GAPS BETWEEN CLASSICAL SATISFIABILITY PROBLEMS AND THEIR QUANTUM RELAXATIONS

Albert Atserias Universitat Politècnica de Catalunya Barcelona

Workshop on Graph Theory and Combinatorics, FOCM 2017 Barcelona, Catalonia, July 2017 Constraint Satisfaction Problems (CSPs)

Variables and Values:

$$V = \{X_1 \dots, X_n\}$$
 and $D = \{b_1, \dots, b_q\}$

System of constraints:

$$R_1(t_1),\ldots,R_m(t_m)$$

where

 $R_j \subseteq D^{r_j}$ is the constraint relation $t_j \in V^{r_j}$ is the constraint scope

Solution space:

$$f: V \to D$$
 with $f(t_j) \in R_j$ for every $j = 1, \ldots, m$

Example 1:

System of linear equations over \mathbb{Z}_2 :

Here

$$V = \{X_1, X_2, X_3, X_4, X_5\}$$
 and $D = \mathbb{Z}_2$,

and the constraint relations are

$$R_0 = \{(a, b, c) \in D^3 : a + b + c \equiv 0 \pmod{2}\}$$

$$R_1 = \{(a, b, c) \in D^3 : a + b + c \equiv 1 \pmod{2}\}$$

Example 2

Graph 3-colorability:

$$\begin{array}{ll} X_1 \neq X_2 \\ X_2 \neq X_3 \\ X_3 \neq X_4 \\ X_4 \neq X_5 \\ X_5 \neq X_1 \end{array} \quad \text{with } X_i \in \{\bullet, \bullet, \bullet\} \end{array}$$

Here

$$V = \{X_1, X_2, X_3, X_4, X_5\}, D = \{\bullet, \bullet, \bullet\}, \text{ and } R = " \neq ".$$

Questions Concerning CSPs

- 1. Satisfiability: Does it have a solution? (*k*-SAT, *k*-colorability, systems of equations)
- Optimization: How many constraints can be satisfied simultaneously? (MAX-3-SAT, MAX-CUT, unique games)
- 3. Counting: How many solutions does it have? (#-SAT, computing partition functions of spin systems)
- 4. Structure: Is the space of solutions connected through single value-flips? (sampling by Monte-Carlo Markov chain)
- 5. Relaxations: When is a certain relaxation of the problem exact? (LP relaxation, SDP relaxation, ...)
- 6. ...

Questions Concerning CSPs

- 1. Satisfiability: Does it have a solution? (*k*-SAT, *k*-colorability, systems of equations)
- Optimization: How many constraints can be satisfied simultaneously? (MAX-3-SAT, MAX-CUT, unique games)
- 3. Counting: How many solutions does it have? (#-SAT, computing partition functions of spin systems)
- 4. Structure: Is the space of solutions connected through single value-flips? (sampling by Monte-Carlo Markov chain)
- 5. Relaxations: When is a certain relaxation of the problem exact? (LP relaxation, SDP relaxation, ...)
- 6. ...

This talk:

QUANTUM RELAXATIONS

ALICE BOB A(u) u v B(v)

C(u,v,A(u),B(v))

Game:

 $\begin{aligned} \pi: \text{ probability distribution on } U \times V \\ C: U \times V \times R \times S \to \{0,1\} \end{aligned}$

Game:

 $\begin{aligned} \pi : \text{ probability distribution on } U \times V \\ C : U \times V \times R \times S \to \{0,1\} \end{aligned}$

Strategies:

$$A: U \to R$$
$$B: V \to S$$

Game:

 $\begin{aligned} \pi : \text{ probability distribution on } U \times V \\ C : U \times V \times R \times S \to \{0,1\} \end{aligned}$

Strategies:

$$A: U \to R$$
$$B: V \to S$$

Value of the game:

$$\max_{A,B} \mathop{\mathbb{E}}_{(u,v)} \left[C(u,v,A(u),B(v)) \right]$$

 $R_1(t_1),\ldots,R_m(t_m)$

 $R_1(t_1),\ldots,R_m(t_m)$

Verifier randomly chooses $j \in \{1, ..., m\}$ and sends it to Alice. Verifier randomly chooses i with X_i in t_j and sends it to Bob.

 $R_1(t_1),\ldots,R_m(t_m)$

Verifier randomly chooses $j \in \{1, ..., m\}$ and sends it to Alice. Verifier randomly chooses i with X_i in t_j and sends it to Bob.

Alice replies with an assignment of values to t_j satisfying R_j . Bob replies with an assignment of value to X_i .

 $R_1(t_1),\ldots,R_m(t_m)$

Verifier randomly chooses $j \in \{1, ..., m\}$ and sends it to Alice. Verifier randomly chooses i with X_i in t_j and sends it to Bob.

Alice replies with an assignment of values to t_j satisfying R_j . Bob replies with an assignment of value to X_i .

Verifier accepts if and only if the assignments agree.

 $R_1(t_1),\ldots,R_m(t_m)$

Verifier randomly chooses $j \in \{1, ..., m\}$ and sends it to Alice. Verifier randomly chooses i with X_i in t_j and sends it to Bob.

Alice replies with an assignment of values to t_j satisfying R_j . Bob replies with an assignment of value to X_i .

Verifier accepts if and only if the assignments agree.

Fact: The following are equivalent:

- 1. The instance is satisfiable.
- 2. Value of the game is 1.

Non-local Games with Randomness

Non-local Games with Randomness

Strategies:

 σ : probability distribution on $W_A \times W_B$ $A: U \times W_A \rightarrow R$ $B: V \times W_B \rightarrow S$

Non-local Games with Randomness

Strategies:

$$\begin{split} \sigma: \mbox{ probability distribution on } W_A \times W_B \\ A: U \times W_A \to R \\ B: V \times W_B \to S \end{split}$$

Value of the game:

$$\max_{\sigma,A,B} \mathop{\mathbb{E}}_{(u,v)} \mathop{\mathbb{E}}_{(a,b)} \left[V(u,v,A(u,a),B(v,b)) \right]$$

Non-local Games with Entanglement

Non-local Games with Entanglement

Strategies:

$$\begin{split} \Phi: & \text{unit vector in } \mathcal{H}_A \otimes \mathcal{H}_B \text{ (a quantum state)} \\ A: U \times O_A \to R \text{ based on measuring } A\text{-system} \\ B: V \times O_B \to S \text{ based on measuring } B\text{-system} \end{split}$$

Non-local Games with Entanglement

Strategies:

 $\Phi: \text{ unit vector in } \mathcal{H}_A \otimes \mathcal{H}_B \text{ (a quantum state)}$ $A: U \times O_A \to R \text{ based on measuring } A\text{-system}$ $B: V \times O_B \to S \text{ based on measuring } B\text{-system}$

Value of the game:

$$\max_{\Phi,A,B} \mathop{\mathbb{E}}_{(u,v)} \mathop{\mathbb{E}}_{(a,b)} \left[V(u,v,A(u,a),B(v,b)) \right]$$

Bell's Theorem

Fact:

Deterministic value \leq Randomized value \leq Quantum value

Theorem [Bell 1964]

There exists a game such that

 $\frac{\text{Randomized value}}{\text{Quantum value}} = 0.87856...$

Mermin's Theorem: Our Starting Point

Theorem [Mermin 1993]

There exists a system of linear equations over \mathbb{Z}_2 such that, for the corresponding non-local game:

 $\label{eq:relation} \begin{array}{l} \mbox{Randomized value} < 1 \\ \mbox{Quantum value} = 1. \end{array}$

Mermin's Theorem: Our Starting Point

Theorem [Mermin 1993]

There exists a system of linear equations over \mathbb{Z}_2 such that, for the corresponding non-local game:

Randomized value < 1Quantum value = 1.

$$\begin{array}{l} X_{11}X_{12}X_{13} = +1 \\ X_{21}X_{22}X_{23} = +1 \\ X_{31}X_{32}X_{33} = -1 \\ \parallel \parallel \parallel \parallel \\ + + + + \end{array}$$

Boolean Constraint Languages

Boolean domain: $\{\pm 1\}$ with +1 = false and and -1 = true; Constraint language: a set A of relations $R \subseteq \{\pm 1\}^r$

Examples:

- OR disjunctions of literals
- LIN linear equations over \mathbb{Z}_2
- 1-IN-3 triples with one -1 and two +1 components
- NAE triples with not-all-equal components

Generalized Satisfiability Problems: SAT(A)

Examples:

3-SAT HORN-SAT LIN-SAT 1-IN-3-SAT NAE-SAT

. . .

[Schaefer 1978]

... via Operator Assignments

 $\begin{array}{ll} \exists X_1 \cdots X_n (C_1 \wedge \cdots \wedge C_m) \\ \text{variables } X_1, \ldots, X_n & \text{constraints } C_1, \ldots, C_m \text{ each} \\ \text{range over } B(\mathcal{H}), & \text{of the form } R(Y_1, \ldots, Y_r) = I \\ \text{the linear operators} & Y_i Y_j = Y_j Y_i \text{ for all } i, j \in [r] \\ \text{of a Hilbert space } \mathcal{H} & \text{and} \\ X_i^2 = I \text{ for all } i \in [n] \\ (\text{multiplication} = \text{composition}) \end{array}$

SAT(A) SAT*(A) SAT**(A) satisfiability over \mathbb{C} (i.e., over $\{\pm 1\}$ by \checkmark) satisfiability over some finite-dimensional \mathcal{H} satisfiability over some arbitrary \mathcal{H} Back to Games with Entangled Players

Theorem [Cleve-Mittal 2014, Cleve-Liu-Slofstra 2016]

 $\begin{array}{l} \mathsf{SAT} \leftrightarrow \mathsf{classical \ strategies} \\ \mathsf{SAT}^* \leftrightarrow \mathsf{quantum \ strategies \ in \ tensor \ product \ model} \\ \mathsf{SAT}^{**} \leftrightarrow \mathsf{quantum \ strategies \ in \ commuting \ operator \ model} \end{array}$

Gap Instances

SAT-vs-SAT*gap of the first kindSAT-vs-SAT**gap of the second kindSAT*-vs-SAT**gap of the third kind

Gaps of first kind for LIN exist[Mermin 1990]Gaps of third kind for LIN exist[Slofstra 2017]Gaps of first kind for 2-SAT or HORN do not exist[Ji 2014]

Classification

Theorem [A.-Kolaitis-Severini 2017]

For every Boolean constraint language A,1. either gaps of every kind for A exist,2. or gaps of no kind for A exist.

```
Moreover:
```

```
gaps for A do not exist

iff

A is of one of the following types:

iff

LIN is not pp-definable from A

0-valid

1-valid

Horn

dual Horn

bijunctive
```

Primitive Positive Definitions

Example:

 $\mathsf{NAE}(X,Y,Z) \ \equiv \ (X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y} \lor \overline{Z})$

Proof Recipe

Proof Recipe

Ingredient 1: gap preserving reductions

Lemma:

If A is pp-definable from B, then gaps for B imply gaps for A.

Proof Recipe

Ingredient 1: gap preserving reductions

Lemma:

If A is pp-definable from B, then gaps for B imply gaps for A.

Ingredient 2: Post's Lattice of Boolean co-clones

Theorem [Post 1941]:

There are countably many Boolean constraint languages up to pp-definability, and we know them.

Post's Lattice

More on Primitive Positive Definability

$$R(Y_1,\ldots,Y_r) \equiv \exists Z_1 \cdots \exists Z_s (C_1 \wedge \cdots \wedge C_t)$$

pp-def Z_i 's range over $B(\mathbb{C})$ (i.e., over $\{\pm 1\}$ by $Z_i^2 = I$) **pp*-def** Z_i 's range over $B(\mathcal{H})$, for some finite-dim \mathcal{H} **pp**-def** Z_i 's range over $B(\mathcal{H})$, for some arbitrary \mathcal{H}

A Conservativity Theorem

Theorem [A.-Kolaitis-Severini 2017]:

For every two constraint languages A and B, the following statements are equivalent.

- 1. every relation in \boldsymbol{A} is pp-definable from \boldsymbol{B}
- 2. every relation in A is $\operatorname{pp}^*\operatorname{-definable}$ from B

A Conservativity Theorem

Theorem [A.-Kolaitis-Severini 2017]:

For every two constraint languages A and B, the following statements are equivalent.

- 1. every relation in \boldsymbol{A} is pp-definable from \boldsymbol{B}
- 2. every relation in A is $\operatorname{pp}^*\operatorname{-definable}$ from B

Corollary: OR is not pp*-definable from LIN

Closure Operations via Operators

R is invariant under $F: \mathcal{H}_1 \times \cdots \times \mathcal{H}_r \to \mathcal{H}$ if

$$\begin{split} R(\begin{array}{cc} A_{1,1} & , \cdots , \\ \vdots & \ddots & \vdots \\ R(\begin{array}{cc} A_{s,1} & , \cdots , \\ R(s,1 & , \cdots , \\ R(s,1) & , \cdots , \\ R(s,1) & , \cdots , \\ F(\mathbf{A}_{s,r})) = I \text{ and commute} \\ \end{split}$$

Lemma: If A is invariant under $F : \{\pm 1\}^s \to \{\pm 1\}$, then every $R \subseteq \{\pm 1\}^r$ pp*-definable from A is invariant under

$$F^*(X_1,\ldots,X_s) := \sum_{S \subseteq [s]} \widehat{F}(S) \bigotimes_{i=1}^s X_i^{S(i)}$$

Proof by Example

$$\begin{array}{c} X_{11}X_{12}X_{13} = +1 \\ X_{21}X_{22}X_{23} = +1 \\ X_{31}X_{32}X_{33} = +1 \\ \parallel \quad \parallel \quad \parallel \\ + \quad + \quad \perp \end{array}$$

Proof by Example

$$X_{11}X_{12}X_{13} = +1 X_{21}X_{22}X_{23} = +1 X_{31}X_{32}X_{33} = +1 \parallel \parallel \parallel \parallel \parallel \\ + + + \downarrow$$

 $(X_{11} \otimes X_{21} \otimes X_{31})(X_{12} \otimes X_{22} \otimes X_{32})(X_{13} \otimes X_{23} \otimes X_{33}) = (X_{11}X_{12}X_{13}) \otimes (X_{21}X_{22}X_{23}) \otimes (X_{31}X_{32}X_{33}) = (+1) \otimes (+1) \otimes (+1) = +1$

Future Work

Question 1:

Classification of gaps for q-valued domains with q > 2?

Question 2:

Is SAT*(LIN) decidable? (Note: Slofstra proved that SAT**(LIN) is undecidable)

Question 3:

Closure operators, fine. Identities?

Question 4:

Is pp^{**} -definability = pp-definability also?

Acknowledgments

Simons Institute, ERC-2014-CoG 648276 (AUTAR) EU, TIN2013-48031-C4-1-P (TASSAT2) MINECO