
GAPS BETWEEN

CLASSICAL SATISFIABILITY PROBLEMS

AND

THEIR QUANTUM RELAXATIONS

Albert Atserias
Universitat Politècnica de Catalunya
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Constraint Satisfaction Problems (CSPs)

Variables and Values:

V = {X1 . . . , Xn} and D = {b1, . . . , bq}

System of constraints:

R1(t1), . . . , Rm(tm)

where

Rj ⊆ Drj is the constraint relation

tj ∈ V rj is the constraint scope

Solution space:

f : V → D with f(tj) ∈ Rj for every j = 1, . . . ,m



Example 1:

System of linear equations over Z2:

X1 +X2 +X3 ≡ 0 (mod 2)
X2 +X4 +X5 ≡ 1 (mod 2)
X3 +X4 +X2 ≡ 1 (mod 2)

Here

V = {X1, X2, X3, X4, X5} and D = Z2,

and the constraint relations are

R0 = {(a, b, c) ∈ D3 : a+ b+ c ≡ 0 (mod 2)}
R1 = {(a, b, c) ∈ D3 : a+ b+ c ≡ 1 (mod 2)}



Example 2

Graph 3-colorability:

1

2

34

5

X1 6= X2

X2 6= X3

X3 6= X4 with Xi ∈ {•, •, •}
X4 6= X5

X5 6= X1

Here

V = {X1, X2, X3, X4, X5}, D = {•, •, •}, and R = “ 6= ”.



Questions Concerning CSPs

1. Satisfiability: Does it have a solution? (k-SAT, k-colorability,
systems of equations)

2. Optimization: How many constraints can be satisfied
simultaneously? (MAX-3-SAT, MAX-CUT, unique games)

3. Counting: How many solutions does it have? (#-SAT,
computing partition functions of spin systems)

4. Structure: Is the space of solutions connected through single
value-flips? (sampling by Monte-Carlo Markov chain)

5. Relaxations: When is a certain relaxation of the problem
exact? (LP relaxation, SDP relaxation, ...)

6. ...

This talk:

QUANTUM RELAXATIONS
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Non-local Games

ALICE BOB

C(u, v, A(u), B(v))

u v
A(u) B(v)

Game:

π : probability distribution on U × V
C : U × V ×R× S → {0, 1}

Strategies:

A : U → R

B : V → S

Value of the game:

max
A,B

E
(u,v)

[
C(u, v,A(u), B(v))

]
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CSPs as Non-local Games

R1(t1), . . . , Rm(tm)

Verifier randomly chooses j ∈ {1, . . . ,m} and sends it to Alice.
Verifier randomly chooses i with Xi in tj and sends it to Bob.

Alice replies with an assignment of values to tj satisfying Rj .
Bob replies with an assignment of value to Xi.

Verifier accepts if and only if the assignments agree.

Fact: The following are equivalent:

1. The instance is satisfiable.
2. Value of the game is 1.
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Non-local Games with Randomness

ALICE BOB

C(u, v, A(u, a), B(v, b))

RANDOM
a b

u v
A(u, a) B(v, b)

Strategies:

σ : probability distribution on WA ×WB

A : U ×WA → R

B : V ×WB → S

Value of the game:

max
σ,A,B

E
(u,v)

E
(a,b)

[
V (u, v,A(u, a), B(v, b))

]
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Non-local Games with Entanglement

HA ⊗HB

ALICE BOB

C(u, v, A(u, a), B(v, b))

A-system B-system

u v
A(u, a) B(v, b)

Strategies:

Φ : unit vector in HA ⊗HB (a quantum state)

A : U ×OA → R based on measuring A-system

B : V ×OB → S based on measuring B-system

Value of the game:

max
Φ,A,B

E
(u,v)

E
(a,b)

[
V (u, v,A(u, a), B(v, b))
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Bell’s Theorem

Fact:

Deterministic value ≤ Randomized value ≤ Quantum value

Theorem [Bell 1964]
There exists a game such that

Randomized value

Quantum value
= 0.87856...



Mermin’s Theorem: Our Starting Point

Theorem [Mermin 1993]
There exists a system of linear equations over Z2 such that, for the
corresponding non-local game:

Randomized value < 1

Quantum value = 1.

X11X12X13 = +1
X21X22X23 = +1
X31X32X33 = −1

=
+
1

=
+
1

=
+
1
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Boolean Constraint Languages

Boolean domain: {±1} with +1 = false and and −1 = true;
Constraint language: a set A of relations R ⊆ {±1}r

relations ↔ predicates ↔ polynomials

characteristic
function

Fourier-Welsh
transform

Examples:

OR disjunctions of literals
LIN linear equations over Z2

1-IN-3 triples with one −1 and two +1 components
NAE triples with not-all-equal components



Generalized Satisfiability Problems: SAT(A)

∃X1 · · ·Xn(C1 ∧ · · · ∧ Cm)

variables X1, . . . , Xn

range over {±1}
constraints C1, . . . , Cm each

of the form R(Y1, . . . , Yr) = 1

in A Xi’s or ±1

Examples:

3-SAT 1-IN-3-SAT
HORN-SAT NAE-SAT
LIN-SAT ...

[Schaefer 1978]



... via Operator Assignments

∃X1 · · ·Xn(C1 ∧ · · · ∧ Cm)

variables X1, . . . , Xn

range over B(H),
the linear operators

of a Hilbert space H

constraints C1, . . . , Cm each
of the form R(Y1, . . . , Yr) = I
YiYj = YjYi for all i, j ∈ [r]

and
X2
i = I for all i ∈ [n]

(multiplication = composition)

SAT(A) satisfiability over C (i.e., over {±1} by • )
SAT∗(A) satisfiability over some finite-dimensional H
SAT∗∗(A) satisfiability over some arbitrary H



Back to Games with Entangled Players

ALICE BOB

C(u,v,A(u,a),B(v,b))

u v
A(u,a) B(v,b)

Theorem [Cleve-Mittal 2014, Cleve-Liu-Slofstra 2016]

SAT ↔ classical strategies
SAT∗ ↔ quantum strategies in tensor product model
SAT∗∗ ↔ quantum strategies in commuting operator model



Gap Instances

X11X12X13 = +1
X21X22X23 = +1
X31X32X33 = −1

=
+
1

=
+
1

=
+
1

Mermin-Peres Magic Square

Unsatisfiable SAT-instance of LIN
Satisfiable SAT∗-instance of LIN

a SAT-vs-SAT∗ gap for LIN

gap of the first kind
gap of the second kind
gap of the third kind

SAT-vs-SAT∗

SAT-vs-SAT∗∗

SAT∗-vs-SAT∗∗

Gaps of first kind for LIN exist
Gaps of third kind for LIN exist

[Mermin 1990]

[Slofstra 2017]

Gaps of first kind for 2-SAT or HORN do not exist [Ji 2014]



Classification

Theorem [A.-Kolaitis-Severini 2017]
For every Boolean constraint language A,

1. either gaps of every kind for A exist,
2. or gaps of no kind for A exist.

Moreover:

gaps for A do not exist

iff
A is of one of the following types:

0-valid
1-valid
Horn
dual Horn
bijunctive

iff
LIN is not pp-definable from A



Primitive Positive Definitions

R(Y1, . . . , Yr) ≡ ∃Z1 · · · ∃Zs(C1 ∧ · · · ∧ Ct)

auxiliary

variables
constraints on

the Y ’s and Z’s

Example:

NAE(X,Y, Z) ≡ (X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ Z)



Proof Recipe

Ingredient 1: gap preserving reductions

Lemma:
If A is pp-definable from B,
then gaps for B imply gaps for A.

Ingredient 2: Post’s Lattice of Boolean co-clones

Theorem [Post 1941]:
There are countably many Boolean constraint languages
up to pp-definability, and we know them.
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Post’s Lattice

R1 R0

BF

R2

M

M1 M0

M2

S20

S30

S0

S202

S302

S02

S201

S301

S01

S200

S300

S00

S21

S31

S1

S212

S312

S12

S211

S311

S11

S210

S310

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N



More on Primitive Positive Definability

R(Y1, . . . , Yr) ≡ ∃Z1 · · · ∃Zs(C1 ∧ · · · ∧ Ct)

pp-def Zi’s range over B(C) (i.e., over {±1} by Z2
i = I)

pp∗-def Zi’s range over B(H), for some finite-dim H
pp∗∗-def Zi’s range over B(H), for some arbitrary H



A Conservativity Theorem

Theorem [A.-Kolaitis-Severini 2017]:
For every two constraint languages A and B,
the following statements are equivalent.

1. every relation in A is pp-definable from B
2. every relation in A is pp∗-definable from B

Corollary: OR is not pp∗-definable from LIN
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Closure Operations via Operators

R is invariant under F : H1 × · · · × Hr → H if

R( A1,1 , · · · , A1,r ) = I and commute
...

. . .
...

R( As,1 , · · · , As,r ) = I and commute

R(F (A∗,1), · · · , F (A∗,r)) = I and commute

Lemma: If A is invariant under F : {±1}s → {±1}, then
every R ⊆ {±1}r pp∗-definable from A is invariant under

F ∗(X1, . . . , Xs) :=
∑
S⊆[s]

F̂ (S)
s⊗
i=1

X
S(i)
i



Proof by Example

X11X12X13 = +1
X21X22X23 = +1
X31X32X33 = +1

=
+
1

=
+
1

=
−
1

(X11 ⊗X21 ⊗X31)(X12 ⊗X22 ⊗X32)(X13 ⊗X23 ⊗X33) =

(X11X12X13)⊗ (X21X22X23)⊗ (X31X32X33) =

(+1)⊗ (+1)⊗ (+1) =

+1
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Future Work

Question 1:

Classification of gaps for q-valued domains with q > 2?

Question 2:

Is SAT∗(LIN) decidable?
(Note: Slofstra proved that SAT∗∗(LIN) is undecidable)

Question 3:

Closure operators, fine. Identities?

Question 4:

Is pp∗∗-definability = pp-definability also?
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