GAPS BETWEEN
 CLASSICAL SATISFIABILITY PROBLEMS AND
 THEIR QUANTUM RELAXATIONS

Albert Atserias
 Universitat Politècnica de Catalunya Barcelona

Workshop on Graph Theory and Combinatorics, FOCM 2017 Barcelona, Catalonia, July 2017

Constraint Satisfaction Problems (CSPs)

Variables and Values:

$$
V=\left\{X_{1} \ldots, X_{n}\right\} \text { and } D=\left\{b_{1}, \ldots, b_{q}\right\}
$$

System of constraints:

$$
R_{1}\left(t_{1}\right), \ldots, R_{m}\left(t_{m}\right)
$$

where

$$
R_{j} \subseteq D^{r_{j}} \text { is the constraint relation }
$$ $t_{j} \in V^{r_{j}}$ is the constraint scope

Solution space:

$$
f: V \rightarrow D \text { with } f\left(t_{j}\right) \in R_{j} \text { for every } j=1, \ldots, m
$$

Example 1:

System of linear equations over \mathbb{Z}_{2} :

$$
\begin{aligned}
X_{1}+X_{2}+X_{3} & \equiv 0(\bmod 2) \\
X_{2}+X_{4}+X_{5} & \equiv 1(\bmod 2) \\
X_{3}+X_{4}+X_{2} & \equiv 1(\bmod 2)
\end{aligned}
$$

Here

$$
V=\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right\} \text { and } D=\mathbb{Z}_{2}
$$

and the constraint relations are

$$
\begin{aligned}
& R_{0}=\left\{(a, b, c) \in D^{3}: a+b+c \equiv 0(\bmod 2)\right\} \\
& R_{1}=\left\{(a, b, c) \in D^{3}: a+b+c \equiv 1(\bmod 2)\right\}
\end{aligned}
$$

Example 2

Graph 3-colorability:

$$
\begin{aligned}
& X_{1} \neq X_{2} \\
& X_{2} \neq X_{3} \\
& X_{3} \neq X_{4} \quad \text { with } X_{i} \in\{\bullet, \bullet, \bullet\} \\
& X_{4} \neq X_{5} \\
& X_{5} \neq X_{1}
\end{aligned}
$$

Here

$$
V=\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right\}, D=\{\bullet, \bullet, \bullet\}, \text { and } R=" \neq "
$$

Questions Concerning CSPs

1. Satisfiability: Does it have a solution? (k-SAT, k-colorability, systems of equations)
2. Optimization: How many constraints can be satisfied simultaneously? (MAX-3-SAT, MAX-CUT, unique games)
3. Counting: How many solutions does it have? (\#-SAT, computing partition functions of spin systems)
4. Structure: Is the space of solutions connected through single value-flips? (sampling by Monte-Carlo Markov chain)
5. Relaxations: When is a certain relaxation of the problem exact? (LP relaxation, SDP relaxation, ...)
6. ...

Questions Concerning CSPs

1. Satisfiability: Does it have a solution? (k-SAT, k-colorability, systems of equations)
2. Optimization: How many constraints can be satisfied simultaneously? (MAX-3-SAT, MAX-CUT, unique games)
3. Counting: How many solutions does it have? (\#-SAT, computing partition functions of spin systems)
4. Structure: Is the space of solutions connected through single value-flips? (sampling by Monte-Carlo Markov chain)
5. Relaxations: When is a certain relaxation of the problem exact? (LP relaxation, SDP relaxation, ...)
6. ...

This talk:

Non-local Games

ALICE
BOB

Non-local Games

ALICE
BOB

Game:
π : probability distribution on $U \times V$
$C: U \times V \times R \times S \rightarrow\{0,1\}$

Non-local Games

ALICE
BOB

$$
C(u, v, A(u), B(v))
$$

Game:

$$
\begin{aligned}
& \pi: \text { probability distribution on } U \times V \\
& C: U \times V \times R \times S \rightarrow\{0,1\}
\end{aligned}
$$

Strategies:

$$
\begin{aligned}
& A: U \rightarrow R \\
& B: V \rightarrow S
\end{aligned}
$$

Non-local Games

ALICE

$$
C(u, v, A(u), B(v))
$$

Game:

$$
\begin{aligned}
& \pi: \text { probability distribution on } U \times V \\
& C: U \times V \times R \times S \rightarrow\{0,1\}
\end{aligned}
$$

Strategies:

$$
\begin{aligned}
& A: U \rightarrow R \\
& B: V \rightarrow S
\end{aligned}
$$

Value of the game:

$$
\max _{A, B} \underset{(u, v)}{\mathbb{E}}[C(u, v, A(u), B(v))]
$$

CSPs as Non-local Games

$$
R_{1}\left(t_{1}\right), \ldots, R_{m}\left(t_{m}\right)
$$

CSPs as Non-local Games

$$
R_{1}\left(t_{1}\right), \ldots, R_{m}\left(t_{m}\right)
$$

Verifier randomly chooses $j \in\{1, \ldots, m\}$ and sends it to Alice. Verifier randomly chooses i with X_{i} in t_{j} and sends it to Bob.

CSPs as Non-local Games

$$
R_{1}\left(t_{1}\right), \ldots, R_{m}\left(t_{m}\right)
$$

Verifier randomly chooses $j \in\{1, \ldots, m\}$ and sends it to Alice. Verifier randomly chooses i with X_{i} in t_{j} and sends it to Bob. Alice replies with an assignment of values to t_{j} satisfying R_{j}. Bob replies with an assignment of value to X_{i}.

CSPs as Non-local Games

$$
R_{1}\left(t_{1}\right), \ldots, R_{m}\left(t_{m}\right)
$$

Verifier randomly chooses $j \in\{1, \ldots, m\}$ and sends it to Alice. Verifier randomly chooses i with X_{i} in t_{j} and sends it to Bob.
Alice replies with an assignment of values to t_{j} satisfying R_{j}. Bob replies with an assignment of value to X_{i}.
Verifier accepts if and only if the assignments agree.

CSPs as Non-local Games

$$
R_{1}\left(t_{1}\right), \ldots, R_{m}\left(t_{m}\right)
$$

Verifier randomly chooses $j \in\{1, \ldots, m\}$ and sends it to Alice. Verifier randomly chooses i with X_{i} in t_{j} and sends it to Bob.
Alice replies with an assignment of values to t_{j} satisfying R_{j}. Bob replies with an assignment of value to X_{i}.

Verifier accepts if and only if the assignments agree.
Fact: The following are equivalent:

1. The instance is satisfiable.
2. Value of the game is 1 .

Non-local Games with Randomness

Non-local Games with Randomness

Strategies:
σ : probability distribution on $W_{A} \times W_{B}$
$A: U \times W_{A} \rightarrow R$
$B: V \times W_{B} \rightarrow S$

Non-local Games with Randomness

Strategies:
σ : probability distribution on $W_{A} \times W_{B}$

$$
\begin{aligned}
& A: U \times W_{A} \rightarrow R \\
& B: V \times W_{B} \rightarrow S
\end{aligned}
$$

Value of the game:

$$
\max _{\sigma, A, B} \underset{(u, v)}{\mathbb{E}} \underset{(a, b)}{\mathbb{E}}[V(u, v, A(u, a), B(v, b))]
$$

Non-local Games with Entanglement

Non-local Games with Entanglement

Strategies:
Φ : unit vector in $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ (a quantum state)
$A: U \times O_{A} \rightarrow R$ based on measuring A-system
$B: V \times O_{B} \rightarrow S$ based on measuring B-system

Non-local Games with Entanglement

Strategies:

$$
\begin{aligned}
& \Phi: \text { unit vector in } \mathcal{H}_{A} \otimes \mathcal{H}_{B} \text { (a quantum state) } \\
& A: U \times O_{A} \rightarrow R \text { based on measuring } A \text {-system } \\
& B: V \times O_{B} \rightarrow S \text { based on measuring } B \text {-system }
\end{aligned}
$$

Value of the game:

$$
\max _{\Phi, A, B} \underset{(u, v)}{\mathbb{E}} \underset{(a, b)}{\mathbb{E}}[V(u, v, A(u, a), B(v, b))]
$$

Bell's Theorem

Fact:

$$
\text { Deterministic value } \leq \text { Randomized value } \leq \text { Quantum value }
$$

Theorem [Bell 1964]
There exists a game such that

$$
\frac{\text { Randomized value }}{\text { Quantum value }}=0.87856 \ldots
$$

Mermin's Theorem: Our Starting Point

Theorem [Mermin 1993]
There exists a system of linear equations over \mathbb{Z}_{2} such that, for the corresponding non-local game:

Randomized value <1
Quantum value $=1$.

Mermin's Theorem: Our Starting Point

Theorem [Mermin 1993]
There exists a system of linear equations over \mathbb{Z}_{2} such that, for the corresponding non-local game:

> Randomized value <1
> Quantum value $=1$

$$
\begin{gathered}
X_{11} X_{12} X_{13}=+1 \\
X_{21} X_{22} X_{23}=+1 \\
X_{31} X_{32} X_{33}=-1 \\
\|\quad\| \quad \| \\
\pm+ \pm
\end{gathered}
$$

Boolean Constraint Languages

Boolean domain: $\{ \pm 1\}$ with $+1=$ false and and $-1=$ true; Constraint language: a set A of relations $R \subseteq\{ \pm 1\}^{r}$

Examples:

OR	disjunctions of literals
LIN	linear equations over \mathbb{Z}_{2}
1-IN-3	triples with one -1 and two +1 components
NAE	triples with not-all-equal components

Generalized Satisfiability Problems: SAT (A)

Examples:

$$
\begin{array}{ll}
\text { 3-SAT } & \text { 1-IN-3-SAT } \\
\text { HORN-SAT } & \text { NAE-SAT } \\
\text { LIN-SAT } & \ldots
\end{array}
$$

[Schaefer 1978]

... via Operator Assignments

variables X_{1}, \ldots, X_{n} range over $B(\mathcal{H})$, the linear operators of a Hilbert space \mathcal{H}
constraints C_{1}, \ldots, C_{m} each
of the form $R\left(Y_{1}, \ldots, Y_{r}\right)=I$
$Y_{i} Y_{j}=Y_{j} Y_{i}$ for all $i, j \in[r]$
and
$X_{i}^{2}=I$ for all $i \in[n]$
(multiplication $=$ composition)

SAT $(A) \quad$ satisfiability over \mathbb{C} (i.e., over $\{ \pm 1\}$ by $)$
SAT $^{*}(A) \quad$ satisfiability over some finite-dimensional \mathcal{H}
SAT $^{* *}(A) \quad$ satisfiability over some arbitrary \mathcal{H}

Back to Games with Entangled Players

ALICE
BOB

$$
C(u, v, A(u, a), B(v, b))
$$

Theorem [Cleve-Mittal 2014, Cleve-Liu-Slofstra 2016]
SAT \leftrightarrow classical strategies
SAT* \leftrightarrow quantum strategies in tensor product model SAT** \leftrightarrow quantum strategies in commuting operator model

Gap Instances

SAT-vs-SAT*
SAT-vs-SAT**
SAT*-vs-SAT**
gap of the first kind gap of the second kind gap of the third kind

Gaps of first kind for LIN exist Gaps of third kind for LIN exist Gaps of first kind for 2-SAT or HORN do not exist
[Mermin 1990]
[Slofstra 2017]
[Ji 2014]

Classification

Theorem [A.-Kolaitis-Severini 2017]

For every Boolean constraint language A,

1. either gaps of every kind for A exist,
2. or gaps of no kind for A exist.

Moreover:
gaps for A do not exist
iff
A is of one of the following types:
iff $\quad\left\{\begin{array}{l}0 \text {-valid } \\ 1 \text {-valid } \\ \text { Horn } \\ \text { dual Horn } \\ \text { bijunctive }\end{array}\right.$

Primitive Positive Definitions

$$
R\left(Y_{1}, \ldots, Y_{r}\right) \quad \equiv \underset{\sim}{\exists Z_{1} \cdots \exists Z_{s}(\underbrace{}_{1} \wedge \cdots \wedge C_{t})} \begin{array}{ccc}
C_{1} \wedge \cdots \text { constraints on } \\
\text { auxiables } \\
\text { variable } Y^{\prime} \text { s and } Z \text { 's }
\end{array}
$$

Example:

$$
\operatorname{NAE}(X, Y, Z) \equiv(X \vee Y \vee Z) \wedge(\bar{X} \vee \bar{Y} \vee \bar{Z})
$$

Proof Recipe

Proof Recipe

Ingredient 1: gap preserving reductions

Lemma:

If A is pp-definable from B,
then gaps for B imply gaps for A.

Proof Recipe

Ingredient 1: gap preserving reductions

Lemma:

If A is pp-definable from B,
then gaps for B imply gaps for A.
Ingredient 2: Post's Lattice of Boolean co-clones

Theorem [Post 1941]:
There are countably many Boolean constraint languages up to pp-definability, and we know them.

Post's Lattice

More on Primitive Positive Definability

$$
R\left(Y_{1}, \ldots, Y_{r}\right) \equiv \exists Z_{1} \cdots \exists Z_{s}\left(C_{1} \wedge \cdots \wedge C_{t}\right)
$$

pp-def $\quad Z_{i}$'s range over $B(\mathbb{C})\left(\right.$ i.e., over $\{ \pm 1\}$ by $Z_{i}^{2}=I$) $\mathbf{p p}^{*}$-def $\quad Z_{i}$'s range over $B(\mathcal{H})$, for some finite-dim \mathcal{H} $\mathbf{p p}^{* *}$-def $\quad Z_{i}$'s range over $B(\mathcal{H})$, for some arbitrary \mathcal{H}

A Conservativity Theorem

Theorem [A.-Kolaitis-Severini 2017]:

For every two constraint languages A and B, the following statements are equivalent.

1. every relation in A is pp-definable from B
2. every relation in A is pp^{*}-definable from B

A Conservativity Theorem

Theorem [A.-Kolaitis-Severini 2017]:

For every two constraint languages A and B, the following statements are equivalent.

1. every relation in A is pp-definable from B
2. every relation in A is pp^{*}-definable from B

Corollary: OR is not pp^{*}-definable from LIN

Closure Operations via Operators

R is invariant under $F: \mathcal{H}_{1} \times \cdots \times \mathcal{H}_{r} \rightarrow \mathcal{H}$ if

$$
\left.\begin{array}{ccc}
R\left(\begin{array}{cc}
A_{1,1} & , \cdots, \\
\vdots & \ddots \\
A_{1, r}
\end{array}\right)=I \text { and commute } \\
R\left(\begin{array}{c}
A_{s, 1}
\end{array}\right. & , \cdots, & A_{s, r}
\end{array}\right)=I \text { and commute }
$$

$$
R\left(F\left(\mathbf{A}_{*, 1}\right), \cdots, F\left(\mathbf{A}_{*, r}\right)\right)=I \text { and commute }
$$

Lemma: If A is invariant under $F:\{ \pm 1\}^{s} \rightarrow\{ \pm 1\}$, then every $R \subseteq\{ \pm 1\}^{r} \mathrm{pp}^{*}$-definable from A is invariant under

$$
F^{*}\left(X_{1}, \ldots, X_{s}\right):=\sum_{S \subseteq[s]} \widehat{F}(S) \bigotimes_{i=1}^{s} X_{i}^{S(i)}
$$

Proof by Example

$$
\begin{aligned}
& X_{11} X_{12} X_{13}=+1 \\
& X_{21} X_{22} X_{23}=+1 \\
& X_{31} X_{32} X_{33}=+1 \\
& \|\quad\| \quad \| \\
& \pm \quad \pm \quad \perp
\end{aligned}
$$

Proof by Example

$$
\begin{aligned}
& X_{11} X_{12} X_{13}=+1 \\
& X_{21} X_{22} X_{23}=+1 \\
& X_{31} X_{32} X_{33}=+1 \\
& \|\quad\| \quad \| \\
& \pm \quad \pm \quad \perp
\end{aligned}
$$

$\left(X_{11} \otimes X_{21} \otimes X_{31}\right)\left(X_{12} \otimes X_{22} \otimes X_{32}\right)\left(X_{13} \otimes X_{23} \otimes X_{33}\right)=$ $\left(X_{11} X_{12} X_{13}\right) \otimes\left(X_{21} X_{22} X_{23}\right) \otimes\left(X_{31} X_{32} X_{33}\right)=$ $(+1) \otimes(+1) \otimes(+1)=$ $+1$

Future Work

Question 1:

$$
\text { Classification of gaps for } q \text {-valued domains with } q>2 \text { ? }
$$

Question 2:

$$
\begin{aligned}
& \text { Is SAT* }(\text { LIN }) \text { decidable? } \\
& \text { (Note: Slofstra proved that SAT** }(\text { LIN }) \text { is undecidable) }
\end{aligned}
$$

Question 3:
Closure operators, fine. Identities?

Question 4:
Is $\mathrm{pp}^{* *}$-definability $=\mathrm{pp}$-definability also?

Acknowledgments

Simons Institute,
ERC-2014-CoG 648276 (AUTAR) EU, TIN2013-48031-C4-1-P (TASSAT2) MINECO

