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Constraint Satisfaction Problems (CSPs)

Variables and Values:
V:{Xl,Xn} and D:{bl,...,bq}

System of constraints:

where
R; C D" is the constraint relation

t; € V"7 is the constraint scope

Solution space:

f:V — D with f(t;) € R; for every j =1,...



Example 1:

System of linear equations over Zo:

X1+X2+X3 = O(mod 2)
Xo+ X4+ X5 = 1(mod?2)
X3+X4—|—X2 = 1 (mod 2)

Here
V= {leXQaX37X4aX5} and D = Z2v
and the constraint relations are

Ry = {(a,b,c)eD?:a+b+c=0(mod2)}
R, = {(a,bc)eD?:a+b+c=1(mod2)}



Example 2

Graph 3-colorability:

X1 # Xo
Xo # X3
X3 7& X4 with X; € {0, ’0}
X4 # X5
X5 # X1

Here

V ={X1,X9,X3,Xy4, X5}, D={e,0,0},and R="#".



Questions Concerning CSPs

1.

Satisfiability: Does it have a solution? (k-SAT, k-colorability,
systems of equations)

. Optimization: How many constraints can be satisfied

simultaneously? (MAX-3-SAT, MAX-CUT, unique games)

Counting: How many solutions does it have? (#-SAT,
computing partition functions of spin systems)

Structure: Is the space of solutions connected through single
value-flips? (sampling by Monte-Carlo Markov chain)

Relaxations: When is a certain relaxation of the problem
exact? (LP relaxation, SDP relaxation, ...)
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This talk:

QUANTUM RELAXATIONS
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Non-local Games
ALICE BOB

Game:
7 : probability distribution on U x V'
C:UxVxRxS—{0,1}
Strategies:
A:U—R
B:V—=S

Value of the game:

Iﬁf?(fv) C(u, v, A(u), B(v))
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CSPs as Non-local Games

Ri(t1),...,Rpn(tm)

Verifier randomly chooses j € {1,...,m} and sends it to Alice.
Verifier randomly chooses i with X; in ¢; and sends it to Bob.

Alice replies with an assignment of values to t; satisfying R;.
Bob replies with an assignment of value to Xj.

Verifier accepts if and only if the assignments agree.

Fact: The following are equivalent:

1. The instance is satisfiable.
2. Value of the game is 1.
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Strategies:

o : probability distribution on W4 x Wpg
A:UxWy—R
B:V x WB — S

Value of the game:

E E V ) )A 9 7B 7b
5 2,8, [ Vi A, 20|
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Non-local Games with Entanglement

Ha®@H
A-system 4 s B-system

T
ALICE BOB

A(N %)
)

C(u,v, A(u, a), B(v,b)

Strategies:

® : unit vector in Hy ® Hp (a quantum state)
A:U x Oyg — R based on measuring A-system
B :V x Op — S based on measuring B-system

Value of the game:

anas (E}) (g) V(u,v, A(u,a), B(v, b))



Bell's Theorem

Fact:

Deterministic value < Randomized value < Quantum value

Theorem [Bell 1964]
There exists a game such that

Randomized value — 0.87856...

Quantum value
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Mermin’'s Theorem: Our Starting Point

Theorem [Mermin 1993]
There exists a system of linear equations over Zs such that, for the
corresponding non-local game:

Randomized value < 1

Quantum value = 1.

X1 X129 X3 = +1
Xo1 Xog Xoz = +1
X31 X3 X33 = —1
I
+ + +

— = =



Boolean Constraint Languages

Boolean domain: {£1} with +1 = false and and —1 = true;
Constraint language: a set A of relations R C {£1}"

relations <> predicates <+ polynomials

S\

characteristic Fourier-Welsh
function transform

Examples:

OR disjunctions of literals

LIN linear equations over Zo

1-IN-3  triples with one —1 and two +1 components
NAE triples with not-all-equal components



Generalized Satisfiability Problems: SAT(A)

X -
variables Xy,..., X constraints (', ..., C,, each
range over {:I:l} of the form R(Y3,...,Y,) =1
in A X;'s or 1

Examples:

3-SAT 1-IN-3-SAT

HORN-SAT NAE-SAT

LIN-SAT

[Schaefer 1978]



. via Operator Assignments

3X; -
variables Xi,..., X constraints ', ..., C,, each
range over B(’H) of the form R(Y1,...,Y,) =1
the linear operators VY, =YY, forall i, j € [r]
of a Hilbert space H and

X2 =1 for all i € [n]
(multiplication = composition)

SAT(A) satisfiability over C (i.e., over {£1} by ¢)
SAT*(A) satisfiability over some finite-dimensional H
SAT**(A) satisfiability over some arbitrary



Back to Games with Entangled Players

ALICE BOB

Theorem [Cleve-Mittal 2014, Cleve-Liu-Slofstra 2016]

SAT < classical strategies
SAT* <> quantum strategies in tensor product model
SAT** <> quantum strategies in commuting operator model



Gap Instances

'/\Mermin—Peres Magic Square
X1 X9 X13 = +1
Xo1 X99 X9z = +1  Unsatisfiable SAT-instance of LIN
X31 X39 X33 = —1 Satisfiable SAT*-instance of LIN

[T 1

+ + + a SAT-vs-SAT* gap for LIN
SAT-vs-SAT* gap of the first kind
SAT-vs-SAT** gap of the second kind
SAT*-vs-SAT**  gap of the third kind

Gaps of first kind for LIN exist [Mermin 1990]
Gaps of third kind for LIN exist [Slofstra 2017]
Gaps of first kind for 2-SAT or HORN do not exist  [Ji 2014]



Classification

r

Theorem [A.-Kolaitis-Severini 2017]
For every Boolean constraint language A,
1. either gaps of every kind for A exist,
2. or gaps of no kind for A exist.

Moreover:
gaps for A do not exist 0-valid
iff 1-valid
A is of one of the following types: 4 Horn
iff dual Horn

LIN is not pp-definable from A bijunctive




Primitive Positive Definitions

auxiliary constraints on

variables the Y's and Z's

Example:
NAE(X,Y,.Z) = (XVYVZ)A(XVYVZ)
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Proof Recipe

Ingredient 1: gap preserving reductions

Lemma:
If A is pp-definable from B,
then gaps for B imply gaps for A.

Ingredient 2: Post’s Lattice of Boolean co-clones

Theorem [Post 1941]:
There are countably many Boolean constraint languages
up to pp-definability, and we know them.



Post's Lattice




More on Primitive Positive Definability

pp-def  Z;'s range over B(C) (i.e., over {1} by Z? = I)
pp*-def Z;'s range over B(#H), for some finite-dim H
pp**-def Z;'s range over B(#), for some arbitrary H



A Conservativity Theorem

Theorem [A.-Kolaitis-Severini 2017]:
For every two constraint languages A and B,
the following statements are equivalent.

1. every relation in A is pp-definable from B
2. every relation in A is pp*-definable from B




A Conservativity Theorem

Theorem [A.-Kolaitis-Severini 2017]:
For every two constraint languages A and B,
the following statements are equivalent.

1. every relation in A is pp-definable from B
2. every relation in A is pp*-definable from B

[ Corollary: OR is not pp*-definable from LIN




Closure Operations via Operators

R is invariant under F' : Hy X -+ x H, — H if
R( Ay, -+, A, ) =1 and commute

R( Asq -+, Asy ) = I and commute
R(F(A.1), -+, F(A.,)) = I and commute

[ Lemma: If A is invariant under F : {£1}* — {£1}, then )
every R C {£1}" pp*-definable from A is invariant under

F(Xy,.... X)) =Y F( ®XS(1

L SCls]




Proof by Example

X1 X2 X3 = +1

Xo1 Xop Xo3 = +1

X31 X320 X33 = +1
1

+ o4

—_ = =



Proof by Example

X1 X2 X3 = +1
Xo1 Xop Xo3 = +1
X31 X320 X33 = +1
I
+ o4

—_ =

X1 ® Xo1 @ X31)(X12 @ Xoo @ X39)(X13 ® Xog ® X33) =

(
(X11X12X13) @ (X021 X22X03) ® (X531 X32X33) =
(+D) ®(+1) @ (+1) =

+1



Future Work

Question 1:

Classification of gaps for g-valued domains with g > 27

Question 2:

Is SAT*(LIN) decidable?
(Note: Slofstra proved that SAT**(LIN) is undecidable)

Question 3:

Closure operators, fine. ldentities?

Question 4:

Is pp**-definability = pp-definability also?
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