LIMITS OF
 LINEAR AND SEMIDEFINITE RELAXATIONS FOR COMBINATORIAL PROBLEMS

Albert Atserias
Universitat Politècnica de Catalunya
Barcelona, Spain

- linear and semidefinite programming
- approximation algorithms and computational complexity
- logic and finite model theory

Part I

LINEAR PROGRAMMING RELAXATIONS

Vertex cover

Problem:

Given an undirected graph $G=(V, E)$, find the smallest number of vertices that touches every edge.

Notation:

$$
\mathrm{vc}(G)
$$

Observe:
$A \subseteq V$ is a vertex cover of G iff
$V \backslash A$ is an independent set of G

Linear programming relaxation

LP relaxation:

$$
\begin{aligned}
& \operatorname{minimize} \sum_{u \in V} x_{u} \\
& \text { subject to } \\
& \begin{array}{ll}
x_{u}+x_{v} \geq 1 & \text { for every }(u, v) \in E, \\
x_{u} \geq 0 & \text { for every } u \in V .
\end{array}
\end{aligned}
$$

Notation:

$$
\operatorname{fvc}(G)
$$

Approximation

Approximation:

$$
\operatorname{fvc}(G) \leq \operatorname{vc}(G) \leq 2 \cdot \operatorname{fvc}(G)
$$

Integrality gap:

$$
\sup _{G} \frac{\operatorname{vc}(G)}{\operatorname{fvc}(G)}
$$

Approximation

Approximation:

$$
\operatorname{fvc}(G) \leq \operatorname{vc}(G) \leq 2 \cdot \operatorname{fvc}(G)
$$

Integrality gap:

$$
\sup _{G} \frac{\operatorname{vc}(G)}{\operatorname{fvc}(G)}=2
$$

Approximation

Approximation:

$$
\operatorname{fvc}(G) \leq \operatorname{vc}(G) \leq 2 \cdot \operatorname{fvc}(G)
$$

Integrality gap:

$$
\sup _{G} \frac{\operatorname{vc}(G)}{\operatorname{fvc}(G)}=2
$$

Gap examples:

$$
\begin{aligned}
& \text { 1. } \operatorname{vc}\left(K_{2 n+1}\right)=2 n \\
& \text { 2. } \operatorname{fvc}\left(K_{2 n+1}\right)=\frac{1}{2}(2 n+1) .
\end{aligned}
$$

LP tightenings

Add triangle inequalities:

$$
\begin{aligned}
& \operatorname{minimize} \sum_{u \in V} x_{u} \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{array}{ll}
x_{u}+x_{v} \geq 1 & \text { for every }(u, v) \in E \\
x_{u} \geq 0 & \text { for every } u \in V \\
x_{u}+x_{v}+x_{w} \geq 2 & \text { for every triangle }\{u, v, w\} \text { in } G
\end{array}
$$

LP tightenings

Add triangle inequalities:

$$
\begin{array}{ll}
\operatorname{minimize} \sum_{u \in V} x_{u} & \\
\text { subject to } & \\
\quad x_{u}+x_{v} \geq 1 & \text { for every }(u, v) \in E \\
x_{u} \geq 0 & \text { for every } u \in V \\
x_{u}+x_{v}+x_{w} \geq 2 & \text { for every triangle }\{u, v, w\} \text { in } G .
\end{array}
$$

Integrality gap:

Remains 2.

Gap examples:
Triangle-free graphs with small independence number.

Sherali-Adams and Lasserre/Sums-of-Squares Hierarchies

Hierarchy:

Systematic ways of
generating all linear inequalities that are valid over the integral hull.

Sherali-Adams and Lasserre/Sums-of-Squares Hierarchies

Hierarchy:

Systematic ways of
generating all linear inequalities that are valid over the integral hull.

Given a polytope:

$$
\begin{aligned}
& P=\left\{x \in \mathbb{R}^{n}: A x \geq b\right\} \\
& P^{\mathbb{Z}}=\text { convexhull }\left\{x \in\{0,1\}^{n}: A x \geq b\right\} .
\end{aligned}
$$

Sherali-Adams and Lasserre/Sums-of-Squares Hierarchies

Hierarchy:

Systematic ways of
generating all linear inequalities that are valid over the integral hull.

Given a polytope:

$$
\begin{aligned}
& P=\left\{x \in \mathbb{R}^{n}: A x \geq b\right\} \\
& P^{\mathbb{Z}}=\text { convexhull }\left\{x \in\{0,1\}^{n}: A x \geq b\right\} .
\end{aligned}
$$

Produce explicit nested polytopes:

$$
P=P^{1} \supseteq P^{2} \supseteq \cdots \supseteq P^{n-1} \supseteq P^{n}=P^{\mathbb{Z}}
$$

$P^{k}:$ Lasserre/Sums-of-squares (SOS) Hierarchy

P^{k} : Lasserre/Sums-of-squares (SOS) Hierarchy

Given linear inequalities

$$
L_{1} \geq 0, \ldots, L_{m} \geq 0
$$

P^{k} : Lasserre/Sums-of-squares (SOS) Hierarchy

Given linear inequalities

$$
L_{1} \geq 0, \ldots, L_{m} \geq 0
$$

produce all linear inequalities of the form

$$
Q_{0}+\sum_{j=1}^{m} L_{j} Q_{j}+\sum_{i=1}^{n}\left(x_{i}^{2}-x_{i}\right) Q_{i}=L \geq 0
$$

P^{k} : Lasserre/Sums-of-squares (SOS) Hierarchy

Given linear inequalities

$$
L_{1} \geq 0, \ldots, L_{m} \geq 0
$$

produce all linear inequalities of the form

$$
Q_{0}+\sum_{j=1}^{m} L_{j} Q_{j}+\sum_{i=1}^{n}\left(x_{i}^{2}-x_{i}\right) Q_{i}=L \geq 0
$$

where

$$
Q_{j}=\sum_{\ell \in I} Q_{j \ell}^{2} \quad \text { with }
$$

P^{k} : Lasserre/Sums-of-squares (SOS) Hierarchy

Given linear inequalities

$$
L_{1} \geq 0, \ldots, L_{m} \geq 0
$$

produce all linear inequalities of the form

$$
Q_{0}+\sum_{j=1}^{m} L_{j} Q_{j}+\sum_{i=1}^{n}\left(x_{i}^{2}-x_{i}\right) Q_{i}=L \geq 0
$$

where

$$
Q_{j}=\sum_{\ell \in I} Q_{j \ell}^{2} \quad \text { with }
$$

and

$$
\operatorname{deg}\left(Q_{0}\right), \operatorname{deg}\left(L_{j} Q_{j}\right), \operatorname{deg}\left(\left(x_{i}^{2}-x_{i}\right) Q_{i}\right) \leq k
$$

P^{k} : Lasserre/Sums-of-squares (SOS) Hierarchy

Given linear inequalities

$$
L_{1} \geq 0, \ldots, L_{m} \geq 0
$$

produce all linear inequalities of the form

$$
Q_{0}+\sum_{j=1}^{m} L_{j} Q_{j}+\sum_{i=1}^{n}\left(x_{i}^{2}-x_{i}\right) Q_{i}=L \geq 0
$$

where

$$
Q_{j}=\sum_{\ell \in I} Q_{j \ell}^{2} \quad \text { with }
$$

and

$$
\operatorname{deg}\left(Q_{0}\right), \operatorname{deg}\left(L_{j} Q_{j}\right), \operatorname{deg}\left(\left(x_{i}^{2}-x_{i}\right) Q_{i}\right) \leq k
$$

Then:

$$
P^{k}=\left\{x \in \mathbb{R}^{n}: L(x) \geq 0 \text { for each produced } L \geq 0\right\}
$$

P^{k} : Sherali-Adams (SA) Hierarchy

Given linear inequalities

$$
L_{1} \geq 0, \ldots, L_{m} \geq 0
$$

produce all linear inequalities of the form

$$
Q_{0}+\sum_{j=1}^{m} L_{j} Q_{j}+\sum_{i=1}^{n}\left(x_{i}^{2}-x_{i}\right) Q_{i}=L \geq 0
$$

where

$$
Q_{i}=\sum_{\ell \in J} c_{\ell} \prod_{i \in A_{\ell}} x_{i} \prod_{i \in B_{\ell}}\left(1-x_{i}\right) \quad \text { with } \quad c_{\ell} \geq 0
$$

and

$$
\operatorname{deg}\left(Q_{0}\right), \operatorname{deg}\left(L_{j} Q_{j}\right), \operatorname{deg}\left(\left(x_{i}^{2}-x_{i}\right) Q_{i}\right) \leq k
$$

Then:

$$
P^{k}=\left\{x \in \mathbb{R}^{n}: L(x) \geq 0 \text { for each produced } L \geq 0\right\}
$$

Example: triangles in P^{3}

For each triangle $\{u, v, w\}$ in G :

$$
\begin{aligned}
& Q_{0}+ \\
& \left(x_{u}+x_{v}-1\right) Q_{1}+ \\
& \left(x_{u}+x_{w}-1\right) Q_{2}+ \\
& \left(x_{v}+x_{w}-1\right) Q_{3}+ \\
& \left(x_{u}^{2}-x_{u}\right) Q_{4}+ \\
& \left(x_{v}^{2}-x_{v}\right) Q_{5}+ \\
& \left(x_{w}^{2}-x_{w}\right) Q_{6} \\
& =? \\
& \left(x_{u}+x_{v}+x_{w}-2\right) .
\end{aligned}
$$

$$
Q_{i}=a_{i}+b_{i} x_{u}+c_{i} x_{v}+d_{i} x_{w}+e_{i} x_{u} x_{v}+f_{i} x_{u} x_{w}+g_{i} x_{v} x_{w}+h_{i} x_{u} x_{v} x_{w}
$$

Solving P^{k}

Lift-and-project:

- Step 1: lift from \mathbb{R}^{n} up to $\mathbb{R}^{(n+1)^{k}}$ and linearize the problem
- Step 2: project from $\mathbb{R}^{(n+1)^{k}}$ down to \mathbb{R}^{n}

Proposition:

> Optimization of linear functions over P^{k} can be solved in time ${ }^{\dagger} m^{O(1)} n^{O(k)}$.

Proof:

1. for SA- P^{k} : by linear programming
2. for SOS- P^{k} : by semidefinite programming

An Important Open Problem

Define

$\operatorname{sa}^{k} \mathrm{fvc}(G)$: optimum fractional vertex cover of SA- P^{k} $\operatorname{sos}^{k} \operatorname{fvc}(G)$: optimum fractional vertex cover of SOS- P^{k}

An Important Open Problem

Define

$\operatorname{sa}^{k} \mathrm{fvc}(G)$: optimum fractional vertex cover of SA- P^{k}
$\operatorname{sos}^{k} \mathrm{fvc}(G)$: optimum fractional vertex cover of SOS- P^{k}

Open problem:

$$
\sup _{G} \frac{\operatorname{vc}(G)}{\operatorname{sos}^{4} \mathrm{fvc}(G)} \stackrel{?}{<} 2
$$

What's Known

What's Known

Known (conditional hardness):

- 1.0001-approximating $\mathrm{vc}(G)$ is NP-hard by PCP Theorem

What's Known

Known (conditional hardness):

- 1.0001-approximating $\mathrm{vc}(G)$ is NP-hard by PCP Theorem
- 1.36-approximating $\mathrm{vc}(G)$ is NP-hard

What's Known

Known (conditional hardness):

- 1.0001-approximating vc (G) is NP-hard by PCP Theorem
- 1.36-approximating $\mathrm{vc}(G)$ is NP-hard
- 2-approximating $\mathrm{vc}(G)$ is NP-hard assuming UGC

What's Known

Known (conditional hardness):

- 1.0001-approximating vc (G) is NP-hard by PCP Theorem
- 1.36-approximating $\mathrm{vc}(G)$ is NP-hard
- 2-approximating $\mathrm{vc}(G)$ is NP-hard assuming UGC

Known (unconditional hardness):

- $\sup _{G} \mathrm{vc}(G) / \mathrm{sa}^{k} \mathrm{fvc}(G)=2$

What's Known

Known (conditional hardness):

- 1.0001-approximating vc (G) is NP-hard by PCP Theorem
- 1.36-approximating $\mathrm{vc}(G)$ is NP-hard
- 2-approximating $\mathrm{vc}(G)$ is NP-hard assuming UGC

Known (unconditional hardness):

- $\sup _{G} \mathrm{vc}(G) / \mathrm{sa}^{k} \mathrm{fvc}(G)=2$
- $\sup _{G} \operatorname{vc}(G) / \operatorname{sdp}-\operatorname{fvc}(G)=2$ for any $k=n^{o(1)}$

What's Known

Known (conditional hardness):

- 1.0001-approximating vc (G) is NP-hard by PCP Theorem
- 1.36-approximating $\mathrm{vc}(G)$ is NP-hard
- 2-approximating $\mathrm{vc}(G)$ is NP-hard assuming UGC

Known (unconditional hardness):

- $\sup _{G} \mathrm{vc}(G) / \mathrm{sa}^{k} \mathrm{fvc}(G)=2$
- $\sup _{G} \operatorname{vc}(G) / \operatorname{sdp}-\operatorname{fvc}(G)=2$ for any $k=n^{o(1)}$
- variants: pentagonal, antipodal triangle, local hypermetric, ...

What's Known

Known (conditional hardness):

- 1.0001-approximating vc (G) is NP-hard by PCP Theorem
- 1.36-approximating $\mathrm{vc}(G)$ is NP-hard
- 2-approximating $\operatorname{vc}(G)$ is NP-hard assuming UGC

Known (unconditional hardness):

- $\sup _{G} \mathrm{vc}(G) / \mathrm{sa}^{k} \mathrm{fvc}(G)=2$
- $\sup _{G} \operatorname{vc}(G) / \operatorname{sdp}-\operatorname{fvc}(G)=2$ for any $k=n^{o(1)}$
- variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:

Frankl-Rödl Graphs: $\mathrm{FR}_{\gamma}^{n}=\left(\mathbb{F}_{2}^{n},\left\{\{x, y\}: x+y \in A_{\gamma}^{n}\right\}\right)$.

What's Known

Known (conditional hardness):

- 1.0001-approximating vc (G) is NP-hard by PCP Theorem
- 1.36-approximating $\mathrm{vc}(G)$ is NP-hard
- 2-approximating $\mathrm{vc}(G)$ is NP-hard assuming UGC

Known (unconditional hardness):

- $\sup _{G} \mathrm{vc}(G) / \mathrm{sa}^{k} \mathrm{fvc}(G)=2$
- $\sup _{G} \operatorname{vc}(G) / \operatorname{sdp}-\operatorname{fvc}(G)=2$ for any $k=n^{o(1)}$
- variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:

Frankl-Rödl Graphs: $\mathrm{FR}_{\gamma}^{n}=\left(\mathbb{F}_{2}^{n},\left\{\{x, y\}: x+y \in A_{\gamma}^{n}\right\}\right)$.
[Dinur, Safra, Khot, Regev, Kleinberg, Charikar, Hatami, Magen, Georgiou, Lovasz, Arora, Alekhnovich, Pitassi; 2000's]

Part II

COUNTING LOGIC

Bounded-Variable Logics

First-order logic of graphs:
$E(x, y): \quad x$ and y are joined by an edge
$x=y \quad: \quad x$ and y denote the same vertex
$\neg \phi \quad: \quad$ negation of ϕ holds
$\phi \wedge \psi \quad$: both ϕ and ψ hold
$\exists x(\phi)$: there exists a vertex x that satisfies ϕ

Bounded-Variable Logics

First-order logic of graphs:

$$
\begin{array}{ll}
E(x, y) & : x \text { and } y \text { are joined by an edge } \\
x=y & : x \text { and } y \text { denote the same vertex } \\
\neg \phi & : \text { negation of } \phi \text { holds } \\
\phi \wedge \psi & : \text { both } \phi \text { and } \psi \text { hold } \\
\exists x(\phi) & : \text { there exists a vertex } x \text { that satisfies } \phi
\end{array}
$$

First-order logic with k variables (or width k) :
L^{k} : collection of formulas for which all subformulas have at most k free variables.

Example

Paths:

$$
\begin{aligned}
P_{1}(x, y) & :=E(x, y) \\
P_{2}(x, y) & :=\exists z_{1}\left(E\left(x, z_{1}\right) \wedge P_{1}\left(z_{1}, y\right)\right) \\
P_{3}(x, y) & :=\exists z_{2}\left(E\left(x, z_{2}\right) \wedge P_{2}\left(z_{2}, y\right)\right) \\
& \vdots \\
P_{i+1}(x, y) & :=\exists z_{i}\left(E\left(x, z_{i}\right) \wedge P_{i}\left(z_{i}, y\right)\right)
\end{aligned}
$$

Example

Paths:

$$
\begin{aligned}
P_{1}(x, y) & :=E(x, y) \\
P_{2}(x, y) & :=\exists z_{1}\left(E\left(x, z_{1}\right) \wedge P_{1}\left(z_{1}, y\right)\right) \\
P_{3}(x, y) & :=\exists z_{2}\left(E\left(x, z_{2}\right) \wedge P_{2}\left(z_{2}, y\right)\right) \\
& \vdots \\
P_{i+1}(x, y) & :=\exists z_{i}\left(E\left(x, z_{i}\right) \wedge P_{i}\left(z_{i}, y\right)\right)
\end{aligned}
$$

Bipartiteness of n-vertex graphs:

$$
\forall x\left(\neg P_{3}(x, x) \wedge \neg P_{5}(x, x) \wedge \cdots \wedge \neg P_{2\lceil n / 2\rceil-1}(x, x)\right) .
$$

Counting quantifiers

Counting witnesses:

$\exists^{\geq i} x(\phi(x))$: there are at least i vertices x that satisfy $\phi(x)$.

Counting quantifiers

Counting witnesses:

$\exists^{i} x(\phi(x))$: there are at least i vertices x that satisfy $\phi(x)$.

Counting logic with k variables (or counting width k):
C^{k} : collection of formulas with counting quantifiers with all subformulas with at most k free variables.

Indistinguishability / Elementary equivalence

C^{k}-equivalence:
$G \equiv{ }_{k}^{C} H: G$ and H satisfy the same sentences of C^{k}.

Combinatorial characterization of C^{2}-equivalence

Color-refinement:

1. color each vertex black,
2. color each vertex by number of neighbors in each color-class,
3. repeat 2 until color-classes don't split any more.

Combinatorial characterization of C^{2}-equivalence

Color-refinement:

1. color each vertex black,
2. color each vertex by number of neighbors in each color-class,
3. repeat 2 until color-classes don't split any more.

Notation:

$$
G \equiv \equiv^{R} H: G \text { and } H \text { produce the same coloring (up to order). }
$$

Combinatorial characterization of C^{2}-equivalence

Color-refinement:

1. color each vertex black,
2. color each vertex by number of neighbors in each color-class,
3. repeat 2 until color-classes don't split any more.

Notation:

$$
G \equiv \equiv^{R} H: G \text { and } H \text { produce the same coloring (up to order). }
$$

Theorem [Immerman and Lander]

$$
G \equiv_{2}^{C} H \text { if and only if } G \equiv^{R} H
$$

LP characterization of color-refinement

Isomorphisms:

1. $G \cong H$,
2. there exists permutation matrix P such that $P^{\mathrm{T}} G P=H$,
3. there exists permutation matrix P such that $G P=P H$.

LP characterization of color-refinement

Isomorphisms:

1. $G \cong H$,
2. there exists permutation matrix P such that $P^{\mathrm{T}} G P=H$,
3. there exists permutation matrix P such that $G P=P H$.

LP relaxation of \cong :
$G \equiv{ }^{F} H$: there exists doubly stochastic S such that $G S=S H$.

$$
\begin{aligned}
\operatorname{iso}(G, H): & G S=S H \\
& S e=e^{\mathrm{T}} S=e \\
& S \geq 0
\end{aligned}
$$

LP characterization of color-refinement

Isomorphisms:

1. $G \cong H$,
2. there exists permutation matrix P such that $P^{\mathrm{T}} G P=H$,
3. there exists permutation matrix P such that $G P=P H$.

LP relaxation of \cong :
$G \equiv{ }^{F} H$: there exists doubly stochastic S such that $G S=S H$.

$$
\begin{aligned}
\operatorname{iso}(G, H): & G S=S H \\
& S e=e^{\mathrm{T}} S=e \\
& S \geq 0
\end{aligned}
$$

Theorem [Tinhofer]

$$
G \equiv^{R} H \text { if and only if } G \equiv^{F} H .
$$

Higher levels of SA Hierarchy

SA-levels of fractional isomorphism:

$$
G \equiv{ }_{k}^{\text {SA }} H: \text { the degree- } k \text { SA level of } \operatorname{iso}(G, H) \text { is feasible. }
$$

Higher levels of SA Hierarchy

SA-levels of fractional isomorphism:

$$
G \equiv{ }_{k}^{\mathrm{SA}} H: \text { the degree- } k \text { SA level of } \operatorname{iso}(G, H) \text { is feasible. }
$$

Theorem [AA and Maneva 2013]:

$$
G \equiv_{k}^{\mathrm{SA}} H \Longrightarrow G \equiv_{k}^{C} H \Longrightarrow G \equiv_{k-1}^{\mathrm{SA}} H
$$

Higher levels of SA Hierarchy

SA-levels of fractional isomorphism:

$$
G \equiv{ }_{k}^{\mathrm{SA}} H: \text { the degree- } k \text { SA level of } \operatorname{iso}(G, H) \text { is feasible. }
$$

Theorem [AA and Maneva 2013]:

$$
G \equiv \equiv_{k}^{\mathrm{SA}} H \Longrightarrow G \equiv_{k}^{C} H \Longrightarrow G \equiv_{k-1}^{\mathrm{SA}} H .
$$

Moreover:

1. This interleaving is strict for $k>2$ [Grohe-Otto 2015]
2. A combined LP characterizes \equiv_{k}^{C} exactly [Grohe-Otto 2015]
3. Alternative (and independent) formulation by [Malkin 2014]

Higher Levels of SOS Hierarchy

SA and SOS-levels of fractional isomorphism:

1. $G \equiv \equiv_{k}^{\mathrm{SA}} H$: the degree- k SA level of $\operatorname{iso}(G, H)$ is feasible.
2. $G \equiv \equiv_{k}^{\operatorname{SOS}} H$: the degree- k SOS level of $\operatorname{iso}(G, H)$ is feasible.

Higher Levels of SOS Hierarchy

SA and SOS-levels of fractional isomorphism:

1. $G \equiv \equiv_{k}^{\mathrm{SA}} H$: the degree- k SA level of $\operatorname{iso}(G, H)$ is feasible.
2. $G \equiv \equiv_{k}^{\operatorname{SOS}} H$: the degree- k SOS level of $\operatorname{iso}(G, H)$ is feasible.

Theorem [AA and Ochremiak 2018]: There exists $c>1$ such that:

$$
G \equiv \equiv_{c k}^{\mathrm{SA}} H \Longrightarrow G \equiv_{k}^{\mathrm{SOS}} H \Longrightarrow G \equiv_{k}^{\mathrm{SA}} H .
$$

Part III

APPLICATIONS

Local LPs (and SDPs)

Basic k-local LPs:

1. one variable $x_{\mathbf{u}}$ for each k-tuple $\mathbf{u} \in V^{k}$,
2. one inequality $\sum_{\mathbf{u} \in V^{k}} a_{\mathbf{u}, \mathbf{v}} \cdot x_{\mathbf{u}} \geq b_{\mathbf{v}}$ for every k-tuple $\mathbf{v} \in V^{k}$,
3. coefficients $a_{\mathbf{u}, \mathbf{v}}$ depend only on the $\operatorname{type~}_{\operatorname{atp}_{G}(\mathbf{u}, \mathbf{v}) \text {, }, \text {, }, \text {, }}$
4. coefficients $b_{\mathbf{v}}$ depend only on the type $\operatorname{atp}_{G}(\mathbf{v})$.

Local LPs (and SDPs)

Basic k-local LPs:

1. one variable $x_{\mathbf{u}}$ for each k-tuple $\mathbf{u} \in V^{k}$,
2. one inequality $\sum_{\mathbf{u} \in V^{k}} a_{\mathbf{u}, \mathbf{v}} \cdot x_{\mathbf{u}} \geq b_{\mathbf{v}}$ for every k-tuple $\mathbf{v} \in V^{k}$,
3. coefficients $a_{\mathbf{u}, \mathbf{v}}$ depend only on the $\operatorname{type~}_{\operatorname{atp}_{G}(\mathbf{u}, \mathbf{v}) \text {, }, ~, ~, ~}^{\text {a }}$
4. coefficients $b_{\mathbf{v}}$ depend only on the type $\operatorname{atp}_{G}(\mathbf{v})$.

k-local LP:

Union of basic k-local LPs
with coefficients $a_{t(\mathbf{x}, \mathbf{y})}$ and $b_{t(\mathbf{y})}$ indexed by isomorphism types $t(\mathbf{x}, \mathbf{y})$ and $t(\mathbf{y})$.

Example 1: fractional vertex cover

Fractional vertex cover: Given a graph $G=(V, E)$

$$
\begin{array}{ll}
\sum_{u \in V} x_{u} \leq W \\
x_{u}+x_{v} \geq 1 & \text { for every }(u, v) \in E \\
x_{u} \geq 0 & \text { for every } u \in V
\end{array}
$$

Example 1: fractional vertex cover

Fractional vertex cover: Given a graph $G=(V, E)$

$$
\begin{array}{ll}
\sum_{u \in V} x_{u} \leq W \\
x_{u}+x_{v} \geq 1 & \text { for every }(u, v) \in E \\
x_{u} \geq 0 & \text { for every } u \in V
\end{array}
$$

1. Objective function: basic 1-local LP
2. Edge constraint: basic 2-local LP
3. Positive constraint: basic 1-local LP

Example 2: fractional matching polytope

Fractional matching polytope: Given a graph $G=(V, E)$

$$
\begin{array}{ll}
\sum_{u v \in E} x_{u v} \geq W & \\
x_{u v}=x_{v u} & \text { for every } u, v \in V \\
\sum_{v \in V} x_{u v} \leq 1 & \text { for every } u \in V \\
0 \leq x_{u v} \leq 1 & \text { for every } u, v \in V
\end{array}
$$

Example 2: fractional matching polytope

Fractional matching polytope: Given a graph $G=(V, E)$

$$
\begin{array}{lc}
\sum_{u v \in E} x_{u v} \geq W & \\
x_{u v}=x_{v u} & \text { for every } u, v \in V \\
\sum_{v \in V} x_{u v} \leq 1 & \text { for every } u \in V \\
0 \leq x_{u v} \leq 1 & \text { for every } u, v \in V
\end{array}
$$

1. Objective function: basic 2-local LP
2. Symmetry constraint: two basic 2-local LPs
3. Degree-at-most-one constraint: basic 2-local LP

Example 3: metric polytope

Metric polytope: Given a graph $G=(V, E)$

$$
\begin{array}{ll}
\frac{1}{2} \sum_{u v \in E} x_{u v} \geq W & \\
x_{u v}=x_{v u} & \text { for every } u, v \in V \\
x_{u w} \leq x_{u v}+x_{v w} & \text { for every } u, v, w \in V \\
x_{u v}+x_{v w}+x_{u w} \leq 2 & \text { for every } u, v, w \in V \\
0 \leq x_{u v} \leq 1 & \text { for every } u, v \in V
\end{array}
$$

1. Objective function: basic 2-local LP
2. Symmetry constraint: two basic 2-local LPs
3. Triangle inequality: basic 3 -local LP
4. Perimetric inequality: basic 3-local LP
5. Unit cube constraint: two basic 2-local LPs

Preservation of local LPs and SDPs

Theorem Let P be a k-local LP or SDP.

1. LP: If $G \equiv_{k}^{C} H$, then $P(G)$ is feasible iff $P(H)$ is feasible.
2. SDP: If $G \equiv{ }_{c k}^{C} H$, then $P(G)$ is feasible iff $P(H)$ is feasible.

Preservation of local LPs and SDPs

Theorem Let P be a k-local LP or SDP.

1. LP: If $G \equiv_{k}^{C} H$, then $P(G)$ is feasible iff $P(H)$ is feasible.
2. SDP: If $G \equiv{ }_{c k}^{C} H$, then $P(G)$ is feasible iff $P(H)$ is feasible.
'Just do it' proof for LP:
3. Let $\left\{x_{\mathbf{u}}\right\}$ be a feasible solution for $P(G)$.
4. Let $\left\{X_{\mathbf{u}, \mathbf{v}}\right\}$ be a feasible solution for $\mathrm{sa}^{k} \operatorname{iso}(G, H)$.
5. Define:

$$
y_{\mathbf{v}}:=\sum_{\mathbf{u} \in G^{k}} x_{\mathbf{u}, \mathbf{v}} \cdot x_{\mathbf{u}} .
$$

4. Check that $\left\{y_{v}\right\}$ is a feasible solution for $P(H)$.

More examples of local LPs

More examples:

1. maximum flows (2-local)
2. if P is r-local LP, then $\mathrm{sa}^{k}-P$ is $r k$-local LP.
3. if P is r-local LP, then $\operatorname{sos}^{k}-P$ is $r k$-local SDP.

Back to integrality gaps for vertex cover

Goal:

For large k and every $\epsilon>0$ find graphs G and H such that

1. $G \equiv{ }_{c \cdot 2 k}^{C} H$
2. $\operatorname{vc}(G) \geq(2-\epsilon) \operatorname{vc}(H)$

Back to integrality gaps for vertex cover

Goal:

For large k and every $\epsilon>0$ find graphs G and H such that

1. $G \equiv{ }_{c \cdot 2 k}^{C} H$
2. $\operatorname{vc}(G) \geq(2-\epsilon) \operatorname{vc}(H)$

It would follow that:

$$
\sup _{G} \frac{\operatorname{vc}(G)}{\operatorname{sos}^{k} f v c(G)}=2
$$

Back to integrality gaps for vertex cover

Goal:

For large k and every $\epsilon>0$ find graphs G and H such that

1. $G \equiv{ }_{c \cdot 2 k}^{C} H$
2. $\operatorname{vc}(G) \geq(2-\epsilon) \operatorname{vc}(H)$

It would follow that:

$$
\sup _{G} \frac{\operatorname{vc}(G)}{\operatorname{sos}^{k} \mathrm{fvc}(G)}=2
$$

Proof:

$$
\begin{aligned}
\operatorname{vc}(G) & \geq(2-\epsilon) \operatorname{vc}(H) & & \text { by } 2 . \\
& \geq(2-\epsilon) \operatorname{sos}^{k} f v c(H) & & \text { obvious } \\
& \geq(2-\epsilon) \operatorname{sos}^{k} \mathrm{fvc}(G) & & \text { by 1. and 2-locality }
\end{aligned}
$$

GOAL

For large k and every $\epsilon>0$ find graphs G and H such that

1. $G \equiv{ }_{c \cdot 2 k}^{C} H$
2. $\operatorname{vc}(G) \geq(2-\epsilon) \operatorname{vc}(H)$

A weak (easy) case: $k=1$ with gap $=2$

Choose:

$G=$ any d-regular expander graph (i.e., $\lambda_{2}(G) \ll \lambda_{1}(G)$), $H=$ any d-regular bipartite graph.

A weak (easy) case: $k=1$ with gap $=2$

Choose:

$G=$ any d-regular expander graph (i.e., $\lambda_{2}(G) \ll \lambda_{1}(G)$), $H=$ any d-regular bipartite graph.

Then:

$$
\begin{array}{ll}
\operatorname{vc}(G)=(1-\epsilon) n & \text { by expansion } \\
\operatorname{vc}(H)=n / 2 & \text { by bipartition } \\
G \equiv \equiv^{R} H & \text { by regularity } \\
G \equiv_{2}^{C} H & \text { by Tinhofer's Theorem }
\end{array}
$$

A weak (easy) case: $k=1$ with gap $=2$

Choose:

$G=$ any d-regular expander graph (i.e., $\lambda_{2}(G) \ll \lambda_{1}(G)$), $H=$ any d-regular bipartite graph.

Then:

$$
\begin{array}{ll}
\operatorname{vc}(G)=(1-\epsilon) n & \text { by expansion } \\
\mathrm{vc}(H)=n / 2 & \text { by bipartition } \\
G \equiv \equiv^{R} H & \text { by regularity } \\
G \equiv_{2}^{C} H & \text { by Tinhofer's Theorem }
\end{array}
$$

Tight in two ways:

$$
\begin{aligned}
& G \not \equiv_{3}^{C} H \\
& G \equiv_{2}^{C} H \Longrightarrow \operatorname{vc}(G) \leq 2 \mathrm{vc}(H)
\end{aligned}
$$

bipartiteness is C^{3}-definable,
[AA-Dawar 2018]

A different weak (harder) case: $k=\Omega(n)$ but gap $=1.08$

Theorem [AA-Dawar 2018]
There exist graphs G_{n} and H_{n} such that

1. $G_{n} \equiv_{\Omega(n)}^{C} H_{n}$
2. $\operatorname{vc}\left(G_{n}\right) \geq 1.08 \cdot \operatorname{vc}\left(H_{n}\right)$

Part IV

PROOF INGREDIENTS

$1 / 3$: Locally consistent systems of linear equations

Ingredient 1: A linear system $A x=b$ over \mathbb{F}_{2} where:

$1 / 3$: Locally consistent systems of linear equations

Ingredient 1: A linear system $A x=b$ over \mathbb{F}_{2} where:

- $A \in \mathbb{F}_{2}^{m \times n}$ and $b \in \mathbb{F}_{2}^{n}$

$1 / 3$: Locally consistent systems of linear equations

Ingredient 1: A linear system $A x=b$ over \mathbb{F}_{2} where:

- $A \in \mathbb{F}_{2}^{m \times n}$ and $b \in \mathbb{F}_{2}^{n}$
- every row of A has at most three 1's

$1 / 3$: Locally consistent systems of linear equations

Ingredient 1: A linear system $A x=b$ over \mathbb{F}_{2} where:

- $A \in \mathbb{F}_{2}^{m \times n}$ and $b \in \mathbb{F}_{2}^{n}$
- every row of A has at most three 1 's
- every subset of ϵm equations has at least δn unique variables

$1 / 3$: Locally consistent systems of linear equations

Ingredient 1: A linear system $A x=b$ over \mathbb{F}_{2} where:

- $A \in \mathbb{F}_{2}^{m \times n}$ and $b \in \mathbb{F}_{2}^{n}$
- every row of A has at most three 1 's
- every subset of ϵm equations has at least δn unique variables
- every candidate solution satisfies at most $\frac{1}{2}+\epsilon$ equations

$1 / 3$: Locally consistent systems of linear equations

Ingredient 1: A linear system $A x=b$ over \mathbb{F}_{2} where:

- $A \in \mathbb{F}_{2}^{m \times n}$ and $b \in \mathbb{F}_{2}^{n}$
- every row of A has at most three 1 's
- every subset of ϵm equations has at least δn unique variables
- every candidate solution satisfies at most $\frac{1}{2}+\epsilon$ equations

Probabilistic construction:

1. set $m=c n$ for a large constant $c=c(\epsilon)$
2. choose three ones uniformly at random in each row of A
3. choose b uniformly at random in \mathbb{F}_{2}^{n}.

$1 / 3$: Locally consistent systems of linear equations

Ingredient 1: A linear system $A x=b$ over \mathbb{F}_{2} where:

- $A \in \mathbb{F}_{2}^{m \times n}$ and $b \in \mathbb{F}_{2}^{n}$
- every row of A has at most three 1 's
- every subset of ϵm equations has at least δn unique variables
- every candidate solution satisfies at most $\frac{1}{2}+\epsilon$ equations

Probabilistic construction:

1. set $m=c n$ for a large constant $c=c(\epsilon)$
2. choose three ones uniformly at random in each row of A
3. choose b uniformly at random in \mathbb{F}_{2}^{n}.

Half-deterministic construction:

1. set $m=c n$ for a large constrant $c=c(\epsilon)$
2. let A be incidence matrix of bipartite expander
3. choose b uniformly at random in \mathbb{F}_{2}^{n}.

2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems S_{0} and S_{1} over \mathbb{F}_{2} where:

2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems S_{0} and S_{1} over \mathbb{F}_{2} where:

1. $S_{0} \equiv{ }_{\Omega(n)}^{C} S_{1}$

2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems S_{0} and S_{1} over \mathbb{F}_{2} where:

1. $S_{0} \equiv{ }_{\Omega(n)}^{C} S_{1}$
2. every candidate solution for S_{0} satisfies at most $\frac{3}{4}$ equations

2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems S_{0} and S_{1} over \mathbb{F}_{2} where:

1. $S_{0} \equiv{ }_{\Omega(n)}^{C} S_{1}$
2. every candidate solution for S_{0} satisfies at most $\frac{3}{4}$ equations
3. some solution solution exists for S_{1}

2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems S_{0} and S_{1} over \mathbb{F}_{2} where:

1. $S_{0} \equiv{ }_{\Omega(n)}^{C} S_{1}$
2. every candidate solution for S_{0} satisfies at most $\frac{3}{4}$ equations
3. some solution solution exists for S_{1}

Construction of S_{0} :

1. start with $A x=b$ from previous section
2. duplicate each variable $x \mapsto\left(x^{(0)}, x^{(1)}\right)$
3. replace each equation $x_{i}+x_{j}+x_{k}=b$ by 8 equations

$$
x_{i}^{(u)}+x_{j}^{(v)}+x_{k}^{(w)}=b+u+v+w
$$

2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems S_{0} and S_{1} over \mathbb{F}_{2} where:

1. $S_{0} \equiv{ }_{\Omega(n)}^{C} S_{1}$
2. every candidate solution for S_{0} satisfies at most $\frac{3}{4}$ equations
3. some solution solution exists for S_{1}

Construction of S_{0} :

1. start with $A x=b$ from previous section
2. duplicate each variable $x \mapsto\left(x^{(0)}, x^{(1)}\right)$
3. replace each equation $x_{i}+x_{j}+x_{k}=b$ by 8 equations

$$
x_{i}^{(u)}+x_{j}^{(v)}+x_{k}^{(w)}=b+u+v+w
$$

Construction of S_{1} :

1. same but start with $A x=0$ (the homogeneous system)

3/3: Reduction to vertex cover

Ingredient 3: A pair of graphs G_{0} and G_{1} where:

1. $G_{0} \equiv{ }_{\Omega(n)}^{C} G_{1}$
2. $\mathrm{vc}\left(G_{0}\right) \geq 26 m$
3. $\operatorname{vc}\left(G_{1}\right) \leq 24 m$

3/3: Reduction to vertex cover

Ingredient 3: A pair of graphs G_{0} and G_{1} where:

1. $G_{0} \equiv{ }_{\Omega(n)}^{C} G_{1}$
2. $\operatorname{vc}\left(G_{0}\right) \geq 26 m$
3. $\operatorname{vc}\left(G_{1}\right) \leq 24 m$

Construction:
a standard reduction from \mathbb{F}_{2}-SAT to vertex cover

Open Problem 1

$$
\sup _{G} \frac{\operatorname{vc}(G)}{\operatorname{sos}^{4} \operatorname{fvc}(G)}>1.36 ?
$$

Open Problem 2

find strongly regular graphs G and H with same parameters

$$
\text { so that } \operatorname{vc}(G) \geq(2-\epsilon) \operatorname{vc}(H)
$$

Acknowledgments

ERC-2014-CoG 648276 (AUTAR) EU.

