
Narrow Proofs May Be Maximally Long∗

Albert Atserias
Universitat Politècnica de Catalunya

atserias@cs.upc.edu

Massimo Lauria
KTH Royal Institute of Technology

lauria@kth.se

Jakob Nordström
KTH Royal Institute of Technology

jakobn@kth.se

October 22, 2015

Abstract

We prove that there are 3-CNF formulas over n variables that can be refuted in reso-
lution in width w but require resolution proofs of size nΩ(w). This shows that the simple
counting argument that any formula refutable in width w must have a proof in size nO(w)

is essentially tight. Moreover, our lower bound generalizes to polynomial calculus resolution
(PCR) and Sherali-Adams, implying that the corresponding size upper bounds in terms of
degree and rank are tight as well. The lower bound does not extend all the way to Lasserre,
however, since we show that there the formulas we study have proofs of constant rank and
size polynomial in both n and w.

1 Introduction

Proof complexity studies how hard it is to prove that propositional logic formulas are tautologies.
While the original motivation for this line of research, as discussed in [CR79], was to prove
superpolynomial lower bounds on proof size for increasingly stronger proof systems as a way
towards establishing NP 6= co-NP (and hence P 6= NP), it is probably fair to say that most
current research in proof complexity is driven by other concerns.

One such concern is the connection to SAT solving. By a standard transformation any
propositional logic formula can be converted to another formula in conjunctive normal form
(CNF) that has the same size up to constant factors and is unsatisfiable if and only if the
original formula is a tautology. Any algorithm for solving SAT defines a proof system in the
sense that the execution trace of the algorithm constitutes a polynomial-time verifiable witness
of unsatisfiability (such a witness is often referred to as a refutation rather than a proof , and
these two terms are sometimes used interchangeably). In fact, most modern-day SAT solvers
can be seen to search for proofs in systems at fairly low levels in the proof complexity hierarchy,
and upper and lower bounds for these proof systems hence give information about the potential
and limitations of the corresponding SAT solvers. In this work, we focus on such proof systems.

1.1 Background

The dominant strategy in applied SAT solving today is so-called conflict-driven clause learn-
ing (CDCL) [BS97, MS99, MMZ+01], which is ultimately based on the resolution proof sys-
tem [Bla37]. The most studied complexity measure for resolution is size (also referred to

∗This is the full-length version of the paper [ALN14], which appeared in Proceedings of the 29th Annual IEEE
Conference on Computational Complexity (CCC ’14).

NARROW PROOFS MAY BE MAXIMALLY LONG

as length), which gives lower bounds on the running time on CDCL solvers and for which
(optimal) exponential lower bounds are known [Hak85, Urq87, CS88]. Another more recently
studied measure is space,1 which corresponds to memory usage, and for which (again optimal)
linear lower bounds have been proven [ABRW02, BG03, ET01]. For all of these results, the
concept of width, measured as the size of a largest clause in a resolution proof, has turned out
to play a key role. Width was identified as a crucial resource already in [Gal77], and strong
lower bounds on proof width have been shown to imply lower bounds on proof size [BW01] and
space [AD08].

Interestingly, although the relationships and trade-offs between width and space in resolution
are by now fairly well-understood [Ben09, BN08], as are those between size and space [BN08,
BN11, BBI12, BNT13], very basic questions about the connections between size and width have
remained open. Let us give two examples of such questions that we find particularly interesting.

For our first example, consider the main technical result in [BW01], which when applied to
CNF formulas of constant width says that if a formula over n variables has a resolution proof
of size S, then it also has one of width O

(√
n logS

)
. This is established by exhibiting a general

transformation that turns any small resolution proof into a (reasonably) narrow one. It was
shown in [BG01] that the bound above is essentially tight in that polynomial-size resolution
proofs cannot in general be squeezed down to width smaller than Ω

(√
n
)
, but one other aspect

of this result has remained unclear. Namely, once the original small resolution proof has been
transformed into a narrow proof, this new proof is no longer small, since the transformation
in [BW01] causes an exponential increase in size. It is not known whether such a blow-up is
necessary, i.e., whether there are trade-offs between size and width, or whether the analysis
in [BW01] could be sharpened to show that short proofs can be made simultaneously narrow.2

Our second example concerns what can be said in the other direction, i.e., what conclusions
can be drawn regarding proof size based on an upper bound on proof width. Clearly, an upper
bound w on the refutation width for a formula over n variables implies a proof size of at
most nO(w) simply by counting the number of possible distinct clauses of width w (as also
noted in [BW01]). But again, it is not clear how tight this argument is. To the best of our
knowledge, it has been open whether there exist formulas refutable in width w = o(

√
n) that

require size nΩ(w), i.e., with the width complexity appearing in the exponent.3

From a theoretical point of view, the ubiquity of CDCL in SAT solving is somewhat puzzling
since resolution is quite a weak proof system. A different approach is to translate CNF formulas
to multilinear polynomials and do Gröbner basis computations, which corresponds to polynomial
calculus resolution (PCR) as defined in [CEI96, ABRW02]. (The resolution ’R’ in PCR stands
for the fact that negated literals get their own formal variables when translating CNF formulas to
polynomials. Such variables were missing in the original definition in [CEI96] but adding them as
in [ABRW02] makes for a more natural and well-behaved proof system from a proof complexity
point of view.) Intriguingly, although PCR is known to be exponentially stronger than resolution,
implementations of search methods for this proof system such as PolyBoRi [BD09, BDG+09]

1In this paper we are interested in the most well-studied measure of space for resolution, which counts the num-
ber of clauses in memory and is hence known as clause space, and in its natural generalization to (semi)algebraic
proof systems where one instead counts monomials. For completeness, we want to mention that there is also a
measure called total space, counting the total number of literals in memory (with repetitions), which has been
studied in [ABRW02, BGT14, BGHW14].

2Since this paper first appeared, Thapen [Tha14] has shown that a size blow-up as in [BW01] is indeed
necessary. We discuss this result briefly in Section 1.4 below.

3Paul Beame has pointed out to us that there have been examples in the literature of formulas over n variables
refutable in resolution in width O

(√
n
)

that require size 2Ω(
√

n), namely the tiling formulas studied in [Ale04,
DR01]. Another example is provided by so-called Tseitin formulas over

√
n×
√
n grids with two copies of every

edge. Such formulas are refutable in width O
(√

n
)

by simulating Gaussian elimination, but it can be shown

by a standard restriction argument that any proof of unsatisfiability again requires size 2Ω(
√
n), However, these

examples require width w = Ω
(√

n
)
, and even in this range do not quite achieve size lower bounds of type nΩ(w)

but only 2Ω(w). Also, the lower bounds are known only for resolution and not for stronger proof systems.

2

1 Introduction

have a hard time competing with CDCL solvers.

Proof size and space in PCR are defined in analogy with resolution, but counting monomials
rather than clauses, and the measure corresponding to width of clauses is (total) degree of
polynomials. It is straightforward to show that PCR can simulate resolution efficiently with
respect to all of these measures, meaning that the same worst case upper bounds as in resolution
apply to PCR. It was proven in [IPS99] that strong degree lower bounds imply strong size lower
bounds, which is an exact analogue of the size-width relation for resolution in [BW01] discussed
above, and this size-degree relation has been employed to prove exponential lower bounds on
size in a number of papers, with the most general setting perhaps provided in [AR03, MN15].
The first lower bounds on space in PCR were obtained in [ABRW02], but only worked for CNF
formulas of unbounded width. In [FLN+12] the techniques in [ABRW02] were adapted to prove
space lower bounds also for formulas of constant width, and optimal (linear) lower bounds on
space were finally obtained in [BG13]. It is worth noting, however, that these bounds are not
derived from degree lower bounds—it remains unknown whether an analogue of [AD08] holds
for PCR (although [FLM+13] has reported some progress on this and related open questions).
Strong trade-offs between size and space as well as between degree and space have been shown
in [BNT13], but—again in analogy with resolution—the exact relations between size and degree
remains unclear. The same blow-up as in [BW01] occurs in [IPS99] when small size is converted
to small degree, but it is not known whether this is necessary or just an artifact of the proof.
Also, it was shown in [CEI96] that a degree upper bound of d implies proof size at most nO(d),
but it has been open whether this is tight or not.

Yet another way to achieve greater expressivity than in resolution is to translate clauses into
linear inequalities and manipulate them using 0-1 linear programming. Perhaps the simplest
and most well-known example of this approach is the cutting planes proof system introduced
in [CCT87] based on ideas in [Chv73, Gom63]. In this paper, however, we will be interested
in somewhat related but different semialgebraic methods operating on linear programming re-
laxations of the CNF translations, such as the Sherali-Adams, Lovász-Schrijver , and Lasserre
hierarchies used for attacking NP-hard optimization problems.

The Sherali-Adams (SA) method [SA90] provides a hierarchy of linear programming relax-
ations of any given 0-1 integer program. The nth level of the hierarchy, where n is the number
of 0-1 integer variables, wipes out the integrality gap and is thus exact, but also leads to an
exponential blow-up in problem size. The main point of the method, however, is that any linear
function of the variables can be optimized over the kth level of the hierarchy in time nO(k), and
in particular feasibility of the kth level relaxation can be checked in that time. In the context of
proof complexity, what this means is that if the kth level relaxation of the integer programming
formulation of a CNF formula in infeasible (the minimal such k is known as the SA rank of
the integer program), then there is an nO(k)-time algorithm that can detect this. Furthermore,
since the kth level of the hierarchy is an explicitly defined linear program, its infeasibility can
be certified as a positive linear combination of its defining inequalities. Such a certificate is a
rank-k Sherali-Adams refutation of the corresponding CNF formula.

The Lovász-Schrijver approach [LS91] can be thought of as (and indeed it is formally equiv-
alent to) an iterated version of the level-2 SA relaxation. The point is again that any linear
function can be optimized over the linear program after k iterations in time nO(k). Lovász
and Schrijver also introduced a method LS+, which uses semidefinite programming instead of
linear programming, and which is significantly stronger in some notable cases of interest in
combinatorial optimization.

The Lasserre method [Las01], finally, is basically the Sherali-Adams method with semidefi-
nite programming conditions at all levels of the hierarchy. Again it stratifies into levels and the
kth level can be solved in time nO(k). Moreover, Lasserre’s method is the strongest of all three
in the sense that, level by level, it provides the tightest of all three approximations of the integer
linear program. We refer to [Lau01, CT12] for a more detailed discussion of Sherali-Adams,

3

NARROW PROOFS MAY BE MAXIMALLY LONG

Lovász-Schrijver and Lasserre and a comparison of their relative strength.
In view of the important algorithmic applications that these methods have (see, e.g., [Par00]

and subsequent work), it is a natural question whether the upper bounds nO(k) for rank k are
tight, just as for resolution and polynomial calculus resolution.

From the proof complexity side, some notable early papers investigating semialgebraic proof
systems were published around the turn of the millennium [Pud99, GV01, GHP02], but then this
area of research seems to have gone mostly dormant. In the last few years, these proof systems
have made an exciting reemergence in the context of hardness of approximation, revealing unex-
pected and intriguing connections between approximation and proof complexity. Some examples
of this is the paper [Sch08] essentially rediscovering results from [Gri01], and more recent papers
such as [BBH+12, OZ13]. There have also been papers such as [BPS07] and [GP14] focusing on
semantic versions of these proof systems, with less attention to the actual syntactic derivation
rules used.

1.2 Our results

The main contribution of this paper is showing that the upper bounds on proof size in terms
of width for resolution, degree for PCR, and rank for Sherali-Adams are essentially tight (up to
constant factors in the exponent). Moreover, an interesting feature of our result is that we can
actually use the same formula family to prove tightness simultaneously for all the proof systems.
What this means is that we obtain upper bounds on size in resolution that tightly match lower
bounds in the much stronger systems PCR and Sherali-Adams (which are in turn tight for these
systems since resolution width is an upper bound on both PCR degree and Sherali-Adams rank).
The formal statement of this result is as follows.

Theorem 1.1. Let w = w(n) be such that w = O(nc) for some positive constant c < 1/2. Then
there are 3-CNF formulas Fn,w with O(wn) clauses over O(n) variables such that the following
holds:

1. Fn,w has a resolution refutation in simultaneous size nO(w), width O(w) and space O(w).

2. Any refutation of Fn,w in resolution, PCR, or Sherali-Adams must have size nΩ(w).

For resolution this actually shows something slightly stronger than that the counting upper
bound on size in terms of width is tight. Namely, since the formulas in Theorem 1.1 have the
same asymptotic upper bound on space as on width, it follows that even for formulas of space
complexity O(w)—which is a more stringent requirement than width complexity O(w)—it is
still impossible to obtain any size upper bound better than nO(w) in general.

Theorem 1.1 has an interesting consequence for the analysis of CDCL solver performance,
which we state as a formal corollary. By way of background, it was shown in [AFT11] that
if a CNF formula F over n variables has a resolution refutation in width w, then with high
probability any CDCL solver4 will only need time nO(w) to decide that F is indeed unsatisfiable.
Perhaps this might not seem so impressive at first sight—after all, exhaustive search in bounded
width runs within this time bound deterministically—but the point is that a CDCL solver is
very far from doing exhaustive width search and does not care at all about the existence or
non-existence of narrow refutations. An obvious question is whether this bound on the running
time is tight. Theorem 1.1 shows that the answer is “yes,” since no CDCL solver can run faster
than the shortest resolution proof it can possibly find.5

4This result holds for a fairly general mathematical model of what a CDCL solver is, which agrees reasonably
well with how state-of-the-art solvers are actually implemented in practice (though making this claim precise
would require a detailed discussion of implementation details of CDCL solvers that is beyond the scope of this
paper).

5This is of course assuming that the solver does not implement features such as, e.g., cardinality reasoning or
extended resolution, since these fall outside of the standard CDCL framework and go beyond resolution-based
reasoning.

4

1 Introduction

Corollary 1.2. There are formulas F over n variables refutable in resolution in width w for
which any resolution-based CDCL solver cannot run faster than nΩ(w), and hence the result
in [AFT11] is optimal up to constants in the exponent.

Another interesting aspect of our lower bound for resolution is in the context of Berkholz’s
EXPTIME-completeness result for deciding resolution width [Ber12]. What Berkholz showed
is that given a formula F over n variables and a parameter w, it cannot be decided in time
less than n(w−3)/12 whether F has a resolution refutation in width w or not. Optimizing the
constants in Theorem 1.1, we can show that there are 4-CNF formulas refutable in width w for
which no resolution refutation can be shorter than nw/2−o(1). It is worth noting that this bound
is stronger than that in [Ber12], although it of course applies only for the more restricted setting
where the algorithm has to output a width-w resolution refutation rather than for the decision
problem. Still, we believe this sheds interesting light on Berkholz’s result.

1.3 Discussion of proof techniques

We conclude the overview by outlining the proof of the lower bound in Theorem 1.1 for resolution
and how it differs from previously used methods. At a high level, our proof is a standard
restriction argument, but it turns out to have some twists which we believe might be of interest
and could be useful elsewhere. (In fact, in a sense this has already happened in that our paper
draws on ideas from [AMO13], which used a similar approach in a different context.)

Before going into the details of our new restriction argument, let us revisit previous lower
bounds on size in terms of width and see how they fall short of proving what we are after. On the
one hand, the result in [BW01] states that if a 3-CNF formula on n variables requires width w
to refute in resolution, then it also requires size 2Ω(w2/n). This lower bound is vacuous for w
smaller than

√
n and, in any case, can never be larger than 2Ω(w) since w is bounded by n. On

the other hand, for formulas refutable in width w smaller than
√
n, a direct random restriction

argument can sometimes still be applied to get meaningful lower bounds. The idea is that setting
a random literal to true will kill off a w

2n -fraction of the wide clauses on average. After r rounds
of such restrictions, the expected number of surviving wide clauses is at most

(
1− w

2n

)r
S, where

S is the size of the refutation, and choosing r = (2n/w) logS brings the number of wide clauses
down to zero. A contradiction is then derived by showing that the residual formula still requires
width w to refute. Note, however, that we cannot apply the restriction for more than n rounds
(or else there will be no residual formula to argue about), and so the best size lower bound this
method can achieve is again 2Ω(w), which is smaller than the nΩ(w) bound that we are after.

In some sense, the problem is that using restrictions in the style of H̊astad’s switching
lemma [H̊as87] does not work in our setting. Instead, it turns out that a seemingly weaker
argument inspired by Furst-Saxe-Sipser [FSS84] is just what we need. Let us now describe this
modified restriction argument and how it overcomes the problems discussed above.

We start with a carefully chosen family of formulas Fn,w and an associated probability
distribution over restrictions ρn. Then we assume that we have a resolution refutation π of Fn,w
in size no(w) and analyze how a randomly chosen restriction ρn affects π. We get two cases:

1. For clauses C in the refutation π that are noticeably wide, ρn is very likely to satisfy a
literal in C and so the clause disappears.

2. Clauses that are not so wide will not be satisfied by ρn, but since they are reasonably
small they are very likely to be shortened by ρ to width strictly less than w.

Admittedly, the first case looks no different from the standard restriction argument, and the
second case seems quite weak. But the point is that by considering also the second case, we
can afford a significantly bigger bound for “wide” than before, thus getting a bigger probability
of success. This is the key to our argument. The rest is now standard: Fn,w and ρn are
chosen so that Fn,w restricted by ρn is a bounded-width version of a pigeonhole principle (PHP)

5

NARROW PROOFS MAY BE MAXIMALLY LONG

formula with w pigeons that are supposed to fit into w − 1 holes. Since π is short enough,
by a counting argument there is some restriction ρn that eliminates all wide clauses to give a
resolution refutation of the PHP formula in width significantly less than w. A separate argument
shows that such a narrow resolution refutation cannot exist, and the lower bound on resolution
refutation size follows.

The lower bounds for PCR and Sherali-Adams are quite similar. The restriction part of the
argument is basically the same, but one has to work a bit harder to prove the final punchline
that the restricted refutations have impossibly low degree and rank, respectively.

It should perhaps be stressed that while the final argument is quite straightforward and
natural (at least for resolution), a crucial component in the proof is to find the right formulas Fn,w
and associated restrictions ρn to plug into the argument, and to make a case analysis of the
action of ρn as above. Both of these aspects use the techniques developed in [AMO13] in an
essential way.

1.4 Subsequent developments

The two main questions driving the research behind this paper are what upper bounds on proof
width/degree/rank imply about proof size, and in the other direction whether upper bounds on
size and width/degree/rank can be optimized simultaneously.

Regarding the latter question, it was recently shown by Thapen [Tha14] that the size blow-up
in [BW01] when width is reduced is indeed inherent. That is, there are formulas with resolution
refutations of size S for which any refutation in width O

(√
n logS

)
must have exponential size.

Indeed, Thapen’s result is stronger than this in that it covers a wider range of parameters. It is
also robust in the sense that even a smaller decrease in the width, not going all the way down
to O

(√
n logS

)
, still causes an exponential blow-up. We refer to the paper [Tha14] for more

details.
It is worth noting, though, that Thapen’s result does not work for formulas of constant

width, but requires clauses of logarithmic size. Also, and more importantly, the proof only
works for resolution. The corresponding question for PCR whether the size blow-up in [IPS99]
is necessary is still open.

Regarding the former question, in this paper we show that there are formulas which can
be refuted in resolution in width w (and hence essentially the same degree in PCR and rank
in Sherali-Adams) but which require refutation of size nΩ(w) in resolution, PCR, and Sherali-
Adams. In the conference version [ALN14] we left as an open problem whether an analogous
result could be proven also for the stronger Lasserre proof system. This has now been achieved
in [LN15] using very similar techniques to those in the current paper, but with much worse
bounds on the constant hidden in the asymptotic notation in the exponent.

1.5 Outline of this paper

The rest of this paper is organized as follows. After the necessary preliminaries in Section 2,
we state the main theorem for resolution and give a full proof in Section 3. We believe this can
serve as a useful warm-up to the more complicated proofs for stronger proof systems that follow
in Section 4. In Section 5 we show that our lower bounds do not extend all the way to Lasserre.
We conclude in Section 6 with some final remarks and a discussion of open problems.

2 Preliminaries

A literal over a Boolean variable x is either the variable x itself (a positive literal) or its negation x
(a negative literal). A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals. A k-clause is a clause
that contains at most k literals. A CNF formula F = C1 ∧ · · · ∧Cm is a conjunction of clauses.
A k-CNF formula is a CNF formula consisting of k-clauses. We think of clauses and CNF

6

2 Preliminaries

formulas as sets: the order of elements is irrelevant and there are no repetitions. We denote
the logical true value as > and the logical false value as ⊥. The empty clause (containing no
literals) is also denoted ⊥, since it is always false. For integers m and n, m < n, we use the
standard notation [n] = {1, 2, . . . , n} and [m,n] = {m,m+ 1, . . . , n}.

A resolution derivation of a clause C from a CNF formula F is a sequence of clauses
(C1, . . . , Cτ) such that Cτ = C and for 1 ≤ t ≤ τ the clause Ct is obtained by one of the
following derivation rules:

• Axiom: Ct is a clause in F (an axiom clause);

• Inference: Ct = A ∨B, where Ci = A ∨ x and Cj = B ∨ x for 1 ≤ i, j < t;

• Weakening: Ct ⊇ Ci for some 1 ≤ i < t.

A resolution refutation of F is a derivation of the empty clause ⊥ from F .
Every resolution derivation π = (C1, . . . , Cτ) can be associated with a directed acyclic graph

(DAG) Gπ with vertices labelled by clauses Ct in π and edges (Ci, Cj) if Cj is obtained by an
inference or a weakening step and Ci is used as a premise in that step. The derivation π is said
to be tree-like if Gπ is a tree. The (clause) space of π at time t is the number of clauses derived
before or at time t that will be used after or at time t, i.e., all clauses Ci, i ≤ t, in Gπ having an
outgoing edge to clauses Cj , j ≥ t (plus the clause Ct itself). We say that these are the clauses
in memory at time t. The space of π is the maximal number of clauses in memory at any time t
in the derivation. The width of π is the maximal number of literals in any clause Ct in π, and
the size (or length) of π = (C1, . . . , Cτ) is τ . We remark that it is straightforward to show that
all applications of the weakening rule can be eliminated from a resolution refutation without
any increase in size, width, or space, and while maintaining tree-likeness.

In polynomial calculus resolution (PCR) one instead refutes an unsatisfiable formula F over
variables x1, . . . , xn by reasoning in terms of polynomials in the ring F[x1, . . . , xn, x1, . . . , xn],
where F is some fixed field and xi, xi are formally independent variables. It is natural to think
of polynomials as being satisfied by an assignment when they evaluate to 0, so in PCR the
truth values > and ⊥ are represented by 0 and 1, respectively, and a clause

∨
i∈I xi∨

∨
j∈J xj is

translated into the one-term polynomial
∏
i∈I xi ·

∏
j∈J xj . A PCR derivation of a polynomial R

from a set of polynomials S = {Q1, . . . , Qm} is a sequence (P1, . . . , Pτ) such that Pτ = R and
for 1 ≤ t ≤ τ the polynomial Pt is obtained by one of the following derivation rules:

• Boolean axiom: Pt is x2 − x for some variable x (or x);

• Complementarity axiom: Pt is 1− x− x for some variable x;

• Initial axiom: Pt is one of the polynomials Qj ∈ S;

• Linear combination: Pt = αPi + βPj for 1 ≤ i, j < t and some α, β ∈ F;

• Multiplication: Pt = xPi for 1 ≤ i < t and some variable x.

A PCR refutation of F is a PCR derivation of 1 from the set of polynomials representing the
clauses of F as explained above. Note that the Boolean axioms make sure that variables can
only take values > = 0 and ⊥ = 1, and the complementarity axioms enforce that x and x take
opposite values.

The degree of a PCR derivation π is the maximum of the (total) degrees of the polynomials
in π. The size of π is the sum of the sizes of the polynomials in π, where the size of a polynomial
is defined as its number of terms. Just to make terminology precise, in this paper a monomial
is a product of variables, a term is a monomial multiplied by a non-zero coefficient from the
field F, and a polynomial is a sum of terms with distinct monomials. The space measure can also
be generalized from resolution, counting terms instead of clauses, but we will not really need it
in this paper.

Let us next discuss semialgebraic proof systems. All such proof systems encode a CNF for-
mula as a set of polynomial inequalities over the reals. A clause

∨
i∈I xi∨

∨
j∈J xj is represented

7

NARROW PROOFS MAY BE MAXIMALLY LONG

by the inequality
∑

i∈I xi +
∑

j∈J (1− xj)− 1 ≥ 0, where we identify > = 1 and ⊥ = 0—note
that this is the opposite of the convention for PCR. A CNF formula F is represented by the in-
equalities corresponding to its clauses. A Sherali-Adams (SA) derivation of an inequality R ≥ 0
from a set of polynomial inequalities {Q1 ≥ 0, . . . , Qm ≥ 0} is a formula of the form

τ∑
t=1

αt ·
∏
i∈It

xi ·
∏
i∈Jt

(1− xi) · Pt , (2.1)

that when expanded into a sum of terms gives the polynomial R, where αt ∈ R+ and Pt is one
of the original polynomials Qj , or an axiom of the form x2

i − xi or xi− x2
i , or the constant 1. A

Lasserre derivation of R ≥ 0 is a formula of the form (2.1) that expands to R where in addition
Pt can be a square Q2 for any arbitrary polynomial Q. Note that Sherali-Adams and Lasserre
are static proof systems in that they have “one-shot” derivations, in contrast to resolution and
PCR that construct derivations dynamically step by step.

We can augment Sherali-Adams by twin variables xi whose intended meaning is the negation
of xi, i.e., 1−xi.6 We define a Sherali-Adams resolution (SAR) derivation to be an SA derivation
as in (2.1) except that the set of variables is {x1, . . . , xn, x1, . . . , xn} and that Pt can also be a
complementarity axiom 1− xi − xi or −1 + xi + xi.

A Sherali-Adams (SA), SAR, or Lasserre refutation of F is a derivation in the respective
system of the inequality −1 ≥ 0 from the inequalities Q1 ≥ 0, . . . , Qm ≥ 0 that encode the
clauses of F . The rank of the derivation is the maximum of the degrees among the polynomials
to which the formulas

∏
i∈It xi ·

∏
i∈Jt(1−xi) ·Pt in (2.1) expand, and the size of the derivation

is the sum of the sizes of those polynomials, where again the size of a polynomial is defined as
its number of terms.

A restriction (or partial assignment) ρ is a partial mapping from variables to {⊥,>}. We
identify ρ with the set of literals it sets to true. The domain of ρ is denoted dom(ρ) and the
size of ρ is |ρ| = |dom(ρ)|. The restriction C�ρ of a clause C by ρ is the trivial clause > if ρ sets
some literal of C to true—such a clause can just be removed from any formula or derivation—
and otherwise it is the clause resulting from deleting all literals in C set to false by ρ. The
restriction F�ρ of a CNF formula F is the conjunction of its restricted clauses, and a restricted
resolution derivation π�ρ is the sequence of the restrictions of the clauses in π. It is a basic fact
that if π is a refutation of F , then π�ρ is a refutation of F�ρ.

For PCR derivations and the polynomials therein, restrictions are defined similarly: a re-
stricted term vanishes if one of its variables is set to > = 0 and is otherwise obtained by deleting
all variables set to ⊥ = 1, and a restricted polynomial is the sum of its restricted terms. Again,
restrictions preserve PCR refutations. For SA and SAR, the definition is analogous except the
roles of 0 and 1 are reversed.

3 Upper and lower bounds in resolution

In this section, we establish the special case of our main result for the resolution proof system.
Although the lower bound part follows from the stronger results that we will prove in later
sections, we believe it is instructive to develop the argument for resolution first. Let us start
by stating a slightly more detailed version of Theorem 1.1, but restricted to resolution, which is
what we will prove.

Theorem 3.1. Let k = k(n) be any integer-valued function such that k(n) ≤ n/4 log n. Then
there is a family of 3-CNF formulas {Fn,k}n≥1, where Fn,k has O(n2) variables and O(kn2)
clauses, such that:

6As briefly discussed above, this is how PCR was extended in [ABRW02] from the original definition of
polynomial calculus (PC) in [CEI96].

8

3 Upper and lower bounds in resolution

1. Fn,k has a tree-like resolution refutation in size O(kknk), width 2k + 1, and space 2k + 3;

2. any resolution refutation of Fn,k has size Ω
(
nk−1/(4k log n)k

)
.

Straightforward calculations show that if k(n) = O(nc) for c < 1, then the upper bound
is nO(k) and the lower bound is nΩ(k).

3.1 Definition of the formula

The CNF formulas we use to establish Theorem 3.1 are relativized versions of the pigeonhole
principle formulas encoding the contradictory statement that there is a way to choose k out
of n pigeons and send them to k − 1 pigeonholes so that every pigeon gets its own hole. More
formally, the formulas claim that there are (partial) functions p : [k]→ [n] and q : [n]→ [k − 1]
such that p is one-to-one and defined on [k], and q is one-to-one and defined on the range of p.
Let us first describe a straightforward CNF encoding of this claim with wide clauses that we
denote RPHPk,n

k−1. Once the general idea is clear, we transform this into a slightly more involved
3-CNF formula which is the formula we will work with.

The formula RPHPk,n
k−1 is over variables pu,v that encode the function p, qv,w that encode the

function q, and rv that encode a superset of the range of p. It consists of the following collection
of clauses:

pu,1 ∨ pu,2 ∨ · · · ∨ pu,n u ∈ [k], (3.1a)

pu,v ∨ pu′,v u, u′ ∈ [k], u 6= u′, v ∈ [n], (3.1b)

pu,v ∨ rv u ∈ [k], v ∈ [n], (3.1c)

rv ∨ qv,1 ∨ · · · ∨ qv,k−1 v ∈ [n], (3.1d)

rv ∨ rv′ ∨ qv,w ∨ qv′,w v, v′ ∈ [n], v 6= v′, w ∈ [k − 1]. (3.1e)

The clauses in (3.1a)–(3.1b) say that p maps [k] injectively into [n]; clauses (3.1c) encode the
range of p; and clauses (3.1d)–(3.1e) force q to be defined and injective on this range.

Next, we convert RPHPk,n
k−1 to a 3-CNF formula. This is done in the standard way by using

extension variables to break up the wide clauses in (3.1a) and (3.1d) and the 4-clauses in (3.1e).
For (3.1a) we obtain the clauses

pu,1 ∨ pu,2 ∨ yu,2 u ∈ [k], (3.2a)

yu,v ∨ pu,v+1 ∨ yu,v+1 u ∈ [k], v ∈ [2, n− 3], (3.2b)

yu,n−2 ∨ pu,n−1 ∨ pu,n u ∈ [k], (3.2c)

splitting up (3.1d) yields

rv ∨ qv,1 ∨ zv,1 v ∈ [n], (3.2d)

zv,w ∨ qv,w+1 ∨ zv,w+1 v ∈ [n], w ∈ [k − 4], (3.2e)

zv,k−3 ∨ qv,k−2 ∨ qv,k−1 v ∈ [n], (3.2f)

and the rest of the clauses are

pu,v ∨ pu′,v u, u′ ∈ [k], u 6= u′, v ∈ [n], (3.2g)

pu,v ∨ rv u ∈ [k], v ∈ [n], (3.2h)

rv ∨ rv′ ∨ rv,v′ v, v′ ∈ [n], v 6= v′, (3.2i)

rv,v′ ∨ qv,w ∨ qv′,w v, v′ ∈ [n], v 6= v′, w ∈ [k − 1]. (3.2j)

The 3-CNF formula consisting of the clauses in (3.2a)–(3.2j), which we will denote ERPHPk,n
k−1,

is the formula for which we will prove Theorem 3.1. It is easy to verify that this formula

9

NARROW PROOFS MAY BE MAXIMALLY LONG

has O(kn2) clauses over O(n2) variables. We note that if we did not insist on bringing the
clause size all the way down to 3, then we could get a 4-CNF formula with O(kn2) clauses over
O(kn) variables by not converting the 4-clauses in (3.1e) into the 3-clauses (3.2i) and (3.2j).
Our proof of Theorem 3.1 works for this formula as well after straightforward adjustments and
gives a slightly better lower bound expressed in terms of the number of variables.

3.2 Proof of the upper bound

Let us first describe how we can refute the formula ERPHPk,n
k−1 in resolution. In order to do

so, we consider all sequences of the form (v1, v2, . . . , vk, w1, w2, . . . , wk), where vu ∈ [n] and
wu ∈ [k − 1], and the corresponding clauses∨

u∈[k]

pu,vu ∨
∨
u∈[k]

qvu,wu
. (3.3)

We derive all such clauses from the axiom clauses of ERPHPk,n
k−1, and from these clauses we

obtain a contradiction. All of these derivations are efficient, so the size of the whole refutation
is dominated by the number of clauses in (3.3).

For each clause in (3.3) we are in one of two cases: either vu = vu′ holds for some u 6= u′, or
there must exist a pair vu 6= vu′ with wu = wu′ by the pigeonhole principle. In the former case,
the clause (3.3) is just a weakening of the axiom (3.2g), namely pu,v ∨ pu′,v with v = vu = vu′ .
In the latter case, we combine axioms pu,vu ∨ rvu and pu′,vu′ ∨ rvu′ from (3.2h), rvu ∨ rvu′ ∨ rvu,vu′
from (3.2i), and rvu,vu′ ∨ qvu,w ∨ qvu′ ,w from (3.2j), where w = wu = wu′ , to obtain the clause
pu,vu ∨ pu′,vu′ ∨ qvu,w ∨ qvu′ ,w. It is easy to see that (3.3) can be derived from this clause by
weakening. Since a constant number of clauses is involved in this derivation it requires only
constant space, and it is straightforward to verify that it can in fact be carried out by a tree-like
derivation in space 3 (i.e., keeping one clause in memory and resolving it with a sequence of
axioms).

The rest of the refutation consists of derivations of all prefixes of clauses of the form (3.3)
by backward induction. For the inductive step we assume that we are able to derive any prefix
clause of size t in clause space (2k − t) + 3 and show how to derive any prefix of size t− 1 in
clause space (2k− t+ 1) + 3. The refutation ends when we reach the prefix clause of size 0 (i.e.,
the empty clause) in clause space 2k + 3.

Suppose first that we can derive each clause of the form∨
u∈[k]

pu,vu ∨
∨

u∈[k∗−1]

qvu,wu
∨ qv∗,w∗ = A ∨ qv∗,w∗ (3.4)

for some k∗ ≤ k in clause space s for some positive integers (writing v∗ = vk∗ and w∗ = wk∗ as a
shorthand). We want to use the existence of such derivations to derive the clause A in space s+1.
To this end, start with the axiom pk∗,v∗ ∨ rv∗ and note that the literal pk∗,v∗ also appears in
the left-hand part of A in (3.4). We resolve this clause with the axiom rv∗ ∨ qv∗,1 ∨ zv∗,1 to get
pu,v∗ ∨ qv∗,1 ∨ zv∗,1. Keeping the latter clause in memory, we invoke a subderivation in space s
of the clause A∨ qv∗,1 and resolve to obtain A∨ zv∗,1. Continuing, assume that we have derived
A ∨ zv∗,w for some w ≥ 1. Then we resolve this clause with the axiom zv∗,w ∨ qv∗,w+1 ∨ zv∗,w+1

to obtain A ∨ qv∗,w+1 ∨ zv∗,w+1. Keeping the latter clause in memory, we derive A ∨ qv∗,w+1

using no more space than s+ 1 all in all, and then resolve to get A ∨ zv∗,w+1. When we reach
the clause A ∨ zv∗,k−3 we resolve it with the axiom zv∗,k−3 ∨ qv∗,k−2 ∨ qv∗,k−1 and then with the
inductively derived clauses A ∨ qv∗,k−2 and A ∨ qv∗,k−1 to obtain A. We point out again that
the clause space of this derivation is s+ 1.

After k steps of this backward induction we get to clauses of the form p1,v1
∨p2,v2

∨ . . .∨pk,vk .
To derive the empty clause we do k more steps of backward induction, mimicking the procedure

10

3 Upper and lower bounds in resolution

in the previous paragraph. Suppose that we have shown how to derive all clauses∨
u∈[k∗−1]

pu,vu ∨ pk∗,v∗ = A ∨ pk∗,v∗ (3.5)

for k∗ ≤ k and want to derive A. To do so, first resolve the axiom pk∗,1 ∨ pk∗,2 ∨ yk∗,2 with
the inductively derived clause A ∨ pk∗,1 and then with A ∨ pk∗,2 to get A ∨ yk∗,2. Suppose that
we have shown how to derive A ∨ yk∗,v in this way for v ≥ 2. In order to obtain A ∨ yk∗,v+1

we resolve yk∗,v ∨ pk∗,v+1 ∨ yk∗,v+1 with A ∨ yk∗,v and then with A ∨ pk∗,v+1. We iterate up to
A ∨ yk∗,n−2 and finally resolve the axiom yk∗,n−2 ∨ pk∗,n−1 ∨ pk∗,n with the clauses A ∨ yk∗,n−2,
A ∨ pk∗,n−1, and A ∨ pk∗,n to obtain A. After k steps of this second stage we reach the empty
clause and the refutation is complete. As before, the clause space goes up by an additive one
for every inductive step, so the clause space of the whole refutation is 2k + 3.

To analyze the size of the resolution refutation obtained in this way, consider the prefix tree
of the sequences (v1, v2, . . . , vk, w1, w2, . . . , wk). Each vertex of this tree corresponds to one of
the clauses A derived during the backward induction, with the empty clause at the root and
clauses (3.3) at the leaves. The length of the derivation of each clause is linear in the number
of children, and in addition we derived the leaves with a constant number of steps. Therefore
we can charge a constant amount of steps per vertex. The size of the tree is O(kknk), and it
follows that this is also the size of the refutation. Furthermore, the refutation is tree-like since
no intermediate clause is used more than once. One can also observe that the width of the
refutation is 2k+1 and reaches this maximum at the induction step from sequences of length 2k
to sequences of length 2k − 1.

3.3 Proof of the lower bound for resolution

As discussed in Section 1.3, we use a random restriction argument to prove our size lower bound
for resolution refutations of the formula ERPHPk,n

k−1. We define a distribution D on partial
assignments ρ by picking a uniformly random subset S of k elements from [n] and fixing an
arbitrary bijection ψ : [k]→ S, and then letting ρ assign values to variables as follows:

• rv = > if v ∈ S (we say that v is picked in this case) and rv = ⊥ otherwise;

• rv,v′ = rv ∧ rv′ for all v 6= v′;

• pu,ψ(u) = > and pu,v = ⊥ for all u ∈ [k] and all v 6= ψ(u);

• yu,v for all u and v are set arbitrarily so as to satisfy the clauses (3.2a)–(3.2c);

• qv,w and zv,w are left unset for all v ∈ S and all w;

• qv,w = bv and zv,w = bv for all v ∈ [n] \ S and all w ∈ [k − 1], where bv ∈ {⊥,>} is chosen
uniformly and independently at random for every v ∈ [n] \ S.

Note that regardless of the choice of S the restricted formula is just a 3-CNF version of the
pigeonhole principle formula over k pigeons and k− 1 holes. We remark that the reason we can
set qv,w and zv,w randomly and independently for different v /∈ S is that the variables rv,v′ are
“guarding” the clauses (3.2j), which would otherwise be falsified with high probability. This will
be an important technical point in our argument when we show that with high probability such
restrictions remove or at least significantly shrink all wide clauses (which will then allows us to
obtain impossibly narrow refutations of the 3-CNF PHP formulas).7

For v ∈ [n], let us say that the variables {qv,1, . . . , qv,k−1, zv,1, . . . , zv,k−1} mention the pi-
geon v. We say that a clause (or term) mentions v if it contains some variable in this set and

7Indeed, proving resolution size lower bounds for relativized PHP formulas without “guard variables” in the
clauses (3.2i) and (3.2j) (or for the wide version without the “guard variables” in the clauses (3.1e)) is an open
problem as mentioned in [DM14].

11

NARROW PROOFS MAY BE MAXIMALLY LONG

define the pigeon-width to be the number of pigeons mentioned. The next lemma describes the
effect of random restrictions ρ from D on clauses (or terms) depending on their pigeon-width.
Namely, a sufficiently wide clause, i.e., mentioning a lot of pigeons, is satisfied by the random
restriction with high probability, whereas a narrower clause may not have its truth value fixed
by the restriction but will with high probability contain few pigeons afterwards.

Lemma 3.2. Let k, `, n be natural numbers such that n ≥ 16 and ` ≤ k ≤ n/4 log n. Let A

be either a clause or term over the variables of ERPHPk,n
k−1 and let ρ be a random restriction

sampled from the distribution D as defined above. Then the pigeon-width of A�ρ is less than `

with probability at least 1− (4k log n)k/n`.

Proof. Let us assume that A is a clause—the proof for terms (which will be used for PCR and
Sherali-Adams) is completely analogous. Let v1, . . . , vr be the pigeons mentioned in A sorted in
some order and let a1, . . . , ar be a sequence of literals such that ai witnesses that A mentions vi.

If r > 2k log n, then the probability that the clause A is not satisfied by the restriction is at
most

Pr
[
ρ(ai) 6= > for all i = 1, . . . , r

]
≤ Pr

[
ρ(ai) 6= > for all i = 1, . . . , d2k log ne

]
=

d2k logne∏
i=1

Pr
[
ρ(ai) 6= >

∣∣ρ(aj) 6= > for j < i
]

≤
d2k logne∏
i=1

Pr
[
ρ(ai) 6= >

∣∣vj /∈ S for j < i
]

(3.6)

≤
d2k logne∏
i=1

(
1

2
+

k

n− i+ 1

)

<

(
5

8

)2k logn

<
1

nk
.

To see this, note that the event ρ(ai) 6= > occurs either if the pigeon vi is picked or if the
literal ai is set to the wrong value. The first of these events is most probable if no pigeon so
far was picked. The second event can occur only if the first event fails and, conditioned on this,
its probability is independent of the conditioning on the other pigeons so far. This explains
why ρ(aj) 6= > is replaced by vj 6∈ S in the conditioning in the second inequality. For the
next inequality, assuming that no pigeon v1, . . . , vi−1 has been picked before vi, the conditional
probability of vi being included in S is k/(n − i + 1), and is less otherwise. If vi 6∈ S instead,
then ai gets the wrong value with probability 1/2. The final inequalities hold because the ratio
k/(n− d2k log ne+ 1) is at most 1/(2 log n) when k ≤ n/4 log n, and therefore it is at most 1/8
for n ≥ 16.

If instead the number of pigeons mentioned by A is r ≤ 2k log n, we want to bound the
probability that there are at least ` pigeons mentioned in A that are chosen in S and hence
survive. The choices of S with exactly i pigeons mentioned in A are

(
r
i

)(
n−r
k−i
)
. Considering all

possible intersections of size at least ` between the set S and the r pigeons mentioned in A, we
obtain that the probability of ` surviving pigeons is at most

k∑
i=`

(
r

i

)(
n− r
k − i

)(
n

k

)−1

≤ k
(
b2k log nc

k

)(
n

k − `

)(
n

k

)−1

≤ k(2k log n)k

k!
· n!

(k − `)!(n− k + `)!
· (n− k)!k!

n!
(3.7)

≤ k(2k log n)k · 1

(k − `)!
· 1

(n− k)`
<
k(2k log n)k

(n− k)`
.

12

3 Upper and lower bounds in resolution

To finish the computation we use that n ≥ 16 and k ≤ n/4 log n to get that k ≤ n/16, and we
observe that k(16/15)` ≤ 2k for every 1 ≤ ` ≤ k. We obtain that

k(2k log n)k

(n− k)`
≤ k(2k log n)k

(15n/16)`
= k(16/15)` · (2k log n)k

n`
≤ (4k log n)k

n`
. (3.8)

This concludes the proof.

We can use Lemma 3.2 to show that if we hit a sufficiently short resolution refutation of
ERPHPk,n

k−1 with a random restriction ρ sampled from the distribution D, then in the restricted
refutation all clauses are likely to have small pigeon-width. The reason this is useful is that
the distribution D is constructed so that the restricted formula is just the standard pigeonhole
principle formula over k pigeons and k−1 holes, or rather, a 3-CNF version of it (up to renaming
of variables). To spell this out explicitly, after renaming the k pigeons in [n] chosen by ρ to
1, . . . , k, what remains is the following collection of clauses, which we will denote EPHPk

k−1:

qv,1 ∨ zv,1 v ∈ [k], (3.9a)

zv,w ∨ qv,w+1 ∨ zv,w+1 v ∈ [k], w ∈ [k − 4], (3.9b)

zv,k−3 ∨ qv,k−2 ∨ qv,k−1 v ∈ [k], (3.9c)

qv,w ∨ qv′,w v, v′ ∈ [k], v 6= v′, w ∈ [k − 1]. (3.9d)

But the formula EPHPk
k−1 can be shown to require almost maximal pigeon-width in resolution.

This result is implicit in several previous papers on the proof complexity of pigeonhole prin-
ciple formulas, but we write down the formal statement as a lemma and provide a proof for
completeness.

Lemma 3.3. Every resolution refutation of the formula EPHPk
k−1 consisting of the clauses

(3.9a)–(3.9d) has pigeon-width at least k − 1.

Proof. We use a game argument in the style of [Pud00, AD08] adapted to the notion of pigeon-
width. The game is played between a prosecutor and a defendant. At each step of the game the
prosecutor queries the defendant for the value of a variable of EPHPk

k−1 and stores the answer
in his record. The prosecutor is also allowed to erase variable assignments from his record after
any query, but if so the defendant can answer differently next time she is asked about an erased
variable. The goal of the prosecutor is to force the defendant to falsify a clause from EPHPk

k−1,
while the goal of the defendant is to answer queries without falsifying any axiom clause in this
formula.

To establish the lemma, it is sufficient to show that the prosecutor cannot win unless at some
point he holds a record that mentions k pigeons. The reason for this is that if there exists a
resolution refutation π of pigeon-width ` < k− 1, then the prosecutor can use such a refutation
to construct a strategy that never mentions more than `+ 1 pigeons.

To build a winning strategy from a refutation π, the prosecutor walks backwards through the
associated graph Gπ from the final empty clause all the way to some axiom clause. The invariant
maintained is that at each step the current assignment on record is the minimal falsifying
assignment for the clause currently visited in Gπ. At the beginning of the game the empty
record corresponds to the empty clause in the refutation. If the current clause was obtained by
resolution, the prosecutor queries the resolved variable (which might temporarily increase the
number of pigeons on record by 1), moves to the premise falsified by the answer, and then forgets
all assignments not needed to falsify that clause. For a weakening step, the prosecutor just needs
to forget variables. The prosecutor wins when the game reaches a source vertex in Gπ (if not
earlier), since by the invariant the corresponding axiom clause is falsified by the assignment on
record at that point.

13

NARROW PROOFS MAY BE MAXIMALLY LONG

Switching to the lower-bound perspective, let us now briefly describe a defendant strategy
that works against prosecutors mentioning less than k pigeons. The defendant privately keeps
a partial matching of the pigeons mentioned in the current record of the prosecutor into holes,
making sure that this mapping is compatible with the partial assignment in his record. If
the prosecutor asks about a variable which mentions a pigeon already in the domain of the
defendant’s partial matching, she answers consistently with her matching. If the prosecutor
erases all variables mentioning a pigeon, the defendant removes that pigeon from the partial
mapping, freeing up the corresponding hole for later reuse. If the prosecutor queries a variable
that mentions a new pigeon, we are in one of two cases: either there is at least one free hole,
or the record mentions k − 1 pigeons. In the first case the defendant assigns the new pigeon to
some free hole and updates her partial matching accordingly. In the second case the defendant
has achieved her goal—although she is now forced to falsify a clause of EPHPk

k−1 and loses, the
prosecutor was able to win only by compiling a record that mentions k pigeons.

Putting all the pieces together we can now prove the lower bound in Theorem 3.1. Namely,
let π be a resolution refutation of ERPHPk,n

k−1 of size S. Hit π with a random restriction ρ
distributed according to D. Since resolution refutations are preserved under restrictions, π�ρ is

a refutation of ERPHPk,n
k−1�ρ which, as discussed above, is EPHPk

k−1 after renaming of variables.

By Lemma 3.3, this refutation must have pigeon-width at least k−1 with probability 1. On the
other hand, using Lemma 3.2 with ` = k− 1 and taking a union bound over all clauses in π, the
probability that this happens is at most S · (4k log n)k/nk−1 for large enough n. We can hence
conclude that S ≥ nk−1/(4k log n)k, and the proof of Theorem 3.1 is complete.

4 Algebraic and semialgebraic proof systems

Let us now show how the size lower bound for resolution in Section 3 can be generalized to poly-
nomial calculus resolution (PCR) and Sherali-Adams resolution (SAR). The overall structure
of the size lower bound proof is very similar to that for resolution in that we first establish a
lower bound on a parameter analogous to the pigeon-width in Section 3, which we call pigeon-
degree for PCR and pigeon-rank for SAR, and then plug this bound into the random restriction
argument as in the proof of Lemma 3.2.

In this section, we also discuss how upper bounds for PCR and SAR analogous to those
for resolution in Theorem 1.1 can be established. The upper bound in resolution more or less
immediately carries over to PCR, in the sense that it is very easy to show that a resolution
refutation can be simulated in PCR in essentially the same size and with PCR degree matching
the resolution width. For SA and SAR it requires a bit more work to construct such efficient
simulations and we discuss it in some detail below. It should be noted that while PCR degree
and SAR rank upper bounds O(k) are sufficient to obtain refutation of size nO(k) in both proof
systems, using explicit simulations like the ones discussed in this section gives better bounds.

4.1 Lower bound on degree for polynomial calculus resolution

In a natural generalization of the terminology in Section 3, we say that not only the variables qv,w
and zv,w of EPHPk

k−1 but also their twins qv,w and zv,w mention the pigeon v. The pigeon-degree
of a monomial is the number of pigeons that are mentioned by its variables, the pigeon-degree of
a polynomial is the maximum pigeon-degree of its monomials, and the pigeon-degree of a PCR
refutation of EPHPk

k−1 is the maximum pigeon-degree of the polynomials in the refutation. The
following lower bound for pigeon-degree of PCR refutations is the analogue of Lemma 3.3 for
resolution.

Lemma 4.1. Every PCR refutation of EPHPk
k−1 has pigeon-degree at least dk−1

2 e.

14

4 Algebraic and semialgebraic proof systems

Proof. We prove the lower bound by studying a different encoding APHPk
k−1 of the pigeonhole

principle for k pigeons and k − 1 holes introduced by [Raz98], which we will described shortly.
Given any PCR refutation of EPHPk

k−1 as defined in (3.9a)–(3.9d) in which all monomials men-

tion at most d pigeons, we show how to transform it into a refutation of degree d+1 of APHPk
k−1.

Since APHPk
k−1 requires degree strictly larger than dk−1

2 e by Theorem 3.9 in [IPS99], we can

conclude that d ≥ dk−1
2 e and the lemma follows.

The alternative formulation APHPk
k−1 is defined on variables xv,w for v ∈ [k] and w ∈ [k−1],

where xv,w = 1 means that pigeon v sits in hole w. We stress that this interpretation of the
variables is the opposite of the one we use for EPHPk

k−1. Also, APHPk
k−1 is not a (translation

of a) CNF formula but consists of the following polynomials:

1−
∑

w∈[k−1]

xv,w v ∈ [k], (4.1a)

xv,wxv′,w w ∈ [k − 1], v, v′ ∈ [k], v 6= v′, (4.1b)

xv,wxv,w′ v ∈ [k], w,w′ ∈ [k − 1], w 6= w′. (4.1c)

To obtain a degree-(d+1) refutation for APHPk
k−1, the first step is to apply a substitution δ

to the variables in the refutation in pigeon-degree d of EPHPk
k−1. For q-variables we define

δ(qv,w) = 1 − xv,w and δ(qv,w) = xv,w, and for z-variables we let δ(zv,w) = 1 −
∑

j>w xv,j and

δ(zv,w) = 1−
∑

j≤w xv,j . This substitution transforms the refutation of EPHPk
k−1 into a sequence

of polynomials over the variables in APHPk
k−1. This is not yet a valid refutation, however, and

in order to deal with this we need to show how to derive each substituted polynomial in the
sequence. How to do so depends on what rule was used to derive the polynomial before the
substitution.

For inference steps, if we derived xP from P then δ(xP) = δ(x)δ(P) can be derived from
δ(P) by a sequence of multiplications and linear combinations, and if the polynomial was derived
via a linear combination, then the same derivation step is valid for the substituted polynomials.

If P is an application of the Boolean axiom x2 − x to a q-variable or z-variable, then δ(P)
can be derived from Boolean axioms combined with polynomials (4.1c). Applications of com-
plementarity axioms are either vacuous (for q-variables) or reduce to (4.1a) (for z-variables).

Finally, we need to show how to derive δ(P) if P is obtained from one of the clauses
in (3.9a)–(3.9d). We describe how to do this for P = zv,wqv,w+1zv,w+1 as in (3.9b); the other
cases are very similar. We have

δ(zv,wqv,w+1zv,w+1) =

1−
∑
j≤w

xv,j

(1− xv,(w+1)

)1−
∑

j>w+1

xv,j

= 1−

∑
j∈[k−1]

xv,j +
∑

j 6=j′, j≤w+1,
j′≥w+1

xv,jxv,j′ −
∑

j<w+1,
j′>w+1

xv,jxv,(w+1)xv,j′ ,
(4.2)

where 1 −
∑

j∈[k−1] xv,j is (4.1a) and all monomials of degree two or three can be derived

from (4.1c). Thus, δ(zv,wqv,w+1zv,w+1) can be derived from APHPk
k−1.

This shows how we can apply the substitution δ to a refutation of EPHPk
k−1 to obtain

a refutation of APHPk
k−1. The substitution exchanges variables indexed by the pigeon v for

degree-1 polynomials which mention just v, and therefore each monomial of this refutation
mentions at most d pigeons as well. We then postprocess this refutation of APHPk

k−1 as follows:
every time a polynomial P of degree d + 1 is derived, we remove all its monomials of degree
larger than d and we use the resulting polynomial in place of P in the rest of the proof. We
can eliminate monomials of degree larger than d because they mention at most d pigeons, and
so either they are divisible by an axiom (4.1c) or they contain a squared variable. After this

15

NARROW PROOFS MAY BE MAXIMALLY LONG

postprocessing phase the refutation has a polynomial of degree at most d for each polynomial
in the original refutation, plus there are small derivations of degree d+ 1 for the cancellations.
Thus the (total) degree is at most d+ 1 and the lemma follows.

4.2 Size and rank upper bounds for Sherali-Adams refutations

Let us next switch focus to upper bounds and show that SAR can simulate resolution refutations
efficiently in term of size and rank. We remark that a similar simulation is given in [DMR09], but
since that paper uses a slightly different definition of Sherali-Adams we give a full description
of the simulation here for completeness.

We start by introducing notation for two polynomial forms which we will use to represent
clauses. For any pair of sets of propositional variables Y, Z, Y ∩ Z = ∅, we let

S(Y, Z) =
∑
y∈Y

y +
∑
z∈Z

z (4.3)

and

M(Y, Z) =
∏
y∈Y

y
∏
z∈Z

z . (4.4)

Consider a clause C =
∨
y∈V +

C
y∨
∨
z∈V −C

z where V +
C and V −C are the sets of variables appearing

positively and negatively in C, respectively. Then we define

S
(
C
)

= S(V +
C , V

−
C) (4.5)

and

M
(
C
)

= M(V +
C , V

−
C) . (4.6)

Observe that for any assignment of the variables to > = 1 or ⊥ = 0 it holds that S(C)− 1 ≥ 0
and −M(C) ≥ 0 if and only if C is satisfied. The former, additive inequality is how clauses are
translated to inequalities as discussed in Section 2, but for our simulation of resolution by SAR
we will need to work with the latter, multiplicative version.

The following three lemmas show how to efficiently simulate the steps in a resolution deriva-
tion.

Lemma 4.2 (Simulation of axiom). For a clause C of width w the inequality −M(C) ≥ 0
has a derivation in SAR of rank w + 1 and size O(w2) from the inequality S(C)− 1 ≥ 0.

Proof. If C is the empty clause then the claim is obvious since in that case −M(C) = S(C)− 1.
Let C be non-empty and assume for simplicity that it has a positive literal x. Then C has the
form

x ∨
∨
y∈Y

y ∨
∨
z∈Z

z (4.7)

with |Y |+|Z| < w. By multiplying S(C)−1 ≥ 0 by M(Y, Z) we obtain the polynomial inequality

xM(Y,Z) +
∑
y∈Y

yM(Y,Z) +
∑
z∈Z

zM(Y,Z)−M(Y,Z) ≥ 0 . (4.8)

For each y ∈ Y we can derive

(1− y − y) · yM(Y \ {y}, Z) + (y2 − y) ·M(Y \ {y}, Z) =

− y · y ·M(Y \ {y}, Z) = −y ·M(Y,Z) . (4.9)

16

4 Algebraic and semialgebraic proof systems

In essentially the same way we can derive

− zM(Y, Z) ≥ 0 (4.10)

for each z ∈ Z. The inequality

−M(C) = −xM(Y,Z) ≥ 0 (4.11)

is now the sum of inequality (4.8), all inequalities of the form (4.9) and (4.10) for all y ∈ Y and
z ∈ Z, and of the inequality

(1− x− x)M(Y,Z) ≥ 0 . (4.12)

This SAR derivation has size O(w2) and rank w.

Lemma 4.3 (Simulation of weakening). For clauses A ⊆ B of width at most w the inequality

M(A)−M(B) ≥ 0

has a derivation in SAR of rank w and size O(w2).

Proof. Consider the decomposition M(B) = M(A) ·M(B \ A), and let us write the monomial
M(B \ A) as

∏`
i=1 ai, where ai are literal variables in SAR and ` = |B \ A|. By a telescoping

sum we derive

∑̀
j=1

M(A)(1− aj)
j−1∏
i=1

ai = M(A)

(
1−

∏̀
i=1

ai

)
= M(A)−M(B) (4.13)

which establishes the lemma.

Lemma 4.4 (Simulation of resolution step). Let A and B be clauses in which the variable x
does not appear and let w be the width of A ∨B. Then the inequality

M(A ∨ x) +M(B ∨ x)−M(A ∨B) ≥ 0

has a derivation in SAR of rank w + 1 and size O(w2).

Proof. Using Lemma 4.3 twice we derive the two inequalities M(A ∨ x) −M(A ∨ B ∨ x) ≥ 0
and M(B ∨ x)−M(A ∨B ∨ x) ≥ 0. Then we derive (x+ x− 1)M(A ∨B) ≥ 0 from the axiom
x+ x− 1 ≥ 0. This is the same as

M(A ∨B ∨ x) +M(A ∨B ∨ x)−M(A ∨B) ≥ 0 . (4.14)

The inequality that we want to prove is the sum of these three inequalities just derived. This
SAR derivation has size O(w2) and rank w + 1.

Remark 4.5. In Lemmas 4.2, 4.3 and 4.4 we gave the SAR simulations of the steps of a resolution
refutation. To get a simulation in SA it is sufficient to substitute (1− x1), . . . , (1− xn) for the
variables x1, . . . , xn. After the substitution we obtain a valid SA proof of the corresponding
inequalities of the same rank, but potentially of larger size. Notice that the proofs of the
inequalites in Lemmas 4.2, 4.3 and 4.4 have the form of Equation (2.1), with O(w) axioms, each
of them multiplied by a degree w + O(1) polynomial. Hence the size of each of these proofs is
at most O(w2w).

Now we can show how resolution refutations can be efficiently simulated in the SA and SAR
proof systems.

Lemma 4.6. If a CNF formula F has a resolution refutation of width w and length L, then it
has an SA refutation of rank w+ 1 and size O

(
w2wL

)
and an SAR refutation of rank w+ 1 and

size O
(
w2L

)
.

17

NARROW PROOFS MAY BE MAXIMALLY LONG

Proof. Let π = (C1, C2, . . . , CL) be a resolution refutation of F where all clauses have width at
most w. Let us focus first on the SAR simulation. For each clause Ci in the refutation we derive
an inequality as follows:

1. If Ci is an axiom clause, then we derive −M(Ci) ≥ 0.

2. If Ci is obtained by weakening from Cj , then we derive M(Cj)−M(Ci) ≥ 0.

3. If Ci is obtained by resolving Cj and Ck, then we derive M(Cj) +M(Ck)−M(Ci) ≥ 0.

All of these inequalities have SAR derivations of rank w+ 1 and size O
(
w2
)

by Lemmas 4.2, 4.3
and 4.4 (where we recall that the encoding of an axiom clause C in the SAR proof system is
S(C)− 1 ≥ 0, as required by Lemma 4.2).

Now we have a sequence of inequalities Q1 ≥ 0, Q2 ≥ 0, . . . , QL ≥ 0, where the inequality
Qi ≥ 0 corresponds to the clause Ci as explained above. Observe that any positive combination∑L

i=1 αiQi ≥ 0 has a SAR derivation of rank w + 1 and size O(L · w2). In order to conclude
the proof of the lemma, we just need to argue that there are positive weights αi such that∑

i αiQi = −1.

The intuition is that if Ci is obtained by weakening from Cj then adding Qi = M(Cj)−M(Ci)
will cancel the term −M(Cj) in Qj representing Cj , and if Ci is inferred by resolution from Cj
and Ck, then adding Qi = M(Cj)+M(Ck)−M(Ci) will cancel the terms −M(Cj) and −M(Ck)
representing Cj and Ck inQj andQk, respectively. In the end, all monomials representing clauses
are cancelled and the only term remaining is −1. However, if a clause is used in several different
applications of the resolution or weakening rules we need to set the weights so that it is cancelled
the correct number of times.

To do so, consider the DAG of the resolution refutation oriented from the initial clauses
towards the empty clause. We assign a weight to each clause Ci in this DAG inductively: the
empty clause CL gets weight 1, and if all immediate successors of a clause have already been
assigned weights, then the clause gets the sum of the weights of its immediate successors as
the weight for itself. The value of αi is then the weight assigned to the clause Ci in this way.
To verify that

∑
i αiQi = −1, notice that every polynomial M(Ci) has negative coefficient in

the inequality Qi ≥ 0 and positive one in every Qj ≥ 0 where Ci appears as a premise in the
derivation of Cj . By construction the coefficient of each M(Ci) in the final sum is zero unless
i = L. Since αL = 1, the final sum is equal to −M(∅, ∅) which is −1.

We can obtain a simulation in the SA proof system instead by substituting (1−xi) for every
negative variable x in the SAR simulation described above. Then we can reason as in Remark 4.5
to see that the the size and rank bounds claimed for SA hold. The lemma follows.

4.3 Lower bound on rank for Sherali-Adams resolution

The pigeon-rank of a Sherali-Adams resolution refutation of EPHPk
k−1 of the form described

in Equation (2.1) is the maximum pigeon-degree of the polynomials to which the formulas∏
i∈It xi ·

∏
j∈Jt(1− xj) · Pt expand.

In order to prove a lower bound on pigeon-rank it is useful to generalize this concept to a
more abstract notion of rank for SA proofs. Let V be a set of variables and let H be a non-
empty downward-closed family of subsets of V , i.e., such that if Y belongs to H and X ⊆ Y ,
then X also belongs to H. We say that a polynomial (or polynomial inequality) is H-bounded ,
or has H-bounded rank , if H contains the variable set of every monomial in it. We say that
an SA derivation as in (2.1) has H-bounded rank if the polynomial to which each formula∏
i∈It xi ·

∏
j∈Jt(1−xj) ·Pt expands is H-bounded. Observe that if an SA derivation has rank r,

then it has H-bounded rank where H is the family of all subsets of at most r variables. Similarly,
if an SA refutation of EPHPk

k−1 has pigeon-rank r, then it has H-bounded rank where H is the
family of all subsets of variables that mention at most r pigeons.

18

4 Algebraic and semialgebraic proof systems

Let P be a set of polynomial inequalities over the variable set V . We say that P admits
an H-consistent family of distributions if there exists a collection of probability distributions
{ΠX}X∈H over assignments {0, 1}X as X ranges over H that satisfy the following properties:

H1. For every variable set X ∈ H and every polynomial inequality Q ≥ 0 in P that has all its
variables in X, it holds that all assignments in the support of ΠX satisfy Q ≥ 0.

H2. For every pair of variable sets X,Y ∈ H such that X ⊆ Y and for every assignment
µ ∈ {0, 1}X it holds that

ΠX(µ) =
∑

η∈{0,1}Y
η⊇µ

ΠY (η) , (4.15)

where η ranges over all assigments to Y that are consistent with µ.

In the definition above and elsewhere, ΠX(µ) denotes the probability assigned to µ by the
distribution ΠX . We will use such H-consistent families of distributions to establish the Sherali-
Adams rank lower bound that we need. Before stating the formal lemma that we will appeal
to, let us try to provide some intuition.

If the set of polynomial inequalities P were satisfiable it would not be hard to come up
with a family of probability distributions with properties H1 and H2: we could just fix a global
probability distribution over all satisfying assignments, and then let ΠX be the corresponding
marginal distribution on any set of variables X. For an unsatisfiable set P there is no such
globally consistent family, but if we can find an H-consistent family of distributions for P,
then P will still “look satisfiable” to any derivation that does not go “outside of H.” Whenever
we look at a specific inequality Q ≥ 0 in P, property H1 yields a “marginal distribution” that
satisfies the inequality. Furthermore, property H2 ensures that such “marginal distributions”
over different sets look locally consistent. The following lemma makes this precise.

Lemma 4.7. Let H be a downward-closed family of sets of variables and let P be a set of
H-bounded polynomial inequalities. If P has an SA refutation of H-bounded rank, then P does
not admit an H-consistent family of distributions.

Proof. Let us think of each X in H as a new formal variable. For each monomial M , let XM

denote the set of variables in M . If R is an H-bounded polynomial, let us write R̂ to denote
the linear form on the variables H obtained from R by replacing each term c ·M by c · XM

and collecting all terms of the same variable into a single term by adding their coefficients
(which could result in cancellations of terms). Note that R̂ can also be thought of as the
multilinearization of R, namely the polynomial obtained from R by removing all higher powers
in the monomials to get M̂ = XM instead of M . We write 1Y to denote the assignment
{x 7→ 1 : x ∈ Y } to a set of variables Y , and for a monomial M (multilinear or not) we define
1M = 1XM

.
Let P = {Q1 ≥ 0, . . . , Qm ≥ 0} be a set of polynomial inequalities and suppose that there

exists an SA refutation of P of the form (2.1) that has H-bounded rank. Let us write Rt
for the polynomial to which the formula

∏
i∈It xi ·

∏
j∈Jt(1 − xj) · Pt expands for 1 ≤ t ≤ τ .

The assumption that the refutation has H-bounded rank means that every monomial in the
polynomial Rt is H-bounded.

Assume for contradiction that P admits an H-consistent family {ΠX}X∈H . Let h : H → R
be the real-valued assignment defined by

h(X) = ΠX(1X) , (4.16)

i.e., the probability of the all-ones assignment to the variables in X according to the distribu-
tion ΠX , and extend h to all linear forms on the variables X ∈ H linearly; i.e., if L =

∑
i ciXi

is such a linear form with coefficients ci and variables Xi, then h(L) =
∑

i ci · h(Xi).

19

NARROW PROOFS MAY BE MAXIMALLY LONG

We claim that h satisfies h
(
R̂t
)
≥ 0 for every 1 ≤ t ≤ τ . By linearity it then further follows

that h
(∑τ

t=1 αtR̂t
)

=
∑τ

t=1 αt · h
(
R̂t
)
≥ 0, where all αt ≥ 0, which is a contradiction since∑τ

t=1 αtRt = −1 and hence also
∑τ

t=1 αtR̂t = −1.

Let us prove that the assignment h as defined in (4.16) satisfies every inequality R̂t ≥ 0 for
1 ≤ t ≤ τ . We do so by establishing a stronger claim: if Xt is the set of variables in Rt and EXt

denotes expectation under the distribution ΠXt , then the following holds:

A1. The assignment h : H → R satisifies h
(
R̂t
)

= EXt [Rt].

A2. Every assignment in the support of ΠXt satisfies the inequality Rt ≥ 0.

To see that A1 holds, we evaluate each monomial M in Rt separately to get

h
(
M̂
)

= h(XM) = ΠXM
(1M) =

∑
η∈{0,1}Xt

η⊇1M

ΠXt(η) = EXt [M] . (4.17)

The first and second equalities in (4.17) hold by definition; the third one follows from property H2
of H-consistent families of distributions; and the final equality is true since a monomial M
evaluates to 1 under an assignment η ∈ {0, 1}Xt if and only if η is compatible with 1M . Adding
over all terms we get h

(
R̂t
)

= EXt [Rt] by applying linearity of h on the left and linearity of
expectation on the right.

To verify the claim in A2 consider an assignment η in the support of ΠXt . Substituting the
values assigned by η to the variables of Rt, we deduce that

η(Rt) = η

∏
i∈It

xi ·
∏
j∈Jt

(1− xj) · Pt

 =
∏
i∈It

η(xi) ·
∏
j∈Jt

(1− η(xj)) · η(Pt) ≥ 0 . (4.18)

To see this, it suffices to observe that all factors in the final expression in (4.18) are non-negative.
First, regardless of what the assignment η is, we clearly have η(x) ∈ {0, 1} for any variable x in
its domain and hence η(xi) ≥ 0 and 1 − η(xj) ≥ 0. Second, from property H1 we know that if
Pt is one of the polynomials Qi in P then η(Pt) ≥ 0 since η is in the support of ΠXt . And third,
if Pt is one of the axioms x2

i − xi or xi − x2
i then η(Pt) = 0 since the range of η is {0, 1}, and if

Pt is the axiom 1 then of course η(Pt) = 1 ≥ 0. This concludes the proof of the lemma.

Dantchev et al. [DMR09] proved a rank lower bound on SAR refutations of PHPk
k−1. Let us

show how this result can be extended to a pigeon-rank lower bound for EPHPk
k−1.

Lemma 4.8. Every SAR refutation of EPHPk
k−1 has pigeon-rank at least k.

Proof. First note that by replacing each variable x by 1− x we transform an SAR proof into an
SA proof of the same pigeon-rank. Thus, by Lemma 4.7 it will suffice to build an H-consistent
family of distributions where H is the family of sets of variables that mention up to k−1 pigeons.

Intuitively, it is clear what the distributions should be: since there is room for up to
k − 1 pigeons in the pigeonholes, we can just choose any one-to-one mapping uniformly at ran-
dom and set the Boolean variables accordingly. Formally, for every set X of variables that
mention at most k − 1 pigeons we define the distribution ΠX as follows:

1. Let A be the set of at most k − 1 pigeons that are mentioned by the variables in X.

2. Let ϕ be a uniformly chosen one-to-one map ϕ : A→ [k − 1].

3. For qv,w ∈ X set qv,w = 1 if ϕ(v) = w, and qv,w = 0 otherwise.

4. For zv,w ∈ X set zv,w = 1 if ϕ(v) > w, and zv,w = 0 otherwise.

20

4 Algebraic and semialgebraic proof systems

Let us verify that a family of distributions defined in this way satisfy properties H1 and H2.
That property H1 is satisfied is immediate by construction. If C is a clause in EPHPk

k−1

with all variables contained in X, then all assignments in the support of ΠX satisfy C since they
encode one-to-one mappings (with the extension variables zv,w set appropriately).

Property H2 is also straightforward to verify. Fix any sets X and Y such that X ⊆ Y
and that mention up to k − 1 pigeons and any assignment µ ∈ {0, 1}X . Let A and B be
the sets of at most k − 1 pigeons that are mentioned in X and Y , respectively, and note that
A ⊆ B. Let us write a = |A| and b = |B|. By construction, the assignments η ∈ {0, 1}Y in the
support of ΠY are in bijective correspondence with the one-to-one mappings ψ : B → [k − 1]
and the same holds for µ in the support of ΠX vis-a-vis ϕ : A → [k − 1]. Moreover, each
one-to-one mapping ϕ : A → [k − 1] can be chosen in (k − 1)(k − 2) · · · (k − a) =

(
k−1
a

)
a!

ways, and for a fixed ϕ the number of one-to-one mappings ψ : B → [k − 1] that extend ϕ is
(k − a− 1)(k − a− 2) · · · (k − b) =

(
k−1−a
b−a

)
(b− a)!. Since all involved distributions are uniform

over their support, for µ ∈ {0, 1}X in the support of ΠX we have

∑
η∈{0,1}Y
η⊇µ

ΠY (η) =
∑

η : ΠY (η)>0
η⊇µ

1(
k−1
b

)
b!

=

(
k−1−a
b−a

)
(b− a)!(

k−1
b

)
b!

=
1(

k−1
a

)
a!

= ΠX(µ) (4.19)

and for µ outside the support of ΠX the whole summation in (4.19) is zero. This finishes the
proof of the lemma.

4.4 Size bounds for PCR and SAR refutations

Given the lower bounds on pigeon-degree and pigeon-rank for refuting EPHPk
k−1 in Lemmas 4.1

and 4.8, respectively, the size lower bounds on refutations of ERPHPk,n
k−1 in polynomial calculus

resolution and Sherali-Adams resolution are straightforward adaptions of the lower bound for
resolution in Theorem 3.1. We write down the details here for completeness, starting with the
PCR bounds.

Theorem 4.9. Let k = k(n) be any integer-valued function such that k(n) ≤ n/4 log n. Then

ERPHPk,n
k−1 can be refuted in PCR in size O

(
kk+1nk

)
, and any PCR refutation requires size

Ω
(
nd(k−1)/2e/(4k log n)k

)
.

Proof. Fix any PCR refutation of ERPHPk,n
k−1 and let M be the set of monomials appearing

in it. We hit the refutation with a random restriction ρ distributed according to D. Since
restrictions preserve PCR derivations we obtain a refutation of ERPHPk,n

k−1�ρ, which as before

is EPHPk
k−1 after renaming of variables.

Assume that |M| < nd(k−1)/2e/(4k log n)k. Applying Lemma 3.2 with ` =
⌈
k−1

2

⌉
and taking a

union bound over the monomials inM, we conclude that there must be at least one restriction ρ
in the support of D such that the pigeon-degree of π�ρ is at most

⌈
k−1

2

⌉
− 1 if n is large enough.

This contradicts Lemma 4.1, and hence |M| must be at least nd(k−1)/2e/(4k log n)k.
To obtain the upper bound we start with the resolution refutation in Theorem 3.1. It is not

hard to see that any resolution refutation of size S and width w translates into a PCR refutation
of size wS and degree w + 1. The additional factor w in the size is due to the fact that while
resolution can arbitrary weaken a clause in one step, the way multiplication is defined in PCR
means that we need one multiplication step per literal to simulate the same weakening.

The proof of the bounds for Sherali-Adams is very similar.

Theorem 4.10. Let k = k(n) be any integer-valued function such that k(n) ≤ n/4 log n. Then

ERPHPk,n
k−1 can be refuted in SAR in size O

(
kk+2nk

)
, and any SAR refutation requires size

Ω
(
nk/(4k log n)k

)
.

21

NARROW PROOFS MAY BE MAXIMALLY LONG

Proof. Fix any SAR refutation of ERPHPk,n
k−1 and let M be the set of monomials appearing in

it. Hit the refutation with a random restriction ρ distributed according to D. Since restrictions
preserve soundness of SAR proofs, this yields a refutation of ERPHPk,n

k−1�ρ, which is EPHPk
k−1.

Suppose now that |M| < nk/(4k log n)k. Using Lemma 3.2 with ` = k and a union bound
argument forM, we conclude that there exists at least one restriction ρ in the support of D such
that the pigeon-rank of π�ρ is at most k−1, assuming that n large enough. But this contradicts
Lemma 4.8, and hence the lower bound in the theorem follows.

We obtain the upper bound by using the simulation in Lemma 4.6 on the resolution refutation
in Theorem 3.1.

5 An upper bound for relativized PHP formulas in Lasserre

In this section, we show that our lower bound Theorem 1.1 does not generalize to Lasserre.
Indeed, the formulas ERPHPk,n

k−1 (and also RPHPk,n
k−1) have Lasserre refutations in constant

rank and hence polynomial size. To establish this we will use the easily verified identity∑
i,j∈[n]
i 6=j

(
1− zi − zj

)
zj + (n− 2)

∑
j∈[n]

(
z2
j − zj

)
+
(

1−
∑
i∈[n]

zi

)2
= 1−

∑
i∈[n]

zi (5.1)

a couple of times. A direct application of (5.1) shows that the inequality 1−
∑

i∈[n] zi ≥ 0 has a
rank-2 Lasserre derivation from the set of all inequalities of the form 1−zi−zj ≥ 0 for i, j ∈ [n],
i 6= j. We remark that this fact is a direct consequence of Lemma 1.5 in [LS91]. Let us first use
this to get a rank-2 Lasserre refutation of the standard pigeonhole principle PHPk

k−1 encoded
as the set of clauses

xu,1 ∨ xu,2 ∨ · · · ∨ xu,k−1 u ∈ [k], (5.2a)

xu,w ∨ xv,w u, v ∈ [k], u 6= v, w ∈ [k − 1]. (5.2b)

The proof we give next is essentially due to Grigoriev et al. [GHP02].

Proposition 5.1 ([GHP02]). The formulas PHPk
k−1 have Lasserre refutations of rank 2.

Proof. Combining all hole axioms 1− xu,w − xv,w ≥ 0 in (5.2b) for a fixed hole w ∈ [k − 1] and
using (5.1) we can get the inequality 1−

∑
u∈[k] xu,w ≥ 0. Adding these inequality over all holes

w ∈ [k − 1] we obtain

k − 1−
∑
u∈[k]

∑
w∈[k−1]

xu,w ≥ 0 . (5.3)

Adding together instead all the pigeon axioms
∑

w∈[k−1] xu,w − 1 ≥ 0 in (5.2a) we get∑
u∈[k]

∑
w∈[k−1]

xu,w − k ≥ 0 . (5.4)

Summing (5.3) and (5.4) yields −1 ≥ 0.

Two more applications of (5.1) will help us get rank-9 Lasserre refutations of RPHPk,n
k−1

(and ERPHPk,n
k−1) by reduction to PHPk

k−1. The main idea of the proof is to substitute variables

in the derivation in Proposition 5.1 with polynomials defined over the variables of RPHPk,n
k−1.

Proposition 5.2. The formulas RPHPk,n
k−1 and ERPHPk,n

k−1 have Lasserre refutations of rank 7
and size polynomial in n.

22

5 An upper bound for relativized PHP formulas in Lasserre

Proof. The bound on size will follow from the bound on rank since the number of monomials
that are produced by a constant rank refutation is bounded by a fixed polynomial in the number
of variables. Next let us observe that it suffices to get a Lasserre refutation of RPHPk,n

k−1 since,

once we have one, it is easy to convert it to a refutation of ERPHPk,n
k−1 of the same rank. This

follows from the observation that the encoding of a wide clause C = a1 ∨ . . . ∨ aw is the sum
of the encodings of the corresponding 3-clauses a1 ∨ a2 ∨ z2, z2 ∨ a3 ∨ z3, . . . , zw−2 ∨ aw−1 ∨ aw.
Thus, once we have a refutation of RPHPk,n

k−1 we can get a valid refutation of ERPHPk,n
k−1 of

the same rank by substituting the sum of the corresponding short axioms in ERPHPk,n
k−1 for any

long axiom in RPHPk,n
k−1.

Therefore, for the rest of the proof we focus on RPHPk,n
k−1. Let P be the set of polynomial

inequalities that encode it and let us define the shorthand

xu,w =
∑
`∈[n]

pu,` r` q`,w . (5.5)

We want to use the proof of the pigeonhole principle in Proposition 5.1 together with the
substitution (5.5) for xu,w. In order to do so, we need to show how to derive the substituted
axioms used in that proof.

The inequalities x2
u,w − xu,w ≥ 0 can be obtained by summing∑

`,m∈[n]
6̀=m

pu,` r` q`,w pu,m rm qm,w ≥ 0. (5.6)

and ∑
`∈[n]

(p2
u,` − pu,`) r2

` q
2
`,w + (r2

` − r`) pu,` q2
`,w + (q2

`,w − q`,w) pu,` r` ≥ 0 , (5.7)

and these inequalities have direct rank-6 derivations not even using P. To derive the inequalities∑
w∈[k−1] xu,w − 1 ≥ 0 for u ∈ [k] we can sum up

∑
`∈[n]

(∑
w∈[k−1]

q`,w − r`
)
pu,` r` ≥ 0 , (5.8)

∑
`∈[n]

(
r2
` − r`

)
pu,` +

∑
`∈[n]

(
r` − pu,`

)
pu,` +

∑
`∈[n]

(
p2
u,` − pu,`

)
≥ 0 , (5.9)

and ∑
`∈[n]

pu,` − 1 ≥ 0 , (5.10)

which can all be derived directly from P in rank 3. The inequality 1 − xu,w − xv,w ≥ 0 is the
sum of ∑

`∈[n]

(
1− pu,` − pv,`

)
r` q`,w ≥ 0 (5.11)

and

1−
∑
`∈[n]

r`q`,w ≥ 0 , (5.12)

23

NARROW PROOFS MAY BE MAXIMALLY LONG

where (5.11) has a direct rank-3 derivation from P. For (5.12) we need to do some more work.
Fix indices `,m ∈ [n] with ` 6= m and observe that(

1− r`q`,w − rmqm,w
)
r`q`,w =(

3− r` − rm − q`,w − qm,w
)
q`,w rm qm,w +

(
q2
`,w − q`,w

)
rm qm,w +

(
q2
m,w − qm,w

)
rm q`,w

+
(
r2
m − rm

)
q`,w qm,w +

(
r` − r2

`

)
q`,w +

(
q`,w − q2

`,w

)
r2
` . (5.13)

Note that the first term on the right-hand side of this equation is the polynomial translation
of axiom (3.1e). Writing z` for r` q`,w, this shows that the inequality (1− z` − zm)z` ≥ 0 has a
rank-4 derivation from P. Combined with the fact that z2

` − z` = (r2
` − r`)q2

`,w + (q2
`,w − q`,w)r`,

equation (5.1) gives a rank-4 derivation of 1−
∑

`∈[n] z` ≥ 0. This is precisely (5.12).

Now we mimic the refutation of PHPk
k−1 in Proposition 5.1. For a fixed w ∈ [k − 1] we can

use the derivations of 1 − xu,w − xv,w ≥ 0 and x2
v,w − xv,w ≥ 0 in combination with (5.1) to

obtain the inequality 1 −
∑

u∈[k] xu,w ≥ 0 by a rank-7 derivation. Adding all such inequalities
for w ∈ [k − 1] gives

k − 1−
∑

w∈[k−1]

∑
u∈[k]

xu,w ≥ 0 . (5.14)

On the other hand, adding
∑

w∈[k−1] xu,w − 1 ≥ 0 over all u ∈ [k] yields∑
u∈[k]

∑
w∈[k−1]

xu,w − k ≥ 0 (5.15)

in rank 3 (the rank of the derivation of
∑

w∈[k−1] xu,w − 1 ≥ 0), and a final addition allows us
to derive −1 ≥ 0, never going above rank 7.

6 Concluding remarks

In this paper, we exhibit a family of 3-CNF formulas over n variables that can be refuted in
resolution in width w but require refutations of size nΩ(w). Furthermore, this lower bound can
be extended to polynomial calculus resolution (PCR) and Sherali-Adams, but not to Lasserre
where we give an upper bound that is polynomial in both n and w for the formula we study.
This shows that the seemingly naive counting upper bounds on proof size in terms of width
for resolution, degree for PCR, and rank for Sherali-Adams are actually all tight up to small
constant factors in the exponent. As noted in Section Section 1.4, subsequent work in [LN15]
has shown that a different but very much related formula family achieves the same conclusions
also for Lasserre, albeit for much weaker settings of parameters.

Regarding open problems, perhaps the most obvious one concerns the tightness of our result.
Our formulas have roughly N = n2 variables and are refutable in width roughly w = 2k, and
our size lower bounds are on the order of nk = Nw/4. However, the direct counting argument
for width w gives an upper bound of about Nw. Could this gap in the exponent be closed?
If so, this would have to be for a different formula family since ours has an upper bound of
roughly nk = Nw/4. One point worth noting is that one can shave a factor 2 off the gap in the
exponent by considering the 4-CNF formulas obtained if the 4-clauses in (3.1e) are not converted
to 3-CNF. In this case, the same upper and lower bounds still hold, but the number of variables
is on the order of N = kn, which means that we get a lower bound of the form Nw/2 if we
focus on widths w that are bounded by a constant. In all the remarks above, the upper bounds
refer to resolution, and the lower bounds refer to either resolution, PCR, or Sherali-Adams. For
Lasserre, however, the new results in [LN15] are currently far from being this tight.

A natural formula for which it would be interesting to prove similar size lower bounds as in
this paper is the so-called clique formula claiming that there is a k-clique in some fixed n-vertex
graph chosen so that this claim is false. It has been conjectured (e.g., in [BGLR12]) that such

24

References

formulas require resolution refutation size nΩ(k) for the right kind of graphs, and this has been
proven for the restricted case of tree-like resolution [BGL13]. If such a lower bound could be
established for general resolution, it would have interesting consequences for parameterized proof
complexity.

Finally, in the earlier version of this paper [ALN14] we asked about the necessity, or not,
of the exponential blow-up in size incurred by the transformation that takes short resolution
refutations into narrow ones in [BW01]. As discussed in Section 1.4, Neil Thapen addressed this
question after the first version of this paper had been published and showed that the blow-up
cannot be avoided [Tha14]. However, it should be noted that Thapen’s result concerns only
formulas of logarithmic initial width; for CNF formulas of constant initial width (i.e., k-CNFs
with constant k) the question remains open, although it does not seem impossible that an
extension of Thapen’s technique could be made to work for this case. A more fundamental
challenge would be to prove also the necessity of an exponential blow-up in the transformation
in [IPS99] that takes small-size polynomial calculus (PC or PCR) refutations into small-degree
ones.

Acknowledgments

The authors would like to thank Mladen Mikša and Marc Vinyals for interesting discussions
related to the topics of this work. We want to acknowledge the input from participants of
the Dagstuhl workshop 15171 Theory and Practice of SAT Solving in April 2015, in particular
from Paul Beame, that helped us to correct some details in the overview of previous work in
the introduction. Finally, we are most indebted to the anonymous reviewers for their very de-
tailed feedback, which helped us correct several bugs and streamline and simplify the exposition
considerably.

The first author was partially funded by MINECO project TASSAT2 (TIN2013-48031-C4-
1-P). Part of the work of the first author was done while visiting KTH Royal Institute of
Technology. The second and third authors were funded by the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007–2013) / ERC grant
agreement no. 279611. The third author was also supported by Swedish Research Council
grants 621-2010-4797 and 621-2012-5645.

References

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigder-
son. Space complexity in propositional calculus. SIAM Journal on Computing,
31(4):1184–1211, 2002. Preliminary version appeared in STOC ’00. 2, 3, 8

[AD08] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolu-
tion width. Journal of Computer and System Sciences, 74(3):323–334, May 2008.
Preliminary version appeared in CCC ’03. 2, 3, 13

[AFT11] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning al-
gorithms with many restarts and bounded-width resolution. Journal of Artificial
Intelligence Research, 40:353–373, January 2011. Preliminary version appeared in
SAT ’09. 4, 5

[Ale04] Michael Alekhnovich. Mutilated chessboard problem is exponentially hard for res-
olution. Theoretical Computer Science, 310(1–3):513–525, January 2004. 2

[ALN14] Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow proofs may be
maximally long. In Proceedings of the 29th Annual IEEE Conference on Computa-
tional Complexity (CCC ’14), pages 286–297, June 2014. 1, 6, 25

25

NARROW PROOFS MAY BE MAXIMALLY LONG

[AMO13] Albert Atserias, Moritz Müller, and Sergi Oliva. Lower bounds for DNF-refutations
of a relativized weak pigeonhole principle. In Proc. 28th Annual IEEE Conference
on Computational Complexity (CCC ’13), pages 109–120, June 2013. 5, 6

[AR03] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial
calculus: Non-binomial case. Proc. Steklov Institute of Mathematics, 242:18–35,
2003. Available at http://people.cs.uchicago.edu/~razborov/files/misha.

pdf. Preliminary version appeared in FOCS ’01. 3

[BBH+12] Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A. Kel-
ner, David Steurer, and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and
their applications. In Proc. 44th Annual ACM Symposium on Theory of Computing
(STOC ’12), pages 307–326, May 2012. 4

[BBI12] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space tradeoffs in resolu-
tion: Superpolynomial lower bounds for superlinear space. In Proc. 44th Annual
ACM Symposium on Theory of Computing (STOC ’12), pages 213–232, May 2012.
2

[BD09] Michael Brickenstein and Alexander Dreyer. PolyBoRi: A framework for Gröbner-
basis computations with Boolean polynomials. Journal of Symbolic Computation,
44(9):1326–1345, September 2009. 2

[BDG+09] Michael Brickenstein, Alexander Dreyer, Gert-Martin Greuel, Markus Wedler, and
Oliver Wienand. New developments in the theory of Gröbner bases and applica-
tions to formal verification. Journal of Pure and Applied Algebra, 213(8):1612–1635,
August 2009. 2

[Ben09] Eli Ben-Sasson. Size space tradeoffs for resolution. SIAM Journal on Computing,
38(6):2511–2525, May 2009. Preliminary version appeared in STOC ’02. 2

[Ber12] Christoph Berkholz. On the complexity of finding narrow proofs. In Proc. 53rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’12), pages
351–360, October 2012. 5

[BG01] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for res-
olution. Computational Complexity, 10(4):261–276, December 2001. Preliminary
version appeared in FOCS ’99. 2

[BG03] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in resolu-
tion. Random Structures and Algorithms, 23(1):92–109, August 2003. Preliminary
version appeared in CCC ’01. 2

[BG13] Ilario Bonacina and Nicola Galesi. Pseudo-partitions, transversality and locality:
A combinatorial characterization for the space measure in algebraic proof systems.
In Proc. 4th Innovations in Theoretical Computer Science Conference (ITCS ’13),
January 2013. 3

[BGHW14] Ilario Bonacina, Nicola Galesi, Tony Huynh, and Paul Wollan. Space proof com-
plexity for random 3-CNFs via a (2−ε)-Hall’s theorem. Technical Report TR14-146,
Electronic Colloquium on Computational Complexity (ECCC), November 2014. 2

[BGL13] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. Parameterized complexity
of DPLL search procedures. ACM Transactions on Computational Logic, 14(3):20,
August 2013. Preliminary version appeared in SAT ’11. 25

26

http://people.cs.uchicago.edu/~razborov/files/misha.pdf
http://people.cs.uchicago.edu/~razborov/files/misha.pdf

References

[BGLR12] Olaf Beyersdorff, Nicola Galesi, Massimo Lauria, and Alexander A. Razborov. Pa-
rameterized bounded-depth Frege is not optimal. ACM Transactions on Com-
putation Theory, 4:7:1–7:16, September 2012. Preliminary version appeared in
ICALP ’11. 24

[BGT14] Ilario Bonacina, Nicola Galesi, and Neil Thapen. Total space in resolution. In Pro-
ceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’14), pages 641–650, October 2014. 2

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of
Chicago, 1937. 1

[BN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal
separation of space and length in resolution. In Proc. 49th Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’08), pages 709–718, October 2008. 2

[BN11] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity:
Separations and trade-offs via substitutions. In Proc. 2nd Symposium on Innovations
in Computer Science (ICS ’11), pages 401–416, January 2011. 2

[BNT13] Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for poly-
nomial calculus. In Proc. 45th Annual ACM Symposium on Theory of Computing
(STOC ’13), pages 813–822, May 2013. 2, 3

[BPS07] Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for Lovász–
Schrijver systems and beyond follow from multiparty communication complexity.
SIAM Journal on Computing, 37(3):845–869, 2007. Preliminary version appeared
in ICALP ’05. 4

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to
solve real-world SAT instances. In Proc. 14th National Conference on Artificial
Intelligence (AAAI ’97), pages 203–208, July 1997. 1

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made sim-
ple. Journal of the ACM, 48(2):149–169, March 2001. Preliminary version appeared
in STOC ’99. 2, 3, 5, 6, 25

[CCT87] William Cook, Collette Rene Coullard, and Gyorgy Turán. On the complexity of
cutting-plane proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.
3

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner
basis algorithm to find proofs of unsatisfiability. In Proc. 28th Annual ACM Sym-
posium on Theory of Computing (STOC ’96), pages 174–183, May 1996. 2, 3, 8

[Chv73] Vašek Chvátal. Edmond polytopes and a hierarchy of combinatorial problems. Dis-
crete Mathematics, 4(1):305–337, 1973. 3

[CR79] Stephen A. Cook and Robert Reckhow. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic, 44(1):36–50, March 1979. 1

[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal
of the ACM, 35(4):759–768, October 1988. 2

[CT12] Eden Chlamtáč and Madhur Tulsiani. Convex relaxations and integrality gaps. In
Miguel F. Anjos and Jean B. Lasserre, editors, Handbook on Semidefinite, Conic
and Polynomial Optimization, pages 139–169. Springer, 2012. 3

27

NARROW PROOFS MAY BE MAXIMALLY LONG

[DM14] Stefan S. Dantchev and Barnaby Martin. Relativization makes contradictions harder
for resolution. Annals of Pure and Applied Logic, 165(3):837–857, March 2014. 11

[DMR09] Stefan S. Dantchev, Barnaby Martin, and Martin Rhodes. Tight rank lower
bounds for the Sherali-Adams proof system. Theoretical Computer Science,
410(21–23):2054–2063, May 2009. 16, 20

[DR01] Stefan S. Dantchev and Søren Riis. “Planar” tautologies hard for resolution. In
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’01), pages 220–229, oct 2001. 2

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and
Computation, 171(1):84–97, 2001. Preliminary versions of these results appeared in
STACS ’99 and CSL ’99. 2

[FLM+13] Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, and Marc Vinyals.
Towards an understanding of polynomial calculus: New separations and lower
bounds (extended abstract). In Proc. 40th International Colloquium on Automata,
Languages and Programming (ICALP ’13), volume 7965 of Lecture Notes in Com-
puter Science, pages 437–448. Springer, July 2013. 3

[FLN+12] Yuval Filmus, Massimo Lauria, Jakob Nordström, Neil Thapen, and Noga Ron-Zewi.
Space complexity in polynomial calculus. In Proc. 27th Annual IEEE Conference
on Computational Complexity (CCC ’12), pages 334–344, June 2012. 3

[FSS84] Merrick Furst, James B Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984. 5

[Gal77] Zvi Galil. On resolution with clauses of bounded size. SIAM Journal on Computing,
6(3):444–459, 1977. 2

[GHP02] Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. Complexity of semi-
algebraic proofs. Moscow Mathematical Journal, 2(4):647–679, 2002. 4, 22

[Gom63] Ralph E. Gomory. An algorithm for integer solutions of linear programs. In R.L.
Graves and P. Wolfe, editors, Recent Advances in Mathematical Programming, pages
269–302. McGraw-Hill, New York, 1963. 3

[GP14] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block
sensitivity. In Proc. 46th Annual ACM Symposium on Theory of Computing
(STOC ’14), pages 847–856, May 2014. 4

[Gri01] Dima Grigoriev. Linear lower bound on degrees of Positivstellensatz calculus proofs
for the parity. Theoretical Computer Science, 259(1–2):613–622, May 2001. 4

[GV01] Dima Grigoriev and Nicolai Vorobjov. Complexity of null- and positivstellensatz
proofs. Annals of Pure and Applied Logic, 113(1–3):153–160, December 2001. 4

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science,
39(2-3):297–308, August 1985. 2

[H̊as87] Johan H̊astad. Computational Limitations of Small-depth Circuits. PhD thesis,
Massachussetts Institute of Technology, 1987. 5

[IPS99] Russell Impagliazzo, Pavel Pudlák, and Jiri Sgall. Lower bounds for the polynomial
calculus and the Gröbner basis algorithm. Computational Complexity, 8(2):127–144,
1999. 3, 6, 15, 25

28

References

[Las01] Jean B. Lasserre. An explicit exact SDP relaxation for nonlinear 0-1 programs.
In Proc. 8th International Conference on Integer Programming and Combinatorial
Optimization, volume 2081 of Lecture Notes in Computer Science, pages 293–303.
Springer, June 2001. 3

[Lau01] Monique Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver and
Lasserre relaxations for 0-1 programming. Mathematics of Operations Research,
28:470–496, 2001. 3

[LN15] Massimo Lauria and Jakob Nordström. Tight size-degree bounds for sums-of-squares
proofs. In Proceedings of the 30th Annual Computational Complexity Conference
(CCC ’15), June 2015. To appear. 6, 24

[LS91] László Lovász and Alexander Schrijver. Cones of matrices and set-functions and 0-1
optimization. SIAM Journal on Optimization, 1(2):166–190, 1991. 3, 22

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proc. 38th Design Automation
Conference (DAC ’01), pages 530–535, June 2001. 1

[MN15] Mladen Mikša and Jakob Nordström. A generalized method for proving polynomial
calculus degree lower bounds. In Proceedings of the 30th Annual Computational
Complexity Conference (CCC ’15), June 2015. To appear. 3

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521, May
1999. Preliminary version appeared in ICCAD ’96. 1

[OZ13] Ryan O’Donnell and Yuan Zhou. Approximability and proof complexity. In Proc.
24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’13), pages
1537–1556, January 2013. 4

[Par00] Pablo A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry
Methods in Robustness and Optimization. PhD thesis, California Institute of Tech-
nology, May 2000. 4

[Pud99] Pavel Pudlák. On the complexity of propositional calculus. In S. Barry Cooper
and John K. Truss, editors, Sets and Proofs, volume 258 of London Mathematical
Society Lecture Note Series, pages 197–218. Cambridge University Press, 1999. 4

[Pud00] Pavel Pudlák. Proofs as games. American Mathematical Monthly, pages 541–550,
2000. 13

[Raz98] Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational
Complexity, 7(4):291–324, December 1998. 15

[SA90] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming problems.
SIAM Journal on Discrete Mathematics, 3:411–430, 1990. 3

[Sch08] Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In Proc.
49th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’08),
pages 593–602, October 2008. 4

[Tha14] Neil Thapen. A trade-off between length and width in resolution. Technical Report
TR14-137, Electronic Colloquium on Computational Complexity (ECCC), October
2014. 2, 6, 25

29

NARROW PROOFS MAY BE MAXIMALLY LONG

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM,
34(1):209–219, January 1987. 2

30

	1 Introduction
	1.1 Background
	1.2 Our results
	1.3 Discussion of proof techniques
	1.4 Subsequent developments
	1.5 Outline of this paper

	2 Preliminaries
	3 Upper and lower bounds in resolution
	3.1 Definition of the formula
	3.2 Proof of the upper bound
	3.3 Proof of the lower bound for resolution

	4 Algebraic and semialgebraic proof systems
	4.1 Lower bound on degree for polynomial calculus resolution
	4.2 Size and rank upper bounds for Sherali-Adams refutations
	4.3 Lower bound on rank for Sherali-Adams resolution
	4.4 Size bounds for PCR and SAR refutations

	5 An upper bound for relativized PHP formulas in Lasserre
	6 Concluding remarks

