCP Theorem

- 1.36-approximating vc(G) is NP-hard
- 2-approximating vc(G) is NP-hard assuming UGC

Known (unconditional hardness):

•
$$\sup_{G} \operatorname{vc}(G) / \operatorname{sa}^{k} \operatorname{fvc}(G) = 2$$

Known (conditional hardness):

• 1.0001-approximating vc(G) is NP-hard by PCP Theorem

- 1.36-approximating vc(G) is NP-hard
- 2-approximating vc(G) is NP-hard assuming UGC

Known (unconditional hardness):

- $\sup_{G} \operatorname{vc}(G) / \operatorname{sa}^{k} \operatorname{fvc}(G) = 2$
- $\sup_{G} \operatorname{vc}(G) / \operatorname{sdp-fvc}(G) = 2$ for any $k = n^{o(1)}$

Known (conditional hardness):

- 1.0001-approximating vc(G) is NP-hard by PCP Theorem
- 1.36-approximating vc(G) is NP-hard
- 2-approximating vc(G) is NP-hard assuming UGC

Known (unconditional hardness):

- $\sup_{G} \operatorname{vc}(G) / \operatorname{sa}^{k} \operatorname{fvc}(G) = 2$
- $\sup_{G} \operatorname{vc}(G) / \operatorname{sdp-fvc}(G) = 2$ for any $k = n^{o(1)}$
- variants: pentagonal, antipodal triangle, local hypermetric, ...

Known (conditional hardness):

- 1.0001-approximating vc(G) is NP-hard by PCP Theorem
- 1.36-approximating vc(G) is NP-hard
- 2-approximating vc(G) is NP-hard assuming UGC

Known (unconditional hardness):

- $\sup_{G} \operatorname{vc}(G) / \operatorname{sa}^{k} \operatorname{fvc}(G) = 2$
- $\sup_G \operatorname{vc}(G)/\operatorname{sdp-fvc}(G) = 2$ for any $k = n^{o(1)}$
- variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:

Frankl-Rödl Graphs: $FR_{\gamma}^n = (\mathbb{F}_2^n, \{\{x, y\} : x + y \in A_{\gamma}^n\}).$

Known (conditional hardness):

- 1.0001-approximating vc(G) is NP-hard by PCP Theorem
- 1.36-approximating vc(G) is NP-hard
- 2-approximating vc(G) is NP-hard assuming UGC

Known (unconditional hardness):

- $\sup_{G} \operatorname{vc}(G) / \operatorname{sa}^{k} \operatorname{fvc}(G) = 2$
- $\sup_G \operatorname{vc}(G)/\operatorname{sdp-fvc}(G) = 2$ for any $k = n^{o(1)}$
- variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:

Frankl-Rödl Graphs: $FR_{\gamma}^n = (\mathbb{F}_2^n, \{\{x, y\} : x + y \in A_{\gamma}^n\}).$

[Dinur, Safra, Khot, Regev, Kleinberg, Charikar, Hatami, Magen, Georgiou, Lovasz, Arora, Alekhnovich, Pitassi; 2000's]

Part II

COUNTING LOGIC

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

First-order logic of graphs:

E(x, y)	:	x and y are joined by an edge
x = y	:	\mathbf{x} and \mathbf{y} denote the same vertex
$\neg \phi$:	negation of ϕ holds
$\phi \wedge \psi$:	both ϕ and ψ hold
$\exists x(\phi)$:	there exists a vertex ${\it x}$ that satisfies ϕ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

First-order logic of graphs:

E(x, y)	:	x and y are joined by an edge
x = y	:	imes and $ imes$ denote the same vertex
$\neg \phi$:	negation of ϕ holds
$\phi \wedge \psi$:	both ϕ and ψ hold
$\exists x(\phi)$:	there exists a vertex ${\it x}$ that satisfies ϕ

First-order logic with k variables (or width k) :

 L^k : collection of formulas for which all subformulas have at most k free variables.

Example

Paths:

$$P_{1}(x, y) := E(x, y)$$

$$P_{2}(x, y) := \exists z_{1}(E(x, z_{1}) \land P_{1}(z_{1}, y))$$

$$P_{3}(x, y) := \exists z_{2}(E(x, z_{2}) \land P_{2}(z_{2}, y))$$

$$\vdots$$

$$P_{i+1}(x, y) := \exists z_{i}(E(x, z_{i}) \land P_{i}(z_{i}, y))$$

$$\vdots$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Example

Paths:

$$P_{1}(x, y) := E(x, y)$$

$$P_{2}(x, y) := \exists z_{1}(E(x, z_{1}) \land P_{1}(z_{1}, y))$$

$$P_{3}(x, y) := \exists z_{2}(E(x, z_{2}) \land P_{2}(z_{2}, y))$$

$$\vdots$$

$$P_{i+1}(x, y) := \exists z_{i}(E(x, z_{i}) \land P_{i}(z_{i}, y))$$

$$\vdots$$

Bipartiteness of *n*-vertex graphs:

$$\forall x (\neg P_3(x,x) \land \neg P_5(x,x) \land \cdots \land \neg P_{2\lceil n/2\rceil-1}(x,x)).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Counting witnesses:

 $\exists^{\geq i} x(\phi(x))$: there are at least *i* vertices *x* that satisfy $\phi(x)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Counting witnesses:

 $\exists^{\geq i} x(\phi(x))$: there are at least *i* vertices *x* that satisfy $\phi(x)$.

Counting logic with k variables (or counting width k):

 C^k : collection of formulas with counting quantifiers with all subformulas with at most k free variables.

Indistinguishability / Elementary equivalence

C^k-equivalence:

$$G \equiv_{k}^{C} H$$
: G and H satisfy the same sentences of C^{k} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Combinatorial characterization of C^2 -equivalence

Color-refinement:

- 1. color each vertex black,
- 2. color each vertex by number of neighbors in each color-class,

3. repeat 2 until color-classes don't split any more.

Combinatorial characterization of C^2 -equivalence

Color-refinement:

- 1. color each vertex black,
- 2. color each vertex by number of neighbors in each color-class,
- 3. repeat 2 until color-classes don't split any more.

Notation:

 $G \equiv^{R} H$: G and H produce the same coloring (up to order).

Combinatorial characterization of C^2 -equivalence

Color-refinement:

- 1. color each vertex black,
- 2. color each vertex by number of neighbors in each color-class,
- 3. repeat 2 until color-classes don't split any more.

Notation:

 $G \equiv^{R} H$: G and H produce the same coloring (up to order).

Theorem [Immerman and Lander]

$$G \equiv_2^C H$$
 if and only if $G \equiv^R H$

LP characterization of color-refinement

Isomorphisms:

- 1. $G \cong H$,
- 2. there exists permutation matrix P such that $P^{T}GP = H$,
- 3. there exists permutation matrix P such that GP = PH.

LP characterization of color-refinement

Isomorphisms:

1. $G \cong H$,

- 2. there exists permutation matrix P such that $P^{T}GP = H$,
- 3. there exists permutation matrix P such that GP = PH.

LP relaxation of \cong :

 $G \equiv^{F} H$: there exists doubly stochastic S such that GS = SH.

$$\mathrm{dso}(G,H)$$
 : $GS = SH$
 $Se = e^{\mathrm{T}}S = e^{\mathrm{T}}S$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Isomorphisms:

1. $G \cong H$,

- 2. there exists permutation matrix P such that $P^{T}GP = H$,
- 3. there exists permutation matrix P such that GP = PH.

LP relaxation of \cong :

 $G \equiv^{F} H$: there exists doubly stochastic S such that GS = SH.

$$\operatorname{iso}(G, H)$$
 : $GS = SH$
 $Se = e^{\mathrm{T}}S = e^{\mathrm{T}}$

Theorem [Tinhofer]

 $G \equiv^R H$ if and only if $G \equiv^F H$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Higher levels of SA Hierarchy

SA-levels of fractional isomorphism:

$$G \equiv_{k}^{SA} H$$
: the degree-k SA level of $iso(G, H)$ is feasible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Higher levels of SA Hierarchy

SA-levels of fractional isomorphism:

$$G \equiv_{k}^{SA} H$$
: the degree-k SA level of $iso(G, H)$ is feasible.

Theorem [AA and Maneva 2013]:

$$G \equiv^{\mathrm{SA}}_{k} H \Longrightarrow G \equiv^{C}_{k} H \Longrightarrow G \equiv^{\mathrm{SA}}_{k-1} H.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Higher levels of SA Hierarchy

SA-levels of fractional isomorphism:

$$G \equiv_{k}^{SA} H$$
: the degree-k SA level of $iso(G, H)$ is feasible.

Theorem [AA and Maneva 2013]:

$$G \equiv^{\mathrm{SA}}_{k} H \Longrightarrow G \equiv^{C}_{k} H \Longrightarrow G \equiv^{\mathrm{SA}}_{k-1} H.$$

Moreover:

- 1. This interleaving is strict for k > 2 [Grohe-Otto 2015]
- 2. A combined LP characterizes \equiv_k^C exactly [Grohe-Otto 2015]
- 3. Alternative (and independent) formulation by [Malkin 2014]

SA and SOS-levels of fractional isomorphism:

- 1. $G \equiv_{k}^{SA} H$: the degree-k SA level of iso(G, H) is feasible.
- 2. $G \equiv_{k}^{SOS} H$: the degree-k SOS level of iso(G, H) is feasible.

SA and SOS-levels of fractional isomorphism:

- 1. $G \equiv_{k}^{SA} H$: the degree-k SA level of iso(G, H) is feasible.
- 2. $G \equiv_{k}^{SOS} H$: the degree-k SOS level of iso(G, H) is feasible.

Theorem [AA and Ochremiak 2018]: There exists c > 1 such that:

$$G \equiv_{ck}^{\mathrm{SA}} H \Longrightarrow G \equiv_{k}^{\mathrm{SOS}} H \Longrightarrow G \equiv_{k}^{\mathrm{SA}} H.$$

Part III

APPLICATIONS

Local LPs (and SDPs)

Basic k-local LPs:

- 1. one variable $x_{\mathbf{u}}$ for each k-tuple $\mathbf{u} \in V^k$,
- 2. one inequality $\sum_{\mathbf{u}\in V^k} a_{\mathbf{u},\mathbf{v}} \cdot x_{\mathbf{u}} \ge b_{\mathbf{v}}$ for every k-tuple $\mathbf{v} \in V^k$,

- 3. coefficients $a_{\mathbf{u},\mathbf{v}}$ depend only on the type $\operatorname{atp}_{G}(\mathbf{u},\mathbf{v})$,
- 4. coefficients $b_{\mathbf{v}}$ depend only on the type $\operatorname{atp}_{G}(\mathbf{v})$.

Local LPs (and SDPs)

Basic k-local LPs:

- 1. one variable $x_{\mathbf{u}}$ for each k-tuple $\mathbf{u} \in V^k$,
- 2. one inequality $\sum_{\mathbf{u}\in V^k} a_{\mathbf{u},\mathbf{v}} \cdot x_{\mathbf{u}} \ge b_{\mathbf{v}}$ for every k-tuple $\mathbf{v} \in V^k$,
- 3. coefficients $a_{\mathbf{u},\mathbf{v}}$ depend only on the type $\operatorname{atp}_{G}(\mathbf{u},\mathbf{v})$,
- 4. coefficients $b_{\mathbf{v}}$ depend only on the type $\operatorname{atp}_{G}(\mathbf{v})$.

k-local LP:

Union of basic *k*-local LPs with coefficients $a_{t(\mathbf{x},\mathbf{y})}$ and $b_{t(\mathbf{y})}$ indexed by isomorphism types $t(\mathbf{x},\mathbf{y})$ and $t(\mathbf{y})$.

Fractional vertex cover: Given a graph G = (V, E)

$$\begin{split} &\sum_{u \in V} x_u \leq W \\ &x_u + x_v \geq 1 \quad \text{for every } (u, v) \in E, \\ &x_u \geq 0 \quad \qquad \text{for every } u \in V. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fractional vertex cover: Given a graph G = (V, E)

$$\begin{split} &\sum_{u \in V} x_u \leq W \\ &x_u + x_v \geq 1 \quad \text{for every } (u, v) \in E, \\ &x_u \geq 0 \quad \qquad \text{for every } u \in V. \end{split}$$

- 1. Objective function: basic 1-local LP
- 2. Edge constraint: basic 2-local LP
- 3. Positive constraint: basic 1-local LP

Example 2: fractional matching polytope

Fractional matching polytope: Given a graph G = (V, E)

$$\begin{array}{ll} \sum_{uv \in E} x_{uv} \geq W \\ x_{uv} = x_{vu} & \text{for every } u, v \in V \\ \sum_{v \in V} x_{uv} \leq 1 & \text{for every } u \in V \\ 0 \leq x_{uv} \leq 1 & \text{for every } u, v \in V \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example 2: fractional matching polytope

Fractional matching polytope: Given a graph G = (V, E)

$$\begin{array}{ll} \sum_{uv \in E} x_{uv} \geq W \\ x_{uv} = x_{vu} & \text{for every } u, v \in V \\ \sum_{v \in V} x_{uv} \leq 1 & \text{for every } u \in V \\ 0 \leq x_{uv} \leq 1 & \text{for every } u, v \in V \end{array}$$

- 1. Objective function: basic 2-local LP
- 2. Symmetry constraint: two basic 2-local LPs
- 3. Degree-at-most-one constraint: basic 2-local LP

Example 3: metric polytope

Metric polytope: Given a graph G = (V, E)

$$\begin{split} \frac{1}{2} \sum_{uv \in E} x_{uv} &\geq W \\ x_{uv} &= x_{vu} & \text{for every } u, v \in V \\ x_{uw} &\leq x_{uv} + x_{vw} & \text{for every } u, v, w \in V \\ x_{uv} + x_{vw} + x_{uw} &\leq 2 & \text{for every } u, v, w \in V \\ 0 &\leq x_{uv} \leq 1 & \text{for every } u, v \in V \end{split}$$

- 1. Objective function: basic 2-local LP
- 2. Symmetry constraint: two basic 2-local LPs
- 3. Triangle inequality: basic 3-local LP
- 4. Perimetric inequality: basic 3-local LP
- 5. Unit cube constraint: two basic 2-local LPs

Preservation of local LPs and SDPs

Theorem Let P be a k-local LP or SDP.

- 1. LP: If $G \equiv_k^C H$, then P(G) is feasible iff P(H) is feasible.
- 2. SDP: If $G \equiv_{ck}^{C} H$, then P(G) is feasible iff P(H) is feasible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preservation of local LPs and SDPs

Theorem Let P be a k-local LP or SDP.

- 1. LP: If $G \equiv_k^C H$, then P(G) is feasible iff P(H) is feasible.
- 2. SDP: If $G \equiv_{ck}^{C} H$, then P(G) is feasible iff P(H) is feasible.

'Just do it' proof for LP:

- 1. Let $\{x_{\mathbf{u}}\}$ be a feasible solution for P(G).
- 2. Let $\{X_{\mathbf{u},\mathbf{v}}\}$ be a feasible solution for $\operatorname{sa}^k \operatorname{iso}(G, H)$.
- 3. Define:

$$y_{\mathbf{v}} := \sum_{\mathbf{u} \in G^k} X_{\mathbf{u},\mathbf{v}} \cdot x_{\mathbf{u}}.$$

4. Check that $\{y_v\}$ is a feasible solution for P(H).

More examples:

- 1. maximum flows (2-local)
- 2. if P is r-local LP, then sa^{k} -P is rk-local LP.
- 3. if P is r-local LP, then $sos^k P$ is rk-local SDP.

Back to integrality gaps for vertex cover

Goal:

For large k and every $\epsilon > 0$ find graphs G and H such that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1.
$$G \equiv_{c \cdot 2k}^{C} H$$

2. $vc(G) \ge (2 - \epsilon)vc(H)$

Back to integrality gaps for vertex cover

Goal:

For large k and every $\epsilon > 0$ find graphs G and H such that

1.
$$G \equiv_{c \cdot 2k}^{C} H$$

2. $vc(G) \ge (2 - \epsilon)vc(H)$

It would follow that:

$$\sup_{G} \frac{\operatorname{vc}(G)}{\operatorname{sos}^k \operatorname{fvc}(G)} = 2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Back to integrality gaps for vertex cover

Goal:

For large k and every $\epsilon > 0$ find graphs G and H such that

1.
$$G \equiv_{c \cdot 2k}^{C} H$$

2. $vc(G) \ge (2 - \epsilon)vc(H)$

It would follow that:

$$\sup_{G} \frac{\operatorname{vc}(G)}{\operatorname{sos}^k \operatorname{fvc}(G)} = 2$$

Proof:

$$\begin{array}{rcl} \operatorname{vc}(G) & \geq & (2-\epsilon)\operatorname{vc}(H) & & \text{by 2.} \\ & \geq & (2-\epsilon)\operatorname{sos}^k\operatorname{fvc}(H) & & \text{obvious} \\ & \geq & (2-\epsilon)\operatorname{sos}^k\operatorname{fvc}(G) & & \text{by 1. and 2-locality} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For large k and every $\epsilon > 0$ find graphs G and H such that

1.
$$G \equiv_{c \cdot 2k}^{C} H$$

2. $vc(G) \ge (2 - \epsilon)vc(H)$

A weak (easy) case: k = 1 with gap = 2

Choose:

G = any *d*-regular expander graph (i.e., $\lambda_2(G) \ll \lambda_1(G)$), H = any *d*-regular bipartite graph.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A weak (easy) case: k = 1 with gap = 2

Choose:

G = any d-regular expander graph (i.e., $\lambda_2(G) \ll \lambda_1(G)$), H = any d-regular bipartite graph.

Then:

$$vc(G) = (1 - \epsilon)n$$

$$vc(H) = n/2$$

$$G \equiv^{R} H$$

$$G \equiv^{C}_{2} H$$

by expansion by bipartition by regularity by Tinhofer's Theorem

A weak (easy) case: k = 1 with gap = 2

Choose:

G = any *d*-regular expander graph (i.e., $\lambda_2(G) \ll \lambda_1(G)$), H = any *d*-regular bipartite graph.

Then:

$$vc(G) = (1 - \epsilon)n$$
by expansion $vc(H) = n/2$ by bipartition $G \equiv^R H$ by regularity $G \equiv^C_2 H$ by Tinhofer's Theorem

Tight in two ways:

$$\begin{array}{l} G \not\equiv_3^C H \\ G \equiv_2^C H \Longrightarrow \operatorname{vc}(G) \leq \operatorname{2vc}(H) \end{array}$$

bipartiteness is C³-definable, [AA-Dawar 2018]

Theorem [AA-Dawar 2018]

There exist graphs G_n and H_n such that

1.
$$G_n \equiv_{\Omega(n)}^C H_n$$

2. $\operatorname{vc}(G_n) \ge 1.08 \cdot \operatorname{vc}(H_n)$

Part IV

PROOF INGREDIENTS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ingredient 1: A linear system Ax = b over \mathbb{F}_2 where:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ingredient 1: A linear system Ax = b over \mathbb{F}_2 where:

•
$$A \in \mathbb{F}_2^{m imes n}$$
 and $b \in \mathbb{F}_2^n$

Ingredient 1: A linear system Ax = b over \mathbb{F}_2 where:

- $A \in \mathbb{F}_2^{m \times n}$ and $b \in \mathbb{F}_2^n$
- every row of A has at most three 1's

Ingredient 1: A linear system Ax = b over \mathbb{F}_2 where:

- $A \in \mathbb{F}_2^{m \times n}$ and $b \in \mathbb{F}_2^n$
- every row of A has at most three 1's
- every subset of ϵm equations has at least δn unique variables

Ingredient 1: A linear system Ax = b over \mathbb{F}_2 where:

- $A \in \mathbb{F}_2^{m \times n}$ and $b \in \mathbb{F}_2^n$
- every row of A has at most three 1's
- every subset of ϵm equations has at least δn unique variables

• every candidate solution satisfies at most $\frac{1}{2} + \epsilon$ equations

Ingredient 1: A linear system Ax = b over \mathbb{F}_2 where:

- $A \in \mathbb{F}_2^{m imes n}$ and $b \in \mathbb{F}_2^n$
- every row of A has at most three 1's
- every subset of ϵm equations has at least δn unique variables
- every candidate solution satisfies at most $\frac{1}{2} + \epsilon$ equations

Probabilistic construction:

- 1. set m = cn for a large constant $c = c(\epsilon)$
- 2. choose three ones uniformly at random in each row of A

3. choose b uniformly at random in \mathbb{F}_2^n .

Ingredient 1: A linear system Ax = b over \mathbb{F}_2 where:

- $A \in \mathbb{F}_2^{m imes n}$ and $b \in \mathbb{F}_2^n$
- every row of A has at most three 1's
- every subset of ϵm equations has at least δn unique variables
- every candidate solution satisfies at most $\frac{1}{2} + \epsilon$ equations

Probabilistic construction:

- 1. set m = cn for a large constant $c = c(\epsilon)$
- 2. choose three ones uniformly at random in each row of A

3. choose *b* uniformly at random in \mathbb{F}_2^n .

Half-deterministic construction:

- 1. set m = cn for a large constraint $c = c(\epsilon)$
- 2. let A be incidence matrix of bipartite expander
- 3. choose b uniformly at random in \mathbb{F}_2^n .

Ingredient 2: A pair of linear systems S_0 and S_1 over \mathbb{F}_2 where:

・ロト・日本・モート モー うへぐ

Ingredient 2: A pair of linear systems S_0 and S_1 over \mathbb{F}_2 where: 1. $S_0 \equiv_{\Omega(n)}^C S_1$

・ロト・日本・モート モー うへぐ

Ingredient 2: A pair of linear systems S_0 and S_1 over \mathbb{F}_2 where: 1. $S_0 \equiv_{\Omega(n)}^C S_1$

2. every candidate solution for S_0 satisfies at most $\frac{3}{4}$ equations

Ingredient 2: A pair of linear systems S_0 and S_1 over \mathbb{F}_2 where: 1. $S_0 \equiv_{\Omega(n)}^C S_1$

2. every candidate solution for S_0 satisfies at most $\frac{3}{4}$ equations

3. some solution solution exists for S_1

Ingredient 2: A pair of linear systems S_0 and S_1 over \mathbb{F}_2 where:

1.
$$S_0 \equiv_{\Omega(n)}^C S_1$$

- 2. every candidate solution for S_0 satisfies at most $\frac{3}{4}$ equations
- 3. some solution solution exists for S_1

Construction of S_0 :

- 1. start with Ax = b from previous section
- 2. duplicate each variable $x \mapsto (x^{(0)}, x^{(1)})$
- 3. replace each equation $x_i + x_j + x_k = b$ by 8 equations

$$x_{i}^{(u)} + x_{j}^{(v)} + x_{k}^{(w)} = b + u + v + w$$

Ingredient 2: A pair of linear systems S_0 and S_1 over \mathbb{F}_2 where:

1.
$$S_0 \equiv_{\Omega(n)}^C S_1$$

- 2. every candidate solution for S_0 satisfies at most $\frac{3}{4}$ equations
- 3. some solution solution exists for S_1

Construction of S_0 :

- 1. start with Ax = b from previous section
- 2. duplicate each variable $x \mapsto (x^{(0)}, x^{(1)})$
- 3. replace each equation $x_i + x_j + x_k = b$ by 8 equations

$$x_{i}^{(u)} + x_{j}^{(v)} + x_{k}^{(w)} = b + u + v + w$$

Construction of S_1 :

1. same but start with Ax = 0 (the homogeneous system)

Ingredient 3: A pair of graphs G_0 and G_1 where:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. $G_0 \equiv^C_{\Omega(n)} G_1$
- 2. $vc(G_0) \ge 26m$
- 3. $vc(G_1) \le 24m$

Ingredient 3: A pair of graphs G_0 and G_1 where:

- 1. $G_0 \equiv^C_{\Omega(n)} G_1$
- 2. $vc(G_0) \ge 26m$
- 3. $vc(G_1) \le 24m$

Construction:

a standard reduction from $\mathbb{F}_2\text{-}\mathsf{SAT}$ to vertex cover

Open Problem 1

$$\sup_{G} \frac{\operatorname{vc}(G)}{\operatorname{sos}^{4} \operatorname{fvc}(G)} > 1.36?$$

find strongly regular graphs G and H with same parameters so that $vc(G) \ge (2 - \epsilon)vc(H)$.

ERC-2014-CoG 648276 (AUTAR) EU.