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Abstract

We work with an extension of Resolution, called Res(2), that allows clauses with conjunc-

tions of two literals. In this system there are rules to introduce and eliminate such conjunctions.

We prove that the weak pigeonhole principle ���	��
��� and random unsatisfiable CNF formulas

require exponential-size proofs in this system. This is the strongest system beyond Resolu-

tion for which such lower bounds are known. As a consequence to the result about the weak

pigeonhole principle, Res(log) is exponentially more powerful than Res(2). Also we prove

that Resolution cannot polynomially simulate Res(2), and that Res(2) does not have feasible

monotone interpolation solving an open problem posed by Krajı́ček.
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1 Introduction

The pigeonhole principle, ����� ������ , expresses that it is not possible to have a one-to-one mapping

from �
	�� pigeons to � holes. Since it can be formalized in propositional logic, it is natural to

ask in which propositional proof systems such a principle can be proved in polynomial-size, with

respect to the size of the encoding.

A fair amount of information is known about sizes of proofs of ����� ������ in various proof

systems. Haken [12] proved that this principle requires exponential-size proofs in Resolution.

His proof techniques were later extended and simplified [4, 5]. Also Beame et al. [2] proved

that ����� ������ requires exponential-size proofs in bounded-depth Frege systems. Regarding upper

bounds, Buss [8] gave polynomial-size proofs of ����� ����� in unrestricted Frege systems.

The pigeonhole principle can be formulated in more general terms, allowing the number of

pigeons to be greater than ��	�� . We call this principle weak pigeonhole principle, or ������� � , when

the number of pigeons � is at least ��� . This simple principle is central to many mathematical

arguments but quite often, it occurs implicitely only. See the introductions in [14, 16] for a nice

discussion on this. The proof techniques of Haken where extended in [9] to prove that ����� � ������
requires exponential-size proofs in Resolution. A very intriguing and often studied open problem

is to prove exponential-size lower bounds for Resolution proofs of ����� �� for any � . As a contrast,

the techniques of [2] for proving lower bounds for the pigeonhole principle in bounded-depth Frege

systems can only prove lower bounds for ����� ��� 
� , and it is again open whether lower bounds can

be proved when the number of pigeons in greater than ��	�� . Regarding upper bounds, it is known

that ������ �� has quasipolynomial-size proofs in bounded-depth Frege [15, 14].

We work with the proof system !#"�$&%��(' , proposed by Krajı́ček [13], that can be viewed either as

an extension of Resolution, or as a restriction of bounded-depth Frege. In this system the clauses

do not only contain literals, but can also have conjunctions of two literals. The resolution rule gets

modified to be able to eliminate a conjunction of two literals from a clause. We prove that ����� 
���
(and in fact ����� �&)�*,+ �-�� ) requires exponential-size proofs in Res(2). This is, to our knowledge, the

first lower bound proof for the weak pigeonhole principle in a subsystem of bounded-depth Frege

that extends Resolution. We note that the quasipolynomial upper bound for bounded-depth Frege

mentioned above can be carried over in depth- .0/21 LK [14], which is equivalent to !#"-$3%5476�89' (the

analogue of !�"�$3%:�;' when we allow conjunctions of up to polylog literals). As a consequence of

our lower bound, there is an exponential separation between !�"�$3%:�;' and !�"�$3%<4,6=89' .
We also consider the complexity of refuting random unsatisfiable > -CNF formulas. Chvátal

and Szemerédi [10] proved them hard to refute in Resolution, and the results were improved by

Beame, Karp, Pitassi and Saks [3]. Combining our techniques with those of [3], we also obtain

an exponential-size lower bound for !�"�$&%��;' -refutations of random unsatisfiable > -CNF formulas

with clause density near the threshold. Again, this is the strongest system beyond Resolution for
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which such a lower bound is known. This result may be considered as a first step towards proving

random > -CNF formulas hard for bounded-depth Frege.

Our techniques are based on the method of random restrictions. The main technical contribu-

tion of our work consists in proving that a relatively short random restriction kills all large formulas

of a !�"�$3%:�;' -refutation. We note that this task is trivial in the case of Resolution because a large

clause is killed by setting a single literal to one. However, our formulas are disjunctions of con-

junctions of two literals, and this task becomes much more involved. The difficulty is in the fact

that we must keep the restriction short not to trivialize the initial clauses of the refutation. In other

words, we overcome the main difficulty in trying to apply switching-like lemmas to prove lower

bounds for the weak pigeonhole principle or random formulas.

Another important question to ask is whether !�"�$3%:�;' is more powerful than Resolution. Here

we prove that Resolution cannot polynomially simulate !�"�$ %��(' , and therefore !�"�$3%:�;' is superpoly-

nomially more efficient than Resolution. As a corollary, we see that !#"-$3%��(' does not have feasible

monotone interpolation, solving this way a conjecture of Krajı́ček [13].

Another motivation for working with the system !#"-$3%��(' is to see how useful it can be in au-

tomated theorem proving. Given that it is more efficient than Resolution (at least there is a su-

perpolynomial separation), it might be a good idea to try to find good heuristics to find proofs in

!�"�$3%:�;' to be able to use it as a theorem prover.

2 Definitions and Overview of the Lower Bound Proof

A > -term is a conjunction of up to > literals. A > -disjunction is an (unbounded fan-in) disjunction

of > -terms. If
�

is a > -disjunction, a � -term of
�

is also called a free-literal. The refutation system

!�"�$3%:>�' , defined by Krajı́ček [13], works with > -disjunctions. There are three inference rules in

!�"�$3%:>�' : Weakening, � -Introduction, and Cut

�
�����	��
��� �

����� ��
� � � � ��� ��
�� � �
��� � ������
������� �

����� ��
�� � � � ��� ��
���� �
� � �

where
�

and
�

are > -disjunctions, !�"$# are sets of indices such that %&!	'(#)%+* > , and the
� �

’s

are literals. As usual, if
�

is a literal,
��

denotes its negation. Observe that !#"-$3% ��' coincides with

Resolution with the Weakening rule. The size of a !#"�$&%�>�' -refutation is the number of symbols in

it. Mainly, we will work with !�"�$&%��;' .
As we mentioned in the introduction, our arguments are based on random restrictions. In

general terms, what we do is the following. Given an unsatisfiable CNF formula F, and an alleged

small !�"�$3%:�;' -refutation , of
�

, we apply a random restriction - , from a suitable distribution, and

we get a refutation ,.% / of
� % / . The distribution on restrictions that we choose will satisfy the

following two properties:
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(i)
� % / satisfies certain expansion properties,

(ii) Every � -disjunction in , % / is short (measured by the number of literals that occur).

The argument will be complete since these two conditions will be shown to be contradictory.

As a contrast with the lower bound arguments for Resolution, the most difficult part of our

proof is showing that property (ii) is satisfied. The conjunctions make this task more involved. In

order to overcome this, we split the restriction into two parts - � - � -  . Then, the main contribution

is showing that every large clause in , % /�� contains many free literals. That allows us show, by a

standard argument, that no large clause remains in ,.% /�� / � .
For the sake of clarity of exposition, we explain this outline again in the particular case of

the Weak Pigeonhole Principle. Let
� � %�� '�� "
	 ' be a bipartite graph on the sets � and �

of cardinality � and � respectively, where � � � . The
�

- ����� �� , defined by Ben-Sasson and

Wigderson [5], states that there is no matching of � into � . For every edge %� "�� '���	 , let ����� �
be a propositional variable meaning that � is mapped to � . The principle is then formalized as the

conjunction of the following set of clauses:

� ��� ��� ��������� � ��� ��� ����� "��� %� ' �"! � � "/// "��$#&% (1)
�� ��� � � �� �
'(� � �)��� "*� "��,+-�.�� %/�9' "0�.1� �2+7/ (2)

Here, �  %/3�' denotes the set of neighbors of 3 in
�

. Observe that if
�

is the complete bipartite

graph 4 �� , then
�

- ����� �� coincides with the usual pigeonhole principle ������� � . It is easy to see

that a lower bound for the size of !�"�$3%:�;' -refutations of
�

- ����� �� implies the same lower bound

for the size of !#"-$3%��(' -refutations of ����� �� .

Ben-Sasson and Wigderson proved that whenever
�

is expanding in a sense defined next, every

Resolution refutation of
�

- ����� �� must contain a clause with many literals. We observe that this

result is not unique to Resolution and holds in a more general setting. Before we state the precise

result, let us recall the definition of expansion:

Definition 1 [5] Let
� � %�� '�� "
	 ' be a bipartite graph where %5�.% � � , and %5� % � � . For

� +76 � , the boundary of � , denoted by 89� + , is the set of vertices in � that have exactly one

neighbor in � + ; that is, 8:� + �"! �)���<; %5��%/�9'>=7� + % � �$% . We say that
�

is %���" � "�? "&@ ' -expanding

if every subset � +-A � of size at most ? is such that % 89� + %>BC@ � %D� + % .
The proof of the following statement is the same as in [5] for Resolution.

Theorem 1 [5] Let E be a sound refutation system with all rules having fan-in at most two. Then,

if
�

is %���" � "�? "&@ ' -expanding, every E -refutation of
�

- �������� must contain a formula that involves

at least ?$@:F�� distinct literals.
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With these definitions, we are ready to outline the argument of the lower bound proof. In sec-

tion 3.1, we will prove the existence of a bipartite graph
� � % � ' � " 	 ' with %5�.% � �3� + and

%5� % � � + such that if we remove a small random subset of nodes from � , and the corresponding

edges, the resulting graph is %:��" � "&?"&@ ' -expanding for certain � , � , ? and @ . Then we will argue

that
�

- ����� 
�� '� ' requires exponential-size !�"�$3%:�;' -refutations as follows. Assume, for contradiction,

that
�

is a small refutation of
�

- ����� 
�� '� ' . We say that a � -disjunction in
�

is large if it contains

at least � � ?$@:F�� distinct literals. We apply a random restriction - � to the refutation such that for

every large � , either � % / � contains many free literals, or the total number of literals in � %&/�� is less

than � . Then we extend - � to a new random restriction -�� - � that knocks out all those large �
such that � % /�� contains many free literals, ignoring those that are not free. After applying - , we

obtain a refutation of
� % -9' - ����� �� where all � -disjunctions have less than ? @:F�� literals and

� % -9'
is %���" ��"&? "�@ ' -expanding. This contradicts Theorem 1.

3 Lower Bound for the Weak Pigeonhole Principle

3.1 Random Graphs and Restrictions

In this section we will prove the existence of a bipartite graph
�

as claimed in Section 2. The

principle
�

- ����� �� will require exponential size !�"�$3%:�;' -proofs.

Let ��%���" ��"���' denote the distribution on bipartite graphs on sets � and � of sizes � and �
respectively, with edge probability � independently for each edge.

Lemma 1 If
�

is drawn from ��%���" ��"���' , then �
	���9�"� � ; ��� F-�����0"�8  %/�9'�� ������� B
��� ��������� �+ .

Proof : Fix a vertex � ��� . Then, �0"8  %/�9'"!$#&%(' %���"���' , so that ) � �0"8  %� ' � � ��� . By Chernoff

bounds, �*	+�,�0"�8  %/�9'0B �����-� *.� � �0/21�3 and �*	+�2�0"8  %/�9' * �4�-F���� *.� � �0/21�5 . By a union bound,

�*	6�(72����� ;0�0"8  %� ' * ��� F-� � �0"8  %/�9' B �=�4�-� * ��� � �8/21�3 	 ��� � �8/21�5 * �=�9� � �0/,1�5 , and so

�*	6�: � ���<; �4�-F����;�0"�8  %/�9'"� �=����� B �<������� � �8/21�5 . = > (of lemma 1)

Lemma 2 Let � � >9� , � �@?BA >#4C' %��
'�F�� , D � � F���� and @ � ��� FFE . Let
�

be drawn from

��%���" ��"���' . Then, �
	6� � is %���" ��"GD ��"&@ ' -expanding��B �$F-� .
Proof : Fix � +�A � of size H(*ID � , and ��� � . Then, �*	J� ��� 8:� + � � HG� % ���K��'ML � � . LetN � �*	6� � � 89� + � . Let O � be the indicator random variable for the event that � �C8:� + . Then,

% 8:� + % �QP � 
�R O � . Observe that O � and O � ' are independent whenever � 1� � + . Hence, % 89� + %S!
#&%(' %���" N ' , so that ) � % 89� + % � � � N . By Chernoff bound, �*	 � % 89� + % * � N F�� � *�� � �2T 1�5 . On the other

hand, � N � �8HG� % �U�V��'WL � ��BXH���� % �+����'ZY � . Moreover, % �+����'[Y � � % �<����' � 1\/ approaches � F]�
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for sufficiently large � . Therefore, � N B;H����-F�� . It follows that � N F�� B;H @ and � � �2T 1�5 *�� � L�� /21  �� .
We conclude that �*	�� % 89� + %��<@ � %5� + % � * �*	6� % 8:� + %�* � N F���� * � � �2T 1�5 * � � L�� /21  �� . Finally, we

bound the probability that
�

is not %���" ��"GD ��"&@ ' -expanding by

Y ��
L����
� �
H	� � � L�� /21  �� * Y ��

L���� � L � � L � /21  
� * Y ��
L���� %:� � � � /21  
� ' L / (3)

Recall that � � ?BA > 4(' %��
' F-� and � � >9� . So � � � � /21  
� * � � �  �����2��� � � � �6� �$F ? . Hence the

sum in (3) is bounded by P��L���� ���� * � . = > (of lemma 2)

Let
�

be a fixed bipartite graph on ! ��"�/// " ��% and ! � "/// " �:% . A restriction (for
�

) is a

sequence of pairs - � % %/� � "�� � ' "/// "%/� # "&� # ' ' such that %/� � "�� � '���	 % � ' , and all � � ’s are distinct.

We let � # % � ' be the set of restrictions of length ? . We define a distribution � # % � ' on � # % � '
as follows: Let ��� � ! ��"//�/ " �9% ; for every � � ! � "/// "&? % in increasing order, choose a hole � �
uniformly at random in � � � � , choose a pigeon � � uniformly at random in �  %� � ' , and let � � �
� � � � � ! � � % . The final restriction is % %� � "&� � ' "�/// "%�,# "&�$# ' ' .

We define a distribution � %:� " � "�� "&?�' on the set of pairs % � " -9' with -���� # % � ' : the graph
�

is drawn from ��%���" � 	 ?"���' first, and then - is drawn from � #% � ' . In other words, if %�� "�� ' is a

fixed pair with �.� � # %!�
' , then

�
	J� � � � � - � �8� � ��"!�$#%� % ������'��%� ��� # � � "��&#%�$%'� # %!�
' % � � /
If
�

is a bipartite graph on the vertex sets ! ��"/�// " ��% and ! � "/// " � 	 ? % , and - is a restriction

% %� � "&� � ' "//�/�"%� # "&� # ' '��(� # % � ' , then
� % -9' denotes the graph that results from deleting � � "//�/ "&� #

from
�

, and renaming nodes in an order-preserving way. With this definitions we are ready to

prove:

Lemma 3 Let � � >9� , � ��?BA >#4C' %��
'�F�� , D � � F���� and @ � ���-F�E . Let % � " -9' be drawn from� %:��" � "�� "&?�' . Then, �*	+� � % -9' is %���" ��"GD ��"&@ ' -expanding ��B �$F-� .
Proof : Let

�
be the event that

� % -9' is %���" ��"GD � "�@ ' -expanding. Let ) � ! � A ! ��"//�/ " �
	
? %�; %'�	% � ? % . Then, �
	+� � � � P+* 
�, �*	+� �.-- 	�/�' % -9' � � � �*	J�:	�/ ' % -9' � ��� . The proof that

�*	6� �0-- 	1/ ' % -9' � ����B � F�� is the same as the proof of Lemma 2 replacing � by � �2� . The result

follows. = > (of lemma 3)

Lemma 4 Let � � >9� , � �Q? A >�4(' %:��'�F�� , D � �$F-�4� and @ � �-� FFE . For every ?�* � , there

exists a bipartite graph � on ! � "/// " ��% and ! ��"�/// " ��	 ? % such that the following two properties

hold:

(i) ��� F-� * �0"�8 # %� ' * �=�4� for every � � ! ��"//�/ " � 	 ? % ,
(ii) �*	6�3��% -9' is %���" � " D ��"&@ ' -expanding ��B �$F4� "
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when - is drawn from � # %�� ' .
Proof : Let % � " -9' be drawn from � %���" ��"���"&?�' . We have �*	+� � % -9' is %:� " � "GD ��"&@ ' -expanding � B
�$F-� by Lemma 3. Moreover, �
	+� 9�7��� ; �4�-F�� � �0"�8  %/�9'"� �����-��B �"� %:� 	.?�' � � �0/21�� B 1>F�E
by Lemma 1. Let 	�% � " -9' be the event that

� % -9' is expanding and every right-node in
�

has degree

between ��� F-� and �=�4� . Combining both equations above we have that �
	 � 	 % � " -9' � B � F�� .
On the other hand, �*	�� 	 % � " -9'Z� � P # �*	J� 	�% � " -9' -- � � � � �*	6� � � � � where � ranges

over all bipartite graphs on � and �
	C? nodes. Therefore, there exists some fixed � such that

�*	6� 	 % � " -9' -- � � � � B � F�� . Moreover, �*	<� 	 % � " -9' -- � � � � equals �*	+� 	 %!� "�� 'Z� when � is

drawn from � # %!�
' . Finally, since this probability is strictly positive, it must be the case that �
satisfies property (i) in the lemma since it is independent of � . = > (of lemma 4)

3.2 The Lower Bound Argument

Before we state and prove our main theorem, we will give some definitions and lemmas.

Let us first give a normal form for !�"�$3%:�;' -refutations of
�

- ����� �� . We claim that every !�"�$3%:�;' -
refutation of

�
- ����� �� can be turned into a !#"�$&%��(' -refutation of similar size in which no � -term

is of the form � ��� � � � �
'(� � with � 1� � + . To check this, observe that such a � -term must have been

introduced at some point by the rule of � -introduction with, say,
��� ����� � and

� � �,�
'(� � . Cutting

them with the axiom ��-��� � � ��2� ' � � we get
� � �

that can be used to continue the proof because it

subsumes
��� � � %�,��� � � �,�
'(� �' .

Let � be a � -disjunction, and let %/� "&�9' � 	 % � ' . We let � % � ��� � � be the result of assigning

�2��� � � � and �,� ' � � � . for every � + � �  %/�9'"� ! � % to � , and simplifying as much as possible.

This includes replacing subformulas of the form
� � % � � � + ' by

�
, and subformulas of the form�� � % � � � + ' by

�� � � + in some specified order; here
�

and
� + are literals. Given a restriction - �

% %� � "&� � ' "//�/�"%� # "&� # ' ' , we let � % / be the result of applying %� � "�� � ' "/// "%/� # "&� # ' successively in

this order. For every � � ! ��"�/// "&? % , we let - � � % %/� � "&� � ' "/// "%�
� "&� � ' ' .

Let us now study in more detail the result of applying a pair of a restriction to a 2-disjunction.

First we give some definitions. We say that a pair %� "&� ' � 	 % � ' hits � if either � ��� � occurs

positively in � , or �,�
' � � occurs negatively in � for some � + ���  %/�9'*� ! � % . Equivalently, %/� "&�9'
hits � if it sets some literal of � to � . If the literal is free, it knocks out the � -disjunction. If

the literal is part of a conjunction, it will locally create a free literal. In general, we say that

%/� "&�9'0��	 % � ' knocks � if � % � ��� � � � � . We say that %/� "&�9'0��	 % � ' is a bad choice for � if it does

not knock it and there exists � + � �  %� ' � ! ��% such that %� + "�� ' knocks � . A bad choice may or

may not be a hit.

Lemma 5 Let � be a simplified � -disjunction, and %/� "&�9' � 	�% � ' . If %/� "&�9' hits � and is not a

knock or a bad choice, then � % � ��� � � has more free literals than � .
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Proof : First notice that the literals that %/� "&�9' sets to � are in a conjunction, otherwise %� "�� ' is a

knock. Such literals can appear positive or negative. We will discuss the two cases:

(i) The literal is �,��� � and appears in a conjunction of the form � ��� � ��� . The pair %/� "&�9' does not

set � to � otherwise we would have a knock. Also, it does not set it to . either, otherwise

� � �,� ' � � and such a conjunction is not allowed in the normal form. On the other hand,

� does not appear free because � is a simplified � -disjunction. Finally no free literal of �
desapears when we apply %/� "&�9' to � , otherwise %/� "&�9' would be a bad choice.

(ii) The literal is �,� ' � � , and it appears in a conjunction of the form � � ' � ����� . Because %/� "&�9' is not

a knock, it does not set � to � . Also, %� "�� ' does not set � to . either, otherwise it would be

a bad choice, given that the indegree of � is � or more. As in the previous case and for the

same reasons, � does not appear free in � , and no free literal of � desapears when we apply

%� "�� ' .
The lemma follows. = >
Theorem 2 Let � ��� be a constant. For all sufficiently large � , every !�"�$&%��;' -refutation of ����� 
���
has size at least � � 11�&����� � � ��� .
Proof : Let > � � 	 � , ? � �:F�� , � + � ��	 ? , and � � > � � �3� + . Let

� � %�� ' � " 	 ' with %D�.% � �
and %5� % � �
	 ? be the bipartite graph of Lemma 4. We show that every !#"-$3%��(' -refutation of�

- ����� has size at least � � 1 �$����� � � ��� . This will imply the Theorem since a !�"�$ %��(' -refutation of

����� 
�� '� ' gives a !#"-$3%��(' -refutation of
�

- ����� of no bigger size. Let us assume, for contradiction,

that
�

- ����� has a !�"�$&%��;' -refutation
�

of size ) �;� � 1 �$����� � � ��� .
We will use the following concepts. We say that � is large if it contains at least � � �:F(��

distinct literals; otherwise, � is small. We say that � is wide if it contains at least H � �:F(%5476�8 � ' 	
free literals; otherwise, � is narrow.

In all probabilities that follow, - is drawn from the distribution � #% � ' . Our main goal is to

prove that the probability that a fixed � -disjunction � of
�

remains large is exponentially small;

that is, we aim for a proof that

�*	J� � % / is large � *�� � � 11�&����� � � ��
 / (4)

This will suffice because then �*	U�(7 � � � ;4� % / is large � * )"� � � 11�&����� � � ��
 � �$F�� , and also

�*	6� � % -9' not %���" ��"GD � "�@ ' -expanding � * �>F�� by Lemma 4. This means that there exists a re-

striction - � � # % � ' such that
� % -9' is %���" � " D ��"&@ ' -expanding and every � -disjunction in

� % / has

less than � � D � @9F-� literals. This is a contradiction with Theorem 1.
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For ��� ! � "/// "&? % , let
� �

be the event that � % /�� is large, and let
� �

be the event that � % /�� is

narrow. Recall that - � � % %/� � "&� � ' "/// "%/�
� "�� � ' ' . Then,

�*	 � � % / is large � * �
	
��
� #�� ���� # 1  � �	�
 	 �*	

��
� # � ���� # 1  � �	�
 *

*
#�� � # 1  �*	J� � � � � � � 	 �*	

��
� # � ���� # 1  � � �
 /

We will show that every term in this expression is exponentially small. The bound on terms of the

form �*	 � � � � � � � will be proven in Lemma 7. For the last term, we use an argument similar in

spirit to the one by Beame and Pitassi [4]:

Lemma 6 �*	� � # � � ��� # 1  � �	� *�� � � 1 �&��� � � � + .
Proof : Let ) � be the indicator random variable for the event that %/� � "&� � ' knocks � % /�� � � . Then,

�*	
��
� # � ���� # 1  � � �
 * �*	

�� ���� # 1  ) � � . � ���� # 1  � � �
 �

� ���� # 1  �
	
�� ) � � . � ���� # 1  � �

------ �# 1  �� � � � ) � � . �
 *
* ���� # 1  �
	

�� ) � � . � �)� � �
------ �
# 1  �� � � � ) � � . �
 *

* ���� # 1  �
	
�� ) � � .

------ �)� � � � �# 1  �� � � � ) � � . �
 /

Fix ��� ! ? F�� 	 ��"�/// "&? % and let � be the set of holes that occur in a free literal of � % /�� � � .
Given that

� �
� � holds, � % /�� � � is wide which means that there are at least H free literals. Therefore

% � % B;H F���� , where � � �=�4� is an upper bound on the right-degree of
�

. Moreover, every � � �
gives a possible knock, and different holes give different knocks. The reason is the following: if

�2��� � is a free literal, then %� "&� ' is a knock; and if �� ��� � is a free literal, then %/� + "�� ' is a knock for

every � + ���  %/�9'B� ! ��% , which is non-empty since the right-degree of
�

is at least two. Therefore,

�*	
�� ) � � �

------ �)� � � � �
# 1  �� � � � ) � � . �
 B %'� %� %:� 	 ?6��� 	 � ' B

H���  � /

Therefore,

�*	
��
� # � ���� # 1  � � �
 *��(��� H���  ��� # 1  * � � � ���� ��� * � � � 1 �$����� � � + /
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= > (of lemma 6)

Lemma 7 Let � be such that ? F��.*�� *C? . Then, �*	J� � � � � � � *�� � � 1 �$����� � � � � .
Proof : Recall that

� � is the event that � % /�� is large, and
� � is the event that � % /�� is narrow.

We let ) � be the indicator random variable for the event that %/� � "&� � ' hits � % /�� � � , where - � � � �% %� � "&� � ' "//�/�"%�
�
� � "&�
�
� � ' ' . Let ) � P � � ��� ) � . Then, for every � ,

�*	 � � � � � � � � �*	 � � � � � � �2) ��� � 	 �
	 � � � � � � � ) B�� � *
* �*	6� � � � ) ��� � 	 �*	J� � � � � � � ) B�� �=/

We show that each term in this expression is exponentially small. More precisely, we show that

�*	 � � � �2) ��� � *.� � � 1 �$����� � � 
 and �*	 � � � � � � � ) B�� � *�� � � 1 �$����� � � �	� which is clearly enough

to prove Lemma 7.

Claim 1 Let � � �9F %5476�8 � ' � . Then, �*	6� � � � ) ��� � *�� � � 1 �$����� � � 
 .
Proof : Let 
 � ! %�� � "/// "�� � ' � ! . "� % � ; P � � ��� � � �� % . Observe that

� � implies
� �

for every� *�� because if � % /�� is large, so is � % /�� for every � *�� . Then,

�*	6� � � � ) ��� � � �*	
� �� � ��� ) � ���	� � ��� � �� 
�� �*	

���� ��� ) � � � � � � ��� �

� �� 
��
�� � ��� �*	

� ) � � � � � � � -----
�
� ��� ��� ) � � � � � *

* �� 
��
�� � ��� �*	

� ) � � � � � � � � � -----
�
� ��� ��� ) � � � � � *

* �� 
��
�� � ��� �*	

� ) � � � � ----- � � � � �
�
� ��� ��� ) � � � ��� /

Fix � � ! � "/// "��,% . Let � be the set of holes that occur in � % /�� � � . We have % � % B � F-��� given that� � � � holds. Again, � � ����� is an upper bound to the right-degree of
�

. Moreover, every � � �
gives a possible hit, and different holes give different hits (the reason is the same as in Lemma 6

for knocks). Therefore,

�*	
� ) � � �

----- � � � � �
�
� ��� ��� ) � � � � � B % � %� %:� 	 ?<��� 	 � ' B

����  � /
Since there are at least � ��� zeros in %�� � "/// "�� � ' , we obtain

�*	�� � � � ) ����� * �� 
�� � ��� ����  � � � � � * � � � �
� � � � � ��!�" � �$#�%
 � ��� *���� � � �&!'" � �(#�%
 � ��� *

* "�)+* � � � ����]E��  	,�#476�8�%	�9' 	�4,6�8�%�� ' � * � � � 1 �&��� � � � 
 /
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= > (of claim 1)

Claim 2 �
	6� � � � � � � ) B�� � * � � � 1 �&��� � � � �	� .
Proof : During this proof we will drop the subindex � in

� � and
� � since it will always be the same.

For every � � ! ��"�/// "&? % , let �
� � !�� "�� " ' % be a random variable indicating whether %/� � "&� � ' is a

knock, a bad choice, or none of the previous respectively for � % /�� � � . For �*� !�� "�� " ' % , let )��� be the

indicator random variable for the event that �
� � � , and let ) � � P � � ��� ) �� . Thus, )�� is the number

of knocks and )�	 is the number of bad choices of - � .
Fix - � % %/� � "&� � ' "/// "%� # "&� # ' ' such that

� � � �2) B � holds under - . Observe that %� � "&� � '
does not knock � % /�� � � for any � � ! � "/// "��,% since � % /�� must be large. Hence, ) � � . under - .
Let 
 � %�� � H�' F %���� 	 � ' . We now claim that )�	7B�
 . Suppose for contradiction that the number

of bad choices is less than 
 . Every bad choice %/� � "&� � ' removes at most ��� free literals since at

most those many literals about hole � � may appear. Moreover, since there are no knocks, every hit

%/� � "&� � ' that is not a bad choice increases the number of free literals by at least one (see lemma 5).

It follows that the number of free literals in � % /�� is at least %�) �2)�	 ' � ��� )�	 ���+� %���� 	 ��'
 � H ,
a contradiction with the fact that

�
holds under - . We have proved that �*	 � � � � � ) B� �.*

�*	6� ) � � . �2)�	7B�
 � . The intuition behind why this probability is small is that every bad choice

could have been a knock. This makes unlikely that - produces many bad choices and no knocks.

In what follows, we will prove this intuition using martingales.

For � � !�� "�� " ' % and � � ! ��"�/// "��2% , let ,��� be the random variable �*	J��� � � � -- - �"//�/ " - � � � � .
We define a martingale O �"/�// " O � with respect to - �"/�//�" - � as follows: Let O � � . , and O � ��� �O � 	 )�	� ��� � ,�	� ��� . Recall that )�	� ��� is the indicator random variable for the event that �

�
��� � � . So

) � O � ��� -- - � "/�// " - � � � % O � 	 �6��, 	� ��� '
� , 	� ��� 	 % O � ��, 	� ��� '

� % ����, 	� ��� ' �� % O � ��, 	� ��� ' % , 	
�
��� 	 �6��, 	� ��� ' 	�, 	

�
��� � O � /

Hence, ! O � % � is a martingale with respect to ! - � % � . Observe also that O � � )�	 � P � � ��� ,�	� .
Similarly, we define 
 �"/// "�
 � as follows: Let 
 � � . , and 
 � ��� � 
 � 	 ) �� ��� � , �� ��� . It is also

easy to see that ! 
 � % � is a martingale with respect to ! - � % � . Again, 
 � � ) � � P � � ��� , �� .
Subclaim 1 , �� % -9'*B ,�	� % -9' F � for every - � � # % � ' and �0� ! ��"�/// "��2% .
Proof : Fix � � ! ��"/�// "��2% and - � % %/� � "&� � ' "/�//�"%� # "&� # ' ' . We want to show that , �� % -9'.B
,�	� % -9'�F � . Define three sets as follows: let � � ! %/� "&�9'*� 	�% � ' ;2�.1� ! � � "/// "&�

�
� � %>% , let � � be

the set of knocks for � % /�� � � in � , and let ��	 be the set of bad choices for � % /�� � � in � . Observe that

,�	� % -9' � %���	 % � %�� % � � and , �� % -9' � %�� � % � %�� % � � . On the other hand, every bad choice %/� "&�9'�����	
gives a possible knock %/� + "&�9'���� � by definition. Moreover, bad choices with different hole
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components give different possible knocks. Grouping � 	 by holes, we have that %�� � % B %���	 %DF � .

Consequently, , �� % -9' B ,�	� % -9' F � as required. = > (of subclaim 1)

To complete the proof of claim 2 we will need the following form of Azuma’s Inequality: Let

O �"//�/ " O � be a martingale such that % O � � O � � � % * � ; then, �*	+� % O � � O � % B � � * � � ��� � 1 � for

every
� � . [11]. Now,

�*	6� ) � � . � ) 	 B 
 � � �*	J�3) � � . �2) 	 B 
 � O � B 
 F-� � 	
	 �*	 � ) � � . �2) 	 B 
 � O � � 
�F�� � /

The first summand is bounded by �*	 � O � B 
 F-� � * � ����� � 1�� � by Azuma’s Inequality. The second

summand is bounded by

�*	��) � � . � P � � ��� ,�	� B 
 F-� � * �*	� ) � � . � P � � ��� , �� B�
 F-��� � *
* �*	 � 
 � * ��
 F-��� � * � � ��� � 1���� � � /

The first inequality follows from Subclaim 1, and the third follows from Azuma’s Inequality again.

The addition of the two summands is then bounded by � � � 1 �$����� � � �	� as required. = > (of claim 2 and

lemma 7)

We are ready to complete the proof of our goal: equation (4). We have shown that

�*	 � � % / large � *
#�� � # 1  � � � 1 �&��� � � � � � 	 � � � 1 �$����� � � + * � � � 1 �$����� � � ��
 /

= > (of theorem 2)

By a different setting of parameters, it is easy to see that the strongest lower bound for ����� ��
is of the form �

� )" � � 	�
 � % + � 	�
 
 � . Namely, put ? � �:F A , � � � 3 F(% %�� 4,6�8 �
'  476�8�� ' and H � � F-� for

that calculation. Therefore the best result is an exponential lower bound for ����� �3)�*7+ ���� .

We conclude this section with a separation result. Given that !�"�$&%54,6=80' and depth- .0/21��� are

polynomially equivalent, and given that �����  �� has quasipolynomial-size proofs in depth- .0/ 1����
[14], we obtain:

Corollary 1 There is an exponential separation between !#"-$ %:�;' and !#"-$3%5476�89' .

4 Lower Bound for Random CNF Formulas

4.1 Random Formulas and Restrictions

The model of random > -CNF formulas that we use is the one considered in [10, 3]. The distribu-

tion is denoted �
� � �� and consists in choosing � clauses of exactly > literals independently with

replacement. Most of the next definitions are taken and adapted from [3].
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Definition 2 For a real number � , a set of clauses � is � -sparse if % � % * � % ��%�� ' % where ��%�� ' is the

set of variables appearing in � .

Definition 3 If � is a set of clauses and
�

is a literal, we say that
�

is pure in � if some clause of �
contains

�
and no clause of � contains

��
.

Definition 4 For H�* � and �*� %�. "� ' , the following properties are defined for � � � formulas
�

:

� � %ZH�' : Every set of ? * H clauses of
�

is 1-sparse.

� ��� %�H�' : For ? such that H F-�K� ? *@H , every subset of ? clauses of
�

has at least ��? pure

literals.

For a given refutation system E , we say that an E -refutation is > -bounded if all formulas of the

refutation involve at most > distinct literals.

Proposition 1 [3] Let E be a sound refutation system with all rules of fan-in at most two. Let

H � . be an integer and
�

be a CNF formula. If properties
� %ZH�' and

��� %�H�' both hold for
�

, then�
has no � H F-� -bounded E -refutation.

A restriction is a sequence of pairs %/� "&�9' where � is a variable and � is either ��? � � or @ � � H � . For

a � -disjunction � let %:� % be the number of distinct literals occurring in it. Let � be a probability

distribution on restrictions. We say that � satisfies property � %�� "	��' if and only if for every

� -disjunction � , �*	�� % � % / %>B �]� * �$F
� . We will consider two probability distributions.

���
� chooses a permutation of the variables uniformly at random, then chooses each variable

with probability �&F�� in the order of the permutation. The values assigned to the variables are

chosen uniformly at random from ��? �8� and @ � � H]� .
��

� chooses ? , the length of the restriction, with a binomial distribution of parameters �&F��
and � . Then chooses uniformly at random any sequence of variables of length ? without

repetitions. The values assigned to the variables are chosen uniformly at random from ��? �8�
and @ � � H � .

We prove that � � and 
� are the same distribution of probability. Obviously both distributions

produce exactly the same restriccions. We only must show that any restriction - has the same

probability in both distributions of probability.

Lemma 8 For every � � "�/// "&� # and � � "/// "&� # ,
�
	/������ � - � % %� � "&� � ' "//�/$"%� # "&� # ' ' � � �*	/������ � - � % %/� � "&� � ' "//�/ "%/� # "&� # ' ' � /
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Proof : The probability �
	 / � � � � - � % %� � "&� � ' "//�/$"%� # "&� # ' ' � is easy to find:� �
? � � �� � # � �<� �

� � � � # �
� � %�� � � ' � ///%:� � ?�	 � ' � / (5)

The first part corresponds to the probability of choosing the value ? from a binomial distribution.

Remember that ? is the length of the restriction. The rest of the expression is the probability of

choosing the ? correct pairs %/� � "&� � ' .
The probability �
	 /������"�&- � % %/� � "�� � ' "/// "%� # "&� # ' '�� is a little trickier. We will compute the

probability of finding a permutation of the variables that is compatible with %� � "�/// "&� # ' , that is,

the variables ! � � "/// "&� # % appear in that order. Then we multiply this probability by the probability

of choosing the exact places where the variables in - are and choosing the right value for them:� � #�� %:� � ? '��
���

� �
�%� # � �<� �

� � � � # �
� # / (6)

We first choose ? places to put the variables in - , then we fill the gaps with the permutations of the

other � � ? variables. These are the favorable cases, those that are compatible. With straightforward

manipulations it is easy to see that (5) and (6) are equal. = > (of lemma 8)

The following is adapted from [3], with a minor change in the probability distribution.

Lemma 9 For each integer > B � and � � . , there are constants � � , � � � � , such that the following

holds. Let � , � , H , � with � � � � for � B � . Let
� ! �

� � �� and - ! �
� .� If �+* � � �:F��
� 1 � and H *�� � �9F � � 1 � � �  �� , then

� % / satisfies
� %�H�' with probability �<���(% � ' in

H .
� If H "�� * � � � � �9F �  M1 � � �  � � � , then

� % / satisfies
��� %ZH ' with probability �����;% � ' in H .

Theorem 3 Let � be a distribution over > -CNF formulas. Let H "	� B � and �*� . and let � be a

distribution over restrictions that satisfies � % � H F-� "	� ' . Then,

�*		 ��
 � ? � H��0% � ' � � F�� � * � �*		 ��
 � /��� � � % / does not satisfy
� %�H�' � 	

	 � �*		 ��
 � /��� � � % / does not satisfy
� � %�H�'�� "

where ? � H��0% � ' is the minimum size of a !�"�$3%:�;' -refutation of
�

.

Proof : For a fixed unsatisfiable > -CNF
�

, let , be a minimal-size !#"-$3%��(' -refutation of
�

. Let

- ! � .

�*	J� � % / satisfies
� %ZH�' � ��� %�H�'�� * �
	 � ,.% / is not � H F�� bounded �

* �
	 � 7S� � , ; % � % /�% � � H F-� �
* ? � H��0% � ' �� /
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The first inequality follows by Proposition 1, the second is immediate, and the third follows by

union bound and the fact that � satisfies � % � H F-� "	� ' .
To finish, let

� % � ' � �
	/ � � % / does not satisfy
� %ZH�'[��	 �*	/ � � % / does not satisfy

� � %�H�'Z��/
Then, ?]� H � % � '6� � F�� implies that �*	 / � � % / satisfies

� %�H�' � � � %�H�'���� � F�� , and so � % � ' � �$F-� .
Therefore, �*	 	 � ? � H��0% � ' � � F�� ��* �*	 	 ��� % � '7� � F�� ��* � 	 	 � � % � '�� by Markov’s inequality.

The result follows. = > (of theorem 3)

4.2 The Lower Bound Argument

For simplicity, we only state the lower bound for the case � 3 � �	 � .

Theorem 4 Let
� ! � 3 � �	 � . Then, !#"-$3%��(' -refutations of

�
require size ��� � � � * 
 11�&����� � � � � � � almost

surely.

Proof : Let � � 1=� , > � � , fix an arbitrary � � %�. "� ' , and put � � � 3 �:F(%:1�� ' � 1[3 � � + �  M1�3 and H �
� %C'�%�� 3 �9F�1 " � 3 �

� �9F-1  M1 � �
�
' . Observe that these numbers satisfy the two hypothesis in Lemma 9. Let

� � � � � * 
 1 �$����� � � � � 
 . If we could prove that  � satisfies property � % � H F�� "	� ' , then �*	 	 � ?]� H��0% � '"�
� F-� ��� �2� % � ' by Theorem 3. Since � % � ' is �(% � ' according to Lemma 9, the Theorem would

follow.

It remains to prove that  � satisfies property � % � H F-� "	��' . In the following, we think of - as

drawn from 
� . We let - � % %� � "&� � ' "/// "%� # "�� # ' ' .

A 2-disjunction is large if it contains at least � � � H F�� literals, otherwise it is small. A 2-

disjunction is wide if it contains at least 3 � �&F�� %54,6=8 % � ' '  free literals, otherwise it is narrow. We

say that %� � "&� � ' knocks a 2-disjunction if it makes it true. We say that %/� � "&� � ' hits a 2-disjunction

if it makes true a literal in it. Notice that every knock is a hit, but a hit might not be a knock. We

say that %� � "&� � ' is a bad choice if it does not knock the 2-disjunction but could have knocked it just

by giving the opposite value to the variable. For �)* ? , we let - � be % %� � "&� � ' "/// "%�
� "&� � ' ' . When

possible we simplify � -disjunctions: we substitute subformulas of the form
� � % � � � + ' by

�
and

subformulas of the form
�� � % � � � + ' by

�� � � + . We aim for a proof that

�*	J� � % / is large � *�� �
� � * 
" � 	�
 " � % % � " (7)

where � is an arbitrary simplified � -disjunction.

Let
� �

be the event that � % /�� contains at least � distinct literals. Let
�

be the event
��� / � .

�*	 � � � � �*	 � � � % - %�� �&F�� � 	 �*	 � � �(% - %>B �&F�� � / (8)
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Obviously �*	 � � �(% - %S� �&F-� � * �*	 � % - %S� � F-� � which is smaller than � � � 1�5 by Chernoff bounds,

so

% A ' *.� � � � * 
� 	�
 " � % 	 �*	6� � -- % - % B �&F-� �(/
We show now that �*	+� � -- % - % B �&F-� � is exponentially small. For every � such that �&F ? * � * �&F-� ,
let
� �

be the event that � % /�� is narrow, that is, it contains less than 3 free literals. Let � be the

event that % - %>B �&F�� . Then,

�
	J� � -- � � � �
	
��
� � � 1  �� � � 1�� � �

------ � �
 	 �*	
��
� � � 1  �� � � 1
� � �

------ � �
 / (9)

We show that both terms in (9) are exponentially small. For every � such that � F ? * � * �&F�� , let �
�

be the indicator random variable for the event that %/� � "&� � ' is a knock. Then the second term in (9)

is

�*	
��
� � � 1  �� � � 1�� � �

------ � �
 * �*	
��
� 1  ����
� 1�� � � � . � � 1  �� � � 1
� � �

------ � �
 �

� � 1  ����
� 1�� �*	

��
�
� � . � � 1  �� � � 1�� � �

------
�
� ��� �
� 1�� � � � . ��� �
 *

� � 1  ����
� 1�� �*	

��
�
� � . � � � � �

------
�
� ��� �
� 1�� � � � . ��� �
 *

� � 1  ����
� 1�� �*	

��
�
� � .

------ �)� � � �
�
� ��� �
� 1�� � � � . ��� �
 *

* � 1  ����
� 1��
�
��� 3

�0%:� � � 	 � ' � * � �<� 3
�=� � � 1�� *

* � � ���+ � � � �
� � * 
" � 	�
 " � % % 
 /

The first term in (9) is also exponentially small. Observe that

�*	
��
� � � 1  �� � � 1�� � �

------ � �
 � �*	
��
� 1  �� � � 1�� % � � � � '

------ � �
 � (10)

* � 1  �� � � 1�� �*	+� � � � � � -- � ��/ (11)

The last inequality is true because
�

implies
� � for any � * �&F�� .
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Lemma 10 If � is such that �&F ? *�� * �&F�� , then �
	J� � � � � � -- � � *�� �
� � * 
" � 	�
 " � % % � .

Proof : For every ��* � let ) � be the indicator random variable for the event that %� � "&� � ' hits

� % /�� � � , that is, that %/� � "&� � ' gives value � ? �8� to a literal in � % /�� � � . Let ) � P � � ��� ) � . We divide

the calculation in two parts: what happens when the number of hits is less than a certain � �
�&F(%<4,6�8�% � ' '  and what happens otherwise.

�*	J� � � � � � -- � � � �*	J� � � � � � � ) ��� -- � ��	 �*	J� � � � � � � ) B�� -- � �
We start by the easiest part. The intuition is that if the 2-disjunction is large it would be extremely

difficult to hit it only a few times.

Sublemma 1 �*	<� � � � ) ��� -- � ��* � �
� � * 
" � 	�
 " � % % � .

Proof : Let 
 � ! %�� � "/// "�� � ' � ! . "� % � ; P � � ��� � � �� % . Observe that
� � implies

� �
for every� *�� because if � % /�� is large, so is � % /�� . Then,

�*	6� � � � ) ��� -- � � � �*	
� � � � �� � ��� ) � ��� ----- � � �

� �� 
�� �*	
� � � � ��� ��� ) � � � � ----- � � �

� �� 
��
�� � ��� �
	

� � � �2) � � � � -----
�
� ��� ��� ) � � � � ��� � *

* �� 
��
�� � ��� �
	

� � � � � �2) � � � � -----
�
� ��� ��� ) � � � � ��� � *

* �� 
��
�� � ��� �
	

� ) � � � � ----- � � � � �
�
� ��� ��� ) � � � � ��� � /

Fix � � ! ��"�/// "��2% .
�*	

� ) � � �
----- � � � � �

�
� ��� ��� ) � � � � ��� � B �

�0%:� ��� 	 � ' B
�
�=� /
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Since there are at least � ��� zeros in %�� � "/// "�� � ' , we obtain

�
	J� � � � ) ��� -- ��� * �� 
�� � �6� �
��� � � ��� *

* � � � �
� � � � � � !�" � �(#�%� � * ��� � � � !�" � �$#�%� � *

* "�) * � � �9%	� ��� '
�=� 	,�#476�8�%	�9' 	�4,6�8�%�� ' � *

* � � ! ��	� � � �� 	�
 " � % *.� �
� � * 
" � 	�
 " � % % � /

= > (of sublemma 1)

The last thing to do is to see what happens when the number of hits is big.

Sublemma 2 �*	 � � � � � � �2)�B�� -- � � *�� �
� � * 
" � 	�
 " � % %�� .

Proof : For every �	* � * � F-� , let �
� � !�� "�� " ' % be a random variable indicating whether %/� � "&� � '

is a knock, a bad choice, or none of the previous respectively for � %&/�� � � . For � � !�� "�� " ' % , let )���
be the indicator random variable for the event that �

� � � , and let ) � � P � � ��� ) �� . Thus, )�� is the

number of knocks and )�	 is the number of bad choices of - � . For the rest of the proof we will skip

the condition on � and the subindices from
�

and
�

. Fix - satisfying
� � � � ).B�� . Note that the

number of knocks is 0 because the 2-disjunction still exists, so ) � � . . Now let be 
 � %��U��3�' F-� ,
we now claim that )�	 B 
 . Suppose for contradiction that the number of bad choices is less than


 . Every bad choice %/� � "&� � ' removes at most one free literal. Moreover, since there are no knocks,

every hit %� � "�� � ' that is not a bad choice increases the number of free literals by at least one. The

reason is that such a hit turns a conjunction into a free literal. Remember that we simplify the

2-disjunction when possible, and so the literal was not free before the hit %� � "&� � ' is applied. It

follows then that the number of free literals in � % /�� is at least %�) � ) 	 '
� ) 	 �� � � 
 � 3 , a

contradiction with the fact that
�

holds under - .
So far we have proved that �*	 � � � � � ) B � � * �*	 � )�� � . � ) 	 B�
 � . The intuition

behind why this probability is small is that every bad choice could have been a knock. This makes

it unlikely that - produces many bad choices and no knocks. In what follows, we will prove this

intuition using martingales.

Claim 3 �
	 � ) � � . � )�	�B 
 � *�� �
� � * 
" � 	�
 " � % %�� .

Proof : For � � !�� "�� " ' % and ��� ! ��"//�/ "��2% , let ,��� denote the random variable �
	���� � �
� -- - � "/// " - � � � � . We define a martingale O � "/�// " O � with respect to - � "//�/ " - � as follows: Let
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O � � . , and O � ��� � O � 	+)�	� ��� � ,�	� ��� . Recall that )�	� ��� is the indicator random variable for the

event that �
�
��� � � . Observe that

) � O � ��� -- - � "/�// " - � � � % O � 	 �6��, 	� ��� '
� , 	� ��� 	 % O � ��, 	� ��� '

� % ����, 	� ��� ' �� % O � ��, 	� ��� ' % , 	
�
��� 	 �6��, 	� ��� ' 	�, 	

�
��� � O � /

Hence, ! O � % � is a martingale with respect to ! - � % � . Observe also that O � � )�	 � P � � ��� ,�	� .
Similarly, we define 
 �"/// "�
 � as follows: Let 
 � � . , and 
 � ��� � 
 � 	 ) �� ��� � , �� ��� . It is also

easy to see that ! 
 � % � is a martingale with respect to ! - � % � . Again, 
 � � ) � � P � � ��� , �� .
We will use the following form of Azuma’s Inequality: Let O �"�/// " O � be a martingale such

that % O � � O � � � % * � ; then, �
	&� % O � �VO � %>B � ��* �B� ��� � 1 � for every
� � . . In the next calculation

we will also use the fact that , �� % -9' � ,�	� % -9' for every - and � � ! ��"/�// "��2% .
�*	6� ) � � . � ) 	 B 
 � � �*	J�3) � � . �2) 	 B 
 � O � B 
 F-� � 	

	 �*	 � ) � � . �2) 	 B 
 � O � � 
�F�� � /
The first summand is bounded by �*	 � O � B 
 F-� � * � � ��� � 1�� � by Azuma’s Inequality. The second

summand is bounded by

�*	 � ) � � . � P � � ��� ,�	� B 
 F-� � * �*	 � ) � � . � P � � ��� , �� B�
 F-� � ** �*	+� 
 � *���
 F-� � *
* � � ��� � 1�� � "

by Azuma’s Inequality again. Therefore, the sum is bounded by ? � � �

 � " � 	�
 " � % % � * � �

� � * 
" � 	�
 " � % %�� as

required. = > (of claim 3 and sublemma 2).

With both sublemmas proved, so is Lemma 10. We are ready to complete the proof of our goal

(7). We have shown that

�*	 � � % / is large � * � � � � * 
� 	�
 " � % 	 � �
� � * 
" � 	�
 " � % % 
 	 � 1  �� � � 1�� � �

� � * 
" � 	�
 " � % % � * � �
� � * 
" � 	�
 " � % % � /

= > (of theorem 4)

We give another proof of claim 3 that does not require martingales.

Claim 4 �
	6� )�	 � . � )�	�B 
G� * � ���
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Proof : Let us call a restriction favorable if it has 
 or more bad choices and no knocks. By

modifying a favorable restriction, we can get � � � � restrictions with one knock or more just by

changing the value of the variables that form the set of bad choices. Let us call these restrictions

knock restrictions.

We will show now that no different favorable restrictions generate the same knock restrictions.

Let us consider two favorable restrictions, say @ � and @  . Both restrictions must have the same

variables in the same order, otherwise they cannot form the same knock restriction. Now, let us

call � the first variable such that @ � %/� ' 1� @  %/� ' . Let us suppose that � is a bad choice for @ � . This

is impossible because @ � and @  are equal up to the variable preceeding � , so if � is a bad choice

for @ � , then � is a knock for @  , so @  is not favorable. The same argument applies for @  . If �
is neither a bad choice for @ � nor for @  then the value of � must coincide if we intend to build

the same knock restriction, because we are only changing the value of variables that produce bad

choices. We must conclude @ � � @  .
Now let us call

�
the set of favorable restrictions and 4 the set of knock restrictions generated

by the restricions in
�

. So

�*	 � ) 	 � . � ) 	 B 
 � � favorable
possible

* % � %
% � %	 %54(% �

� �
�#	 %54(%5F�% � % �

�
� 	 � � � �

� �
� �

= > (of claim 4)

5 Separation between Res(2) and Resolution

In this section we prove that Resolution cannot polynomially simulate !�"�$ %��;' . More precisely,

we prove that a certain Clique-Coclique principle, as defined by Bonet, Pitassi and Raz in [6], has

polynomial-size !�"�$3%:�;' -refutations, but every !�"�$ -refutation requires quasipolynomial size.

The Clique-Coclique principle that we use,
� �������J) �� � � ' , is the conjunction of the following

set of clauses:

� � � �
��� ����� � � � � � * � * > (12)

���� � � � ���� � � � * � * > " � * � "��.* ��"	� 1� � (13)
���� � � � ���� ' � � � * � " � + * >�" � *+� * � " � 1� � + (14)

� � �
� ������� �

� � ' � � � * � * � (15)
��	� � � � ��
� ' � � � * � " � + * > + " � * � * � " � 1� � + (16)
���� � � � ���� ' � � � �� � � � � �� � � � � * � " � + * >�" � * �)* > + " � * � "��.* � " � 1� � + "	� 1� � (17)

We start with a reduction from
� �������J) �� � � ' to ����� �� ' that can be carried over in !�"�$3%:�;' :
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Theorem 5 Let > + � >�*�� . If ����� �� ' has Resolution refutations of size ) , then
� ����� �+) �� � � ' has

!�"�$3%:�;' -refutations of size ) � 
 for some constant � � . .

Proof : We use the following !#"-$3%��(' -reduction to transform the formula
� ����� �+) �� � � ' into ����� �� ' .

The meaning of variable � � � � is that pigeon � sits in hole � . We perform the following substitutions:

� � � � � ��
� ��� %� � � ��� �

� � �,' �� � � � � ��
� ��� � � ' �� � %/� � � � � � � '(� � '

First we show how to get clauses (1) from clauses (12) and (15). If we expand clause (1) for a

certain � we have:

%/� � � � � � � � � '
� %� � �  � � � �  '

� %/� � � 3 � � � � 3 ' ��� ����� %/�
� � � � � � � � '

�
%/� � � � � �  � � '

� %� � �  � �  �  '
� %/� � � 3 � �  � 3 ' ��� ����� %/�

� � � � �  � � '
�

%/� � � � � � 3 � � ' � %�
� �  � � 3 �  ' � %/�

� � 3 � � 3 � 3 ' ��� ����� %/�
� � � � � 3 � � ' �///

%� � � � � � � ' � � ' � %/� � �  � � � ' �  ' � %� � � 3 � � � ' � 3 ' ��� ����� %� � � � � � � ' � � '
(18)

We apply successively for � * � * > + the � -introduction rule to clauses � � � �
� ����� �

� � ' � � and

� � � �
�.������� � � � � along variables � � � � and � � � � and get:

%/� � � � � � � � � '
� %� � � � � �  � � '

�.������� %� � � � � � � ' � � ' � � � �  ������� � � � � � (19)

Observe that the conjuctions in (19) form the first column in (18). To add the second column of

(18) to (19) we apply successively for �.*���* > + the � -rule to clauses � � �  
�.� �����

� � '(�  and (19)

along variables � � �  and � � �  and get:

%/� � � � � � � � � '
� %� � � � � �  � � '

�.������� %� � � � � � � ' � � ' �%/� � �  � � � �  '
� %� � �  � �  �  '

�.������� %� � �  � � � ' �  ' � � � � 3 ������� � � � � � (20)

Now it is clear how to get (18).

Now we will show how to get the initial clauses (2). Let us consider the clause �� � � � � �� � � � . We

first generate � � � � ����� ��� �
� � � ' and � � � � ��������� � � � � ' . Let us rewrite them as:

%� � � � � � � � � '
� %/� � �  � � � �  '

� %� � � 3 � � � � 3 ' � ������� %/�
� � � � � � � � '

� �
(21)

%� � � � � � � � � ' � %� � �  � � � �  ' � %/� � � 3 � � � � 3 ' � ������� %� � � � � � � � � ' � � (22)

where
�

is � � � � � � ��� � �
� � � � � � �

� � �,���
� � ��� � � � � � ' and

�
is � � � � � ��� �$� � � � � � � � � � � �7��� � �����$� � � � � ' . For

the sake of brevity we use � � � � as abbreviation of the 2-disjuction it denotes. It is clear that �� � � � � �� � � �
is
��� �

, that is:

� � � � ��� ����� �
� � � � � � �

� � �7���
�.������� � � � � ' � � � � � ����� ��� � � � � � � � � � � �7��� � ������� � � � � '

20



Now we will get
� � �

from (21), (22) and (17). We apply the cut rule to (22) and �� � � �
� �� � � � ��� � � �

� �� � � � for � * � * � ,
� 1� � , and get:

�� � � �
� �� � � �

� %/� � � � � � � � � ' � � (23)

Solving it with �� � � �
� �� � � � we get �� � � �

� �� � � �
� �

. Solving this clause with (21) we get

%/� � �  � � � �  '
�.� ����� %� � � � � � � � � '

���(� �
(24)

Now we can get rid successively of %� � �  � � � �  ' "/// "%/�
� � � � � � � � ' as we did with %/� � � � � � � � � ' .

It remains to show how to simulate a normal resolution step. We have � � � � �.� and �� � � � � � and

we want to get
�(� �

. We expand both clauses:

%/� � � � � � � � � ' � %/� � �  � � � �  ' � %/� � � 3 � � � � 3 ' �.��� ��� %/� � � � � � � � � ' � � (25)

%/� � � � � � � � � '
� %� � �  � � � �  '

� %/� � � 3 � � � � 3 ' ��� ����� %/�
� � � � � � � � '

�
%/� � � � � �  � � '

� %� � �  � �  �  '
� %/� � � 3 � �  � 3 ' ��� ����� %/�

� � � � �  � � '
�

///
%/� � � � � � � � � � � ' � %/� � �  � � � � � �  ' � %/� � � 3 � � � � � � 3 ' � ������� %/� � � � � � � � � � � ' �%/� � � � � � � ��� � � ' � %/� � �  � � � ��� �  ' � %/� � � 3 � � � ��� � 3 ' � ������� %/� � � � � � � ��� � � ' �///
%/� � � � � � � ' � � ' � %/� � �  � � � ' �  ' � %/� � � 3 � � � ' � 3 ' � ����� � %/� � � � � � � ' � � ' � �

(26)

If we get clauses �� � � � � �� � � � � � for � * � * � , we solve them all with (25) and get
� � �

as desired.

We will show how to get �� � � �
� �� � � � � � . We solve (26) with �� � � � � �� � � � , � 1� � of course. With these

we get rid of the first column of (26) and we add a literal �� � � � . We can get rid of the rest of columns

by solving enough times with clauses �� � � �
� �� � � � , � 1� � , and we get �� � � �

� �� � � � � � . = > (of theorem 5)

We will use the Monotone Interpolation Theorem for Resolution together with the following

result of Alon and Boppana [1] establishing a lower bound to the size of monotone circuits that

separate large cliques from small cocliques. In the following,
� %���" >�" > + ' is the set of monotone

functions that separate > -cliques from > + -cocliques on � nodes.

Theorem 6 [1] If @�� � %:� " >�" > + ' where � * > + * > and > � > + * ��F(% A 4,6�8 �
' , then

) � %@ '*B �A
� �? > � > + 476�8 � � ���

� ' ��� �(1  "
where ) � %/@ ' is the monotone circuit size of @ .
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Theorem 7 Let > � � � and > + � %54,6=8��
'  F A 476�8 4,6�8 � . Then, (i)
� �������J) �� � � ' has !#"�$&%��(' -

refutations of size polynomial in � , and (ii) every Resolution refutation of
� �������J) �� � � ' has size at

least "�)+* %���% %5476�8 �
'  F � 476�8�4,6=8 �
' ' .

Proof : Regarding (i), we have that > + 476�8�> + * �� %54,6=8 ��'  , and so � �
� ' ����� � ' * �
� 1  � > . On the

other hand, Buss and Pitassi [7] proved that ����� �� ' has Resolution refutations of size polynomial

in > whenever >�B � �
� ' ����� � ' . Therefore, by Theorem 5,

� ����� �+)��� � � ' has !�"�$3%:�;' -refutations of

size polynomial in � . Regarding (ii), we apply the feasible monotone interpolation theorem for

Resolution. We have 4,6=8 �� � 4,6=8�4,6�8 � *
� > + * 4,6=8�� /

Therefore, by Theorem 6, if @�� � %���" >�" > + ' is a monotone interpolant, then

) � %/@ '�B �A
� �? � � %5476�8 �
'  �

� 	�
 ���� � 	�
 � 	�
 � B �A � �
� 3 1�� � � 	�
 ���� � 	�
 � 	�
 � "

which is "�)+* %���% %5476�8��
'  F � 4,6=8�4,6�8 � ' ' . = > (of theorem 7)

As a corollary, we solve an open problem posed by Krajı́ček [13].

Corollary 2 !#"-$3%��(' does not have the feasible monotone interpolation property.

6 Discussion and Open Problems

In the paper we proved that there is a quasipolynomial separation between Resolution and !�"�$3%:�;' .
It is an open question whether the separation could be exponential, or a quasipolynomial simulation

of !#"�$&%��(' by Resolution exists. It is important to notice, that our lower bound for ����� would not

follow from such a simulation. Indeed, the lower bound that would follow from that would be of

the form � � � .
The previous separation was obtained using a lower bound for Resolution proved via the mono-

tone interpolation theorem. It is open whether the separation (or a stronger one) could be obtained

via the size-width trade-off [5] as a method for proving lower bounds for Resolution. It would also

be interesting to see what would that mean in terms of possible size-width trade-offs for !�"�$3%:�;' .
We conjecture that !#"-$3%��(' does not have a strong size-width trade-off. Notice that !�"�$&%54,6=89'
does not have it. This is because (a) !�"�$3%<4,6=89' is equivalent to depth- .0/21 LK, (b) ������ �� has

quasipolynomial-size proofs in depth- . /21 LK [14], and (c) �����  �� has ��%�� ' width lower bounds

for !#"-$ %<4,6=89' .
In this paper we extended the width lower bound technique beyond Resolution. A very inter-

esting open question is to see whether the technique can also be extended to give lower bounds for
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!�"�$3% �;' " !#"�$&% ? ' "//�/ " !#"-$ %<4,6=89' . It seems that some new ideas need to be developed to do that. This

question is related to the optimality of the !�"�$3%<4,6=89' upper bound for �����  �� .

Finally, we note that exponential-size lower bounds for ����� � ��� �� in !�"�$3%:>�' implies lower

bounds for ����� � �� in Resolution for some � . This is a long-standing open question.
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