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Indistinguishability



Overview of the talk

Overview:

1. Iterated degree sequences and Weisfeiler-Lehman algorithm

2. Fractional isomorphisms and Sherali-Adams relaxations

3. Transfer Lemma

4. Indistinguishability in counting logics

5. Applications



Part I

ITERATED DEGREE SEQUENCES



Iterated degree sequences

Let G = (V ,E ) be a graph.
Use u to denote a vertex, and NG (u) for its neighborhood.

Start at the degree sequence:

d1(u) := |NG (u)|,

d1(G ) := {{ d1(u) : u ∈ V }}.

Iterate:

di+1(u) := {{ di(v) : v ∈ NG (u) }},

di+1(G ) := {{ di+1(u) : u ∈ V }}.

Take the limit:

D(G ) := (d1(G ), d2(G ), d3(G ), . . .).



Indistinguishability by iterated degree sequences

Definition:

G ∼=D H iff D(G ) = D(H).



Indistinguishability by iterated degree sequences

∼=D is strong...

Theorem [Babai-Erdös-Selkow 80]:

Let G = G (n, 1/2) be drawn randomly. Then, a.s. as n → ∞,
for every H with n vertices we have G ∼=D H iff G ∼= H.



Indistinguishability by iterated degree sequences

∼=D is strong...

Theorem [Babai-Erdös-Selkow 80]:

Let G = G (n, 1/2) be drawn randomly. Then, a.s. as n → ∞,
for every H with n vertices we have G ∼=D H iff G ∼= H.

But also weak...

Fact [Obvious]:

If G and H are both d -regular, then G ∼=D H.



Types of k-tuples

For a k-tuple of vertices u = (u1, . . . , uk) ∈ V k ,

Define:

tpG (u) = “complete information about adjacencies,
non-adjacencies, equalities and non-equalities

between the components u1, . . . , uk”.

Example:

tpG (u1, u2, u3) = {E (1, 1),E (1, 2),E (1, 3),

E (2, 1),E (2, 2),E (3, 2),

E (3, 1),E (3, 2),E (3, 3),

1 6= 2, 1 6= 3, 2 = 3}



k-dimensional Weisfeiler-Lehman algorithm

Start at the type sequence:

ℓ0(u) := tpG (u),

ℓ0(G ) := {{ ℓ0(u) : u ∈ V k }}.

Iterate:

ℓi+1(u) := {{ (tpG (uv), ℓi (u[1/v ]), . . . , ℓi (u[k/v ])) : v ∈ V }},

ℓi+1(G ) := {{ ℓi+1(u) : u ∈ V k }}.

Take the limit:

Dk(G ) := (ℓ0(G ), ℓ1(G ), . . .).



Indistinguishability by k-dim WL

Definition:

G ∼=k
WL H iff Dk(G ) = Dk(H).



Indistinguishability by k-dim WL

∼=k
WL is strong...

At least as strong as vertex-refinement:

G 6∼=D H =⇒ G 6∼=1
WL H

Theorem [Kucera 87]:

Let G = Greg(n, d) be drawn randomly. Then, a.s. as n → ∞,
for every H with n vertices we have G ∼=2

WL H iff G ∼= H.



Indistinguishability by k-dim WL

∼=k
WL is strong...

At least as strong as vertex-refinement:

G 6∼=D H =⇒ G 6∼=1
WL H

Theorem [Kucera 87]:

Let G = Greg(n, d) be drawn randomly. Then, a.s. as n → ∞,
for every H with n vertices we have G ∼=2

WL H iff G ∼= H.

Relevant note:

∼=k
WL is decidable in time nO(k).



Is k-dim WL weak at all?

Truth is:

For years no two ∼=37
WL-indistinguishable graphs were known...

It was even conjectured that no such graphs existed...



Is k-dim WL weak at all?

Truth is:

For years no two ∼=37
WL-indistinguishable graphs were known...

It was even conjectured that no such graphs existed...

Theorem [Cai-Fürer-Immerman 92]:

There exists explicitely defined graphs Gn and Hn,
with n vertices each and maximum degree 3, such that

Gn
∼=

Ω(n)
WL Hn yet Gn 6∼= Hn.

Note:

Reasoning about ∼=k
WL requires an excursion

into finite model theory (more on this later).



CFI-construction

1. Start with a 3-regular graph G without Ω(n)-separators.
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2. Replace each vertex by gadget:



CFI-construction

1. Start with a 3-regular graph G without Ω(n)-separators.

2. Replace each vertex by gadget:

3. Let Gn be the result and let Hn = Gn + “one flip”.



Part II

SHERALI-ADAMS RELAXATIONS



Adjacency matrices

Let G = (V G ,EG ) and H = (V H ,EH) be graphs.
Say V G = V H = {1, . . . , n}.
Let A and B be their adjacency matrices.

A =

















0 1 1 1 1 1
1 0 1 0 0 1
1 1 0 1 0 0
1 0 1 0 1 0
1 0 0 1 0 1
1 1 0 0 1 0

















B =

















0 1 1 1 0 0
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0



















Permutation matrices and isomorphisms

A permutation matrix P is a real matrix such that

∑n
j=1 Pij = 1 for every i ∈ {1, . . . , n},

∑n
i=1 Pij = 1 for every j ∈ {1, . . . , n},

Pij ∈ {0, 1} for every i , j ∈ {1, . . . , n}.

Properties:

• PTP = I ,
• A 7→ AP : permutes the columns of A,
• A 7→ PTA: permutes the rows of A,
• A 7→ PTAP : permutes the vertices.

Fact: The following are equivalent:

1. G ∼= H,
2. there exists P ∈ Pn such that PTAP = B ,
3. there exists P ∈ Pn such that AP = PB .



Doubly stochastic matrices and fractional isomorphisms

A doubly stochastic matrix S is a real matrix such that:

∑n
j=1 Sij = 1 for every i ∈ {1, . . . , n},

∑n
i=1 Sij = 1 for every j ∈ {1, . . . , n},

Sij ≥ 0 for every i , j ∈ {1, . . . , n}.

Relaxation of isomorphism:

• Replace “there exists P ∈ Pn such that AP = PB”
• by this “there exists S ∈ Sn such that AS = SB”.

In other words, let I (G ,H) be the LP for Sn plus

∑n
i=1 AuiSiv =

∑n
j=1 SujBjv

for every u, v ∈ V G × V H .



Indistinguishability by fractional isomorphisms

Definition:

G ∼=F H iff I (G ,H) 6= ∅.



Indistinguishability by fractional isomorphisms

Suppose G ∼=F H. Then:

• |EG | = |EH |,
• actually d1(G ) = d1(H),
• and even D(G ) = D(H).



Indistinguishability by fractional isomorphisms

Suppose G ∼=F H. Then:

• |EG | = |EH |,
• actually d1(G ) = d1(H),
• and even D(G ) = D(H).

Indeed:

Theorem [Ramana-Scheinerman-Ullman 94]

G ∼=F H iff G ∼=D H.



Sherali-Adams relaxations

Let

P = {x ∈ R
n : Ax ≥ b},

PZ = convexhull{x ∈ {0, 1}n : Ax ≥ b}.

The Sherali-Adams levels are nested polytopes:

P = P0 ⊇ P1 ⊇ P2 ⊇ · · · ⊇ Pn = PZ

and the SA-rank of P is:

min{k : Pk = PZ}.



Definition of Pk in four steps

Let

P =











x ∈ R
n :







aT1 x ≥ b1
...
aTmx ≥ bm

















.

be the LP.



Definition of Pk in four steps

Step 1: Multiply each aTi x ≥ bi by all multipliers of the form

∏

i∈I

xi
∏

j∈J

(1− xj)

for I , J ⊆ [n], |I ∪ J| ≤ k − 1, I ∩ J = ∅.



Definition of Pk in four steps

Step 1: Multiply each aTi x ≥ bi by all multipliers of the form

∏

i∈I

xi
∏

j∈J

(1− xj)

for I , J ⊆ [n], |I ∪ J| ≤ k − 1, I ∩ J = ∅.

Step 1 leaves an equivalent system of polynomials of degree k .



Definition of Pk in four steps

Step 2: Expand the products and replace each square x2i by xi .



Definition of Pk in four steps

Step 2: Expand the products and replace each square x2i by xi .

Step 2 leaves a system of multi-linear polynomials of degree k .
This is the integrality step: valid on {0, 1}n only.



Definition of Pk in four steps

Step 3: Linearize each monomial
∏

i∈I xi by introducing a new
variable yI .



Definition of Pk in four steps

Step 3: Linearize each monomial
∏

i∈I xi by introducing a new
variable yI .

Step 3 leaves a linear program Qk on the yI -variables in R
nk .

This is the relaxation step.



Definition of Pk in four steps

Step 4: Define

Pk := {x ∈ R
n : ∃y ∈ Qk s.t. y{i} = xi for every i}.



Definition of Pk in four steps

Step 4: Define

Pk := {x ∈ R
n : ∃y ∈ Qk s.t. y{i} = xi for every i}.

Step 4 takes us back to R
n.

It’s the projection step: from R
nk to R

n.



Solving P
k

Note:

The polytope Pk is definable by
an LP on nk variables and m · nk inequalities.

Therefore:

Feasibility and optimization of linear functions over Pk

can be solved in time mO(1)nO(k).



Indistinguishability by SA-levels of fractional isomorphisms

Definition:
G ∼=k

SA H iff I (G ,H)k 6= ∅.



Part III

TRANSFER LEMMA



Statement of the transfer lemma

Transfer Lemma:

G ∼=k
WL H =⇒ G ∼=k−1

SA H =⇒ G ∼=k−1
WL H.

Interpretation:

A geometric concept is captured by purely combinatorial means.
A combinatorial concept is captured by purely geometric means.



Proof of the transfer lemma

Intermediate notions of indistinguishability:

G ∼=k
WL H ⇒ G ∼=k

C H ⇒G ∼=k−1
CS H ⇒G ∼=k−1

EP H ⇒G ∼=k−1
SA H

and
G ∼=k−1

SA H ⇒ G ∼=k−1
C H ⇒G ∼=k−1

WL H .



Proof of the transfer lemma

Intermediate notions of indistinguishability:

G ∼=k
WL H ⇒ G ∼=k

C H ⇒G ∼=k−1
CS H ⇒G ∼=k−1

EP H ⇒G ∼=k−1
SA H

and
G ∼=k−1

SA H ⇒ G ∼=k−1
C H ⇒G ∼=k−1

WL H .

Here:

∼=k
C is indistinguishability by properties definable in

first-order logic with counting quantifiers and width k .



Part IV

COUNTING LOGICS



Indistinguishability



Counting quantifiers

Counting witnesses:

∃≥ix(φ(x)) : there are at least i vertices x that satisfy φ(x).

Example:

ψd (x) := ∃≥dy(E (x , y)) ∧ ¬∃d+1y(E (x , y)),

φ := ¬∃≥1x(¬ψd (x)).

Note:

We used only two first-order variables (x and y)
where d + 1 are required in pure first-order logic.



Bounded width formulas

Example: First paths

P1(x , y) := E (x , y)

P2(x , y) := ∃z1(E (x , z1) ∧ P1(z1, y))

P3(x , y) := ∃z2(E (x , z2) ∧ P2(z2, y))

...

Pi+1(x , y) := ∃zi(E (x , zi ) ∧ Pi (zi , y)).

and then

∀x(¬P3(x , x) ∧ ¬P5(x , x) ∧ · · · ∧ ¬P2⌈n/2⌉−1(x , x)).

Counting logic with k variables:

C k : collection of formulas for which
all subformulas have at most k free variables.



Indistinguishability by C
k

Definition:

G ∼=k
C H iff for every φ ∈ C k we have G |= φ⇔ H |= φ.



Pebble game (without counting moves)

Forced win for Spoiler.
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Forced win for Spoiler.



Pebble game WITH counting moves

Forced win for Spoiler.
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Pebble game with counting moves

Forced win for Spoiler.



Pebble game with counting moves

Forced win for Spoiler.



Systems with the back-and-forth properties

A winning strategy for the Duplicator in G ∼=k
C H is a non-empty

collection F of partial isomorphisms from G to H such that for
every f ∈ F we have:
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A winning strategy for the Duplicator in G ∼=k
C H is a non-empty

collection F of partial isomorphisms from G to H such that for
every f ∈ F we have:

1. (bounded) |Dom(f )| ≤ k ,

2. (subfunction) For every g ⊆ f we have g ∈ F ,

3. (back) If |Dom(f )| < k then:

for every X ⊆ VG there exists Y ⊆ VH with |Y | = |X | s.t.
for every v ∈ Y there exists u ∈ X with f ∪ {(u, v)} ∈ F ,



Systems with the back-and-forth properties

A winning strategy for the Duplicator in G ∼=k
C H is a non-empty

collection F of partial isomorphisms from G to H such that for
every f ∈ F we have:

1. (bounded) |Dom(f )| ≤ k ,

2. (subfunction) For every g ⊆ f we have g ∈ F ,

3. (back) If |Dom(f )| < k then:

for every X ⊆ VG there exists Y ⊆ VH with |Y | = |X | s.t.
for every v ∈ Y there exists u ∈ X with f ∪ {(u, v)} ∈ F ,

4. (forth) If |Dom(f )| < k then:

for every Y ⊆ VH there exists X ⊆ VG with |X | = |Y | s.t.
for every u ∈ X there exists v ∈ Y with f ∪ {(u, v)} ∈ F .



Counting pebble game vs. Weisfeiler-Lehman algorithm

Theorem [Immerman-Lander 90, Cai-Fürer-Immerman 92]

G ∼=k
WL H ⇐⇒ G ∼=k+1

C H.

Relevant note: From its definition, it is not even obvious that
G ∼=k

C H is decidable in time nO(k).



From feasible solutions to systems with B&F

Wanted:
G ∼=k

SA H =⇒ G ∼=k
C H

Ingredient 1:

Birkhoff decomposition theorem: every doubly stochastic matrix is
a convex combination of permutation matrices.

Ingredient 2:

Permutations preserve sizes of sets.



From systems with B&F to feasible solutions

Wanted:
G ∼=k

C H =⇒ G ∼=k−1
SA H

Ingredient 1:

A sliding game to account for AS = SB ;
here is where the −1 is lost.

Ingredient 2:

Normalizing winning strategies into uniform ones.



Part V

APPLICATIONS (or what to do of this?)



Isomorphism testing for special graphs

Theorem [Immerman-Lander 90, Grohe 98, ...]

1. If G is a tree, then G ∼=2
C H iff G ∼= H, for every H.

2. If G is planar, then G ∼=15
C H iff G ∼= H, for every H.

3. · · ·

Corollary

For all such graph classes,
an explicit and poly-size LP
solves graph isomorphism.



SA-rank lower bounds

Consider the standard LP-relaxation of vertex cover:

minimize
∑

u∈V xu

subject to

xu + xv ≥ 1 for every (u, v) ∈ E ,

xu ≥ 0 for every u ∈ V .



SA-rank lower bounds

Consider the standard LP-relaxation of vertex cover:

minimize
∑

u∈V xu

subject to

xu + xv ≥ 1 for every (u, v) ∈ E ,

xu ≥ 0 for every u ∈ V .

We expect that the inequality

∑

u∈V xu ≥ vc(G ) (1)

will not, in general, be valid over Pk(G ) for any k = O(1).



SA-rank lower bounds

Consider the standard LP-relaxation of vertex cover:

minimize
∑

u∈V xu

subject to

xu + xv ≥ 1 for every (u, v) ∈ E ,

xu ≥ 0 for every u ∈ V .

We expect that the inequality

∑

u∈V xu ≥ vc(G ) (1)

will not, in general, be valid over Pk(G ) for any k = O(1).
Indeed:

Theorem [exercise, also follows Schoenebeck 08]

There exist graphs G for which (2) is not valid over PΩ(n)(G ).



New proof

Sketch:

1. Start with the n-vertex CFI graphs G ∼=
Ω(n)
C H yet G 6∼= H.

2. In particular (G ,G ) ∼=
Ω(n)
C (G ,H) yet G ∼= G and G 6∼= H.

3. Apply the reduction from graph isomorphism to vertex cover.

4. Get graphs A ∼=
Ω(n)
C B with vc(A) 6= vc(B).

5. Apply transfer lemma and get A ∼=
Ω(n)
SA B .

Final step:

A ∼=2k
SA B =⇒ opt(Pk(A)) = opt(Pk(B)).



SA-rank lower bounds

Consider the standard LP-relaxation of max-cut:

maximize 1
2

∑

uv∈E xuv

subject to

xuv = xvu

xuw ≤ xuv + xvw

xuv + xvw + xwu ≤ 2

0 ≤ xuv ≤ 1



SA-rank lower bounds
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subject to

xuv = xvu

xuw ≤ xuv + xvw

xuv + xvw + xwu ≤ 2

0 ≤ xuv ≤ 1

We expect that the inequality
∑

u∈V xu ≤ mc(G ) (2)

will not, in general, be valid over Pk(G ) for any k = O(1).



SA-rank lower bounds

Consider the standard LP-relaxation of max-cut:

maximize 1
2

∑

uv∈E xuv

subject to

xuv = xvu

xuw ≤ xuv + xvw

xuv + xvw + xwu ≤ 2

0 ≤ xuv ≤ 1

We expect that the inequality
∑

u∈V xu ≤ mc(G ) (2)

will not, in general, be valid over Pk(G ) for any k = O(1).
Indeed:

Theorem [follows from Schoenebeck 08]

There exist graphs G for which (2) is not valid over PΩ(n)(G ).



New proof

Sketch:

1. Start with the n-vertex CFI graphs G ∼=
Ω(n)
C H yet G 6∼= H.

2. In particular (G ,G ) ∼=
Ω(n)
C (G ,H) yet G ∼= G and G 6∼= H.

3. Apply the reduction from graph isomorphism to max-cut.

4. Get graphs A ∼=
Ω(n)
C B with mc(A) 6= mc(B).

5. Apply transfer lemma and get A ∼=
Ω(n)
SA B .

Final step:

A ∼=3k
SA B =⇒ opt(Pk(A)) = opt(Pk(B)).



Local LPs

Basic k-local LPs:

1. one variable xu for each k-tuple u ∈ V k ,

2. one inequality
∑

u∈V k au,v · xu ≥ bv for every k-tuple v ∈ V k ,

3. coefficients au,v depend only on the type tpG (u, v),

4. coefficients bv depend only on the type tpG (v).

Generic k-local LPs:

Unions of generic basic k-local LPs
(with coefficients given as a function of the types).

Instantiation of generic k-local LPs:

Let P is a generic k-local LP.
Then P(G ) is the LP associated to G .



Metric polytope

Recall the metric polytope:

1
2

∑

uv∈E xuv ≥ W

xuv = xvu

xuw ≤ xuv + xvw

xuv + xvw + xuw ≤ 2

0 ≤ xuv ≤ 1

1. Objective function: basic 2-local LP

2. Symmetry constraint: two basic 2-local LPs

3. Triangle inequality: basic 3-local LP

4. Perimetric inequality: basic 3-local LP

5. Unit cube constraint: two basic 2-local LPs



Preservation of local LPs

Theorem: Let P be a generic k-local LP.

If G ∼=k
SA H, then P(G ) is feasible iff P(H) is feasible.

’Just do it’ proof:

1. Let {xu} be a feasible solution for P(G ).

2. Let {Xu,v} be a feasible solution for I (G ,H)k .

3. Define:
yv :=

∑

u∈G k

Xu,v · xu.

4. Check that {yv} is a feasible solution for P(H).



More examples of local LPs

More examples:

1. maximum flows (2-local)

2. matchings on bipartite graphs (2-local)

3. relaxation of max-cut via the metric polytope (3-local)

4. relaxation of vertex cover (2-local)

5. r SA-levels of k-local LPs are O(kr)-local LPs.



Expressibility results

Consider the max-flow LP. It is 2-local. It is integral.

Corollary

G ∼=3
C H ⇒ mf(G ) = mf(H).

Corollary

There exists a sentence in C 3 that,
over st-networks with n vertices, defines those

whose maximum flow is at least the out-degree of the source.



Expressibility results

Consider the metric polytope again.

Theorem [Barahona-Majoub 86]:

If G is a K5 minor-free graph, then mc(G ) = opt(P(G )).

Corollary

If G and H are K5 minor-free, then G ∼=4
C H ⇒ mc(G ) = mc(H).

Corollary

There exists a sentence in C 4 that,
over K5 minor-free n-vertex graphs, defines those

whose max-cut is at least n/4.



Part VI

DISCUSSION AND OPEN PROBLEMS



Get new rank lower bounds from inexpressibility results?

Challenging problem:

Prove that an integrality gap of 2− ǫ
resists Ω(n) SA-levels of vertex-cover.



Get new rank lower bounds from inexpressibility results?

Challenging problem:

Prove that an integrality gap of 2− ǫ
resists Ω(n) SA-levels of vertex-cover.

What would be enough?:

Find G and H such that:

1. mc(G ) ≥ (2− ǫ) ·mc(H)

2. G ∼=
Ω(n)
C H.



New expressibility/inexpressibility results?

Challenging problem:

Is perfect matching definable in CO(1)?
(answer is YES for bipartite graphs)



New expressibility/inexpressibility results?

Challenging problem:

Is perfect matching definable in CO(1)?
(answer is YES for bipartite graphs)

SOLVED! [Anderson-Dawar-Holm 13]:

YES even for general graphs!



TODA!
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