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Abstract

We consider the question of certifying unsatisfiability
of random 3-CNF formulas. At which densities can we
hope for a simple sufficient condition for unsatisfiability
that holds almost surely? We study this question from the
point of view of definability theory. The main result is that
first-order logic cannot express any sufficient condition that
holds almost surely on random 3-CNF formulas with �������
clauses, for any irrational positive number � . In contrast, it
can when the number of clauses is �	��
�� , for any positive � .
As an intermediate step, our proof exploits the planted dis-
tribution for 3-CNF formulas in a new technical way. More-
over, the proof requires us to extend the methods of Shelah
and Spencer for proving the zero-one law for sparse random
graphs to arbitrary relational languages.

1. Introduction

The complexity of 3-SAT on random instances has re-
ceived a good deal of attention in recent years in many dif-
ferent areas such as satisfiability testing [28], propositional
proof complexity [11], statistical physics methods applied
to combinatorial optimization [27], integer and linear pro-
gramming [10], and hardness of approximation [18]. Per-
haps the main question is whether there exists a simple
(polynomial-time) property of 3-CNF formulas that guaran-
tees unsatisfiability and holds for typical unsatisfiable for-
mulas [6, 21, 19, 18]. The positive answer would provide a
good deal of information about the structure of unsatisfiable
formulas. The negative answer would imply a strong hard-
ness result for 3-SAT. Following [18], this scene of hardness
is called the random 3-SAT hypothesis.

We work in the random model of 3-CNF formulas in
which each possible clause is chosen with independent
probability  , so the expected number of clauses is ������ ��� �� , where � is the number of variables. The choice of
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this model, instead of the so-called model B in which the
number of clauses is fixed, is only a matter of convenience
and does not affect the significance of the results. Clearly,
whether the random 3-SAT hypothesis holds or not depends
on � . If � is very large, say ����� � �	� � , then it is al-
most trivial that a random 3-CNF formula is almost surely
(a.s.) unsatisfiable for the simple reason that it contains a
constant-size unsatisfiable subformula. On the contrary, if
� is very small, say ����� � � � , then it is not hard to see
that a random 3-CNF formula is a.s. satisfiable, so a suf-
ficient condition for unsatisfiability cannot hold a.s. The
cases of most interest occur when � is close to the point
where a random 3-CNF formula undergoes the transition
from being a.s. satisfiable to being a.s. unsatisfiable. Theo-
retical results establish that the transition occurs somewhere
between !#" $&% � and $#"(' � � [22, 12], and experimental results
suggest that it occurs around �)�*$#"(% � [28].

A motivating example Before we describe our results, let
us start with a motivating example from the theory of ran-
dom graphs + � �-, .� . Consider planarity. It is known that
if /��� � ����01��2 � , then a random graph is a.s. planar, and
if 3�4� � ����0 
�2 � , then it is a.s. non-planar. In fact, the
threshold is much finer, but let us ignore this for the mo-
ment. How can we certify the non-planarity of a typical
graph when 5�6� � � ��07
�2 � ? By the easy direction of Ku-
ratowski’s Theorem, it suffices to find a subgraph that is
homeomorphic to 8:9 or 8 �<; � . Let us argue that it suffices
to consider subgraphs of bounded size. Indeed, consider the
graph 8 2��; � that results from a 8 �<; � by subdividing its nine
edges into nine disjoint paths of length = �?> !A@CB . The density
of any subgraph of 8 2�<; � is strictly below 001��2 , so it follows
from the seminal work of Erdös and Renyi [16] that 8 2��; �
occurs as a subgraph in + � �-, �� a.s. when D�6� � �E��0 
	2 � .
Clearly 8 2�<; � is homeomorphic to 8 ��; � , and for fixed @ , the
size of 8 2��; � is also fixed. So the non-planarity of + � �-, �� is
certified a.s. by the existence of a fixed-size subgraph that
is homeomorphic to 8 ��; � .

Testing for the existence of a fixed-size subgraph is
clearly efficient, certainly in polynomial-time. As it turns
out, the existence of fixed-size substructures is the paradig-
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matical example of a property that is definable in first-
order logic, which of course is much stronger in definability
power, but still polynomial-time. In turn, first-order defin-
ability on random structures is a well-established topic with
many deep results (see [32]). In view of the situation with
planarity on random graphs, it is thus scholarly necessary
to consider first-order definability on random 3-CNF for-
mulas, with a focus on certificates for unsatisfiability.

Results of this paper 3-CNF formulas are viewed as
structures � � ��� ,����A, "<" " ,���� � whose domain

�
is the set

of propositional variables, and whose relations �	��
 � �
define which clauses, of each of the eight possible types,
appear in the formula. Here � �� � � and � ��� � � ��� � . At
which densities is there a sufficient condition for unsatisfi-
ability that is first-order definable and holds a.s.? For such
densities we say that first-order logic can certify unsatisfia-
bility a.s. When �)� � � ����
�� � , with ����� , it is not hard to
see that a random 3-CNF formula with � clauses contains
a constant-size unsatisfiable subformula a.s. Clearly, a first-
order sentence can simply express this, so first-order logic
can certify unsatisfiability a.s. at this density. Our main re-
sult establishes that this is essentially optimal:

Theorem 1 Let � be a random 3-CNF formula with � vari-
ables and � expected clauses.

1. If �)� ��� ����
�� � with arbitrary ����� , then first-order
logic can certify unsatisfiability a.s.

2. If � � ��� ���<��� � with irrational ����� , then first-
order logic cannot certify unsatisfiability a.s.

Requiring � to be irrational in 2. is a technicality that
will be discussed later in the paper. The main conceptual
contribution of this work is in studying first-order definabil-
ity on a random 3-CNF with a focus on certificates for un-
satisfiability, where we succeed in establishing a tight re-
sult. The main technical contribution is in the the proof of
the non-expressibility result. The main new idea is a new
approach for finding finite structures that are first-order in-
distinguishable. To our knowledge, this approach is novel.
We consider the so-called planted distribution for random
3-CNF formulas and argue that they are indistinguishable
from regular random 3-CNF formulas a.s. We note that the
planted distribution appears only as a technical detour in the
proof; the result itself is about the usual distribution on 3-
CNF formulas. This aspect of the proof is interesting; let us
discuss it in more detail.

Proof techniques Proving the inexpressibility result re-
quired us to study definability on random 3-CNF formulas.
The approach we follow is related to that taken by others
for studying first-order logic on random graphs (we discuss

related work in the next subsection). However, establish-
ing the main result required some new techniques. The first
idea that may come to mind is the following: if we take a
random 3-CNF formula at a density below the threshold of
satisfiability, say at � ��� � � � , and one at a density above
it, say at �)��� � � � , then a.s. one is satisfiable and the other
is not, and with some hope perhaps, a first-order sentence
may be unable to distiguish between them. Unfortunately,
this argument does not work. The reason it does not is
that two random 3-CNF formulas with a number of clauses
asymptotically below � , and above � respectively, have dif-
ferent occurrences of constant size subformulas. Therefore,
a first-order sentence can always be designed to distinguish
between them. This suggests that we take both random for-
mulas with the same density, which in turn, spoils the prop-
erty that one is satisfiable and the other is not.

The new approach that works is the following. We want
to pick our formulas in such a way that a.s. one is satisfiable
and the other is not, and, among other things, both have
the same constant-size subformulas. Here is one choice
that guarantees this: take one formula from the usual dis-
tribution and the other from the planted distribution at the
same density. The planted distribution � � �-, .� is the one
in which each clause that is not falsified by a fixed planted
truth assignment is chosen with probability  , and the rest
of clauses are banned. The planted distribution guarantees
that the resulting 3-CNF formula is satisfiable, and showing
that it has the same constant-size subformulas as a formula
from the usual distribution is one of the main steps of our
proof. In fact, we need to show much more: the two formu-
las are a.s. indistinguishable by first-order formulas of any
fixed quantifier depth. The conclusion is that a first-order
property cannot certify unsatisfiability a.s.

Related work Random 3-CNF formulas were introduced
a long time ago. See [13] for surveys. The results of
Chvátal and Szeméredi [11] were the first to indicate a cer-
tain degree of typical-case hardness. These were extended
by subsequent work [6, 8, 7, 4]. Despite these early re-
sults, the first to explicitely formulate the random 3-SAT
hypothesis was Feige [18], who established that, assum-
ing the hypothesis is true at � ��� � � � , one could take
it as a hardness assumption for showing a number of non-
approximability results that do not seem to follow from PCP
constructions. Using spectral techniques, Friedman and Go-
erdt [19] found a polynomial-time certifying algorithm at
����� � ��������
�2 � . Before [19], Beame, Karp, Pitassi and
Saks [6] already had a polynomial-time certifying algorithm
at �)� � � ��� >! #"%$ � � . Extending the techniques in [19] is a
matter of ongoing research.

First-order definability on random structures is a well-
studied topic. The pioneers were Glebskii et al. [20] and
Fagin [17] with the 0-1 law. Their work was followed by
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[26, 24, 29, 30] and many others. The techniques for dealing
with sparse structures such as + � �-,7�E��� � were introduced
by Shelah and Spencer and influenced much of the subse-
quent work, including this. Sufficient conditions for hard
properties of graphs were also studied in [9]. The planted
distribution for 3-CNF formulas was considered in [2] with
a completely different goal.

The current work requires comparison to our previous
work [3]. In [3] we showed that Datalog cannot certify un-
satisfiability a.s. at � � � � ��� ������2 � . Datalog and first-
order logic are rather orthogonal. While both logics de-
fine polynomial-time properties only, Datalog cannot define
non-monotone properties and first-order logic cannot define
non-local properties (see [14]). The non-expressibility re-
sults we obtain are thus incomparable. The results about
Datalog indicate that unbounded recursive existential quan-
tification is unable to certify unsatisfiability, and the results
about first-order logic indicate that so is bounded quanti-
fier alternation. While neither result can really be seen as
strong evidence towards the random 3-SAT hypothesis, the
Datalog result generalizes the lower bound for resolution in
[11], but the first-order logic result does not seem to have a
proof complexity counterpart yet. The techniques for prov-
ing both results are also totally different.

2. Preliminaries

Relational languages and structures A relational lan-
guage

� � � � 0 ,�� � , " "<"�� is a set of relation symbols
each with an associated arity. An

�
-structure is a tuple

� � ��� ,����0 ,����� , "<" " � where
�

is the universe, and �	��
is a relation over

�
of the arity of the symbol � � . We iden-

tify structures and their universe when this does not lead to
confusion. First-order formulas are formed from atomic for-
mulas of the form � � ��
 0 , "<" " , 
��� � and


 � � 
��
by means

of negations, conjunctions, disjunctions, and existential and
universal quantification over first-order variables. Here, the
variables


 � range over the elements of the universe. The
semantics of first-order logic can be found in any standard
textbook in logic such as [15].

Let
��� ��� � � , "<" " ,�� � � be the relational language of

eight relation symbols of arity three. Observe that a 3-CNF
formula is nothing but an

���
-structure: let its universe be

the set of propositional variables, and let the tuples of its re-
lations indicate which 3-clauses of each of the eight differ-
ent types appear in the formula. For example, if the clause� 0�� � ��� � � is in the formula, add

� � 0 ,�� � ,�� � � to � � , if the
clause � � 0�� � � ��� � � � is in the formula, add

� � 0 ,�� � ,�� � �
to ��� , etc. Conversely, structures for

� �
are nothing but

3-CNF formulas by reversing the interpretation.

Formulas and their Probability Spaces As in the ran-
dom graph model of Erdös and Renyi, there are two main

families of distributions of interest. For a fixed number of
variables � , the first family considers the number of clauses
� as fixed, and endows the space of � -CNF formulas with
� clauses on � variables with the uniform distribution. The
second family considers each clause on � variables inde-
pendently with probability  , and endows the space of all
� -CNF formulas on � variables with the product distribu-
tion. Both these families have several variants according to
whether clauses are ordered tuples or sets, and may, or may
not, have repeated or complementary literals. As in the ran-
dom graph model again, which space to use is often a matter
of convenience, and rarely an important issue as far as the
results are concerned.

Since we have adopted the framework in which � -CNF
formulas are structures over a relational language, it is con-
venient to define a probability space on finite structures. For
� -CNF formulas, the distribution we choose turns out to be
the product distribution in which clauses are ordered tuples
possibly with repeated and complementary literals.

Definition 1 Let
� ��� � 0 , " "<" ,�� � � be a relational lan-

guage, let  � be the arity of � � , and let  �  � � � be such
that �"! #! �

. Let
� � � � be the class of all

�
-structures

with universe � � , "<" " ,7� � , and let
� � �-, .� be the probability

distribution on
� � � � that assigns probability�$
�&% 0

(' )+*� ' � ��, .�-' .0/
�
' � ' )+*� '

to each � � �1� ,�� �0 , " "<" ,�� �� � in
� � � � .

For the proof of the main technical result of the paper
we will need a detour through the planted distribution for
3-CNF formulas. In a nutshell, the planted distribution con-
sists in drawing 3-CNF formulas in the usual way, except
that the clauses that falsify a fixed planted truth assignment
are forbidden (have zero probability). For concreteness, the
planted truth assignment is always the same, namely, the
one that assigns “false” to the first half of the variables and
“true” to the rest. Formally,

Definition 2 Let  �  � � � be such that �2! 3! �
. Let4

be the truth assignment on the variables

 0 , "<" " , 
5 that

assigns false to the first 6 � > %87 variables and true to the rest.
Let � � � �-, .� be the probability distribution on

� � � � � that is
obtained by adding each clause that is not falsified by

4
independently, with probability  .

Obviously, the set of 3-CNF formulas with non-zero
probability in � � � �-, .� are exactly those satisfied by the
planted truth assignment. It is not hard to see that the num-
ber of clauses that do not falsify the planted truth assign-
ment is 9 ��� .
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3. Counting extensions: multivariate polyno-
mial method

A hypergraph � � � � ,�� � consists of a set of vertices�
and a set � of sets of vertices called hyperedges. A

weighted hypergraph is a hypergraph
��� ,�� � together with

a weight function ��� ���
	 that assigns a real num-
ber � ��� � to each hyperedge

�� � . Let � � � � ,�� � be
a hypergraph with positive weights on its hyperedges, and
let � � � � � . Consider a collection ���������  � � of
independent random variables, where each � � is either a
� � , � � -random variable with expected value  � , or the con-
stant random variable � � �  � . Here � !: � ! �

for every�  � . Let � be the following polynomial:� � ������ � ��� � $� ��� ��� "
For every � 
 � , let �! be the partial derivative of � with
respect to ��� � �"�  ��� . For every #%$ � , let � � �&�')( � � � �! -�*�+� 
 � , � � �E�,# � , where � � �! E� denotes
expectation.

Theorem 2 (Corollary 4.1.3 in [25]) If there is a constant- ��� such that � � > � � � � � ���/. � for all # ��� , then there
are constants @ ��� and 0 � � such that132/4 � � , � � � � � � � ��2 � � � �6587 � � 5�9 "

A prototypical application of Theorem 2 is the estima-
tion of the number of occurrences of a small subgraph + in
a random graph on � nodes. In that case,

�
is the set of

possible edges on � � , " "<" , � � , and � is the set of possible
placements of + in � � , "<" " ,7� � . In fact, the rest of the argu-
ment is a particular case of Theorem 3 below, so we turn to
proving that immediately.

We extend the notion of rooted graph from [29, 30] to ar-
bitrary languages. Let us fix a finite relational language

�
.

A rooted structure, or extension, is a structure � with a des-
ignated subset � of elements, called the roots. We denote it
by

� � , �:� . The type of a rooted structure is
� � , � � , where �

is the number of elements of � that are not roots, and
�

is
the number of tuples in the relations of � with at least one
non-root element. Its density is

� > � . The set of root ele-
ments is usually denoted by the ordered tuple

� � 0 , " "<" , � � � ,
and the set of non-root elements is denoted by the ordered
tuple

�;: 0 , "<" " , :�< � . There will always be such an implicit
ordering on the elements of � that will be clear from con-
text. Let � be any structure, let =�� ��
 0 , "<" " , 
 � � and> � �@? 0 , " "<" , ? < � be tuples of distinct elements of � . We
let A � = ,B> � be the mapping � �3C� 
 � and

: �DC� ? � . We say
that > is an

� ��, �:� -extension of = in � if A � = ,B> � maps tu-
ples in the relations of � with at least one non-root element
to tuples of the same relation in � . If E is a tuple of ele-
ments of � , we let E � = ,B> � be the image of E under A � = ,B> � .

Recall that we identify structures with their universes when
this does not lead to confusion. Let �GFIH 
 � . We call� ��,�H � a subextension of

� ��, �:� . Let ��
JH�F � . We call� H�, �:� a nailextension of
� � , �:� . Observe that a rooted

structure is a subextension and a nailextension of itself.
The next result analyzes the number of extensions of the

tuples of a random structure. For the case of undirected
graphs, this is the hardest result in the proof of [32]. Its
proof used Janson’s inequality together with a number of
ad-hoc arguments. An alternative transparent proof was ob-
tained by Kim and Vu [23] using the multivariate polyno-
mial method, still for undirected graphs. We extend the re-
sult for general structures, where the machinery of Kim and
Vu is very useful.

Theorem 3 Let
� ��, �:� be a rooted structure of type

� � , � � ,
and let K be the maximal density of its subextensions. Let
� ��� , let �ML � � �-, �� where  � ��� ����� � , and for every
tuple = of � distinct elements in � , let N � =�� be the number
of

� ��, �:� -extensions of = in � .

(i) If � � �?> K , then N � =�� � � for some = , almost surely,

(ii) If ��7 �?> K , then N � =�� ��� for every = , almost surely.

Moreover, � � N � =�� � � ��� � < ��� � � , and in case (ii) N � =��3L� � N � =��7� for every = , almost surely.

Proof : Fix an arbitrary tuple = � � 
 0 , "<" " , 
� � of  � � � �
distinct elements of � . For every subextension

� ��,�H � , let� ��O�, � O � be its type, and let N O � =�� be the number of
� ��,�H � -

extensions of = in � . Note that N � =�� �PN8Q � =�� and that
if N O � =�� � � , then NRQ � =��D� � . Also, � � N O � =��7� ���� � <TS � ��� � S � . If � � �?> K , then � � N O � =��7� � � � � � for
the subextension

� ��,�H � of maximal density K � � O > � O . In
this case, N O � =�� � � almost surely by Markov’s inequality,
so N Q � =�� � � almost surely.

Suppose now �U7 � > K . We aim for an application of
Theorem 2. For every relation symbol � �  �

of arity V
and every V -tuple E of elements in � , let W �YX , E?� be the
random variable indicating whether E  � �� or not. Note
that N O � =�� � �[Z $

� ; \ W �]X , E � = ,B> � � ,
with > � ��? 0 , " "<" , ?�<^S � ranging over all tuples of � O dis-
tinct elements of � , � 
 0 , " "<" , 
 � � , and

X
and E ranging

over all pairs such that E  � O� and E has some non-root el-
ement. Recall that E � = ,�> � denotes the image of E under the
mapping � �3C� 
 � and

: �+C� ? � , where � � � � 0 , "<" " , � � �
and H � � : 0 , "<" " , : < S � . Let us bound � � � NRQ � =��7� for� !_# ! � . Let - be the minimum ��O , � � O over all subex-
tensions

� ��,�H � . Note that - � � because K is the maximal
density of the subextensions and ��7 � > K . For every set� of exactly # tuples of � involving some non-root ele-
ment, let H  be the non-root elements appearing in � , and
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let
X  be the cardinality of H  . Observe that

� ��,���� H  -�
is a subextension of

� ��, � � of type
�YX  , # � . Let

X
be the

minimum over all
X  and let

� ��,^H � be the corresponding
subextension. Clearly

X�, � # $ - . Moreover,� � � N Q � =��7� � � � � < � � � ����� � � ��� �
because having fixed # tuples, at most � , X nodes are left
free. Note that � � > � � � � � ���/. � . Therefore, Theorem 2
implies that1+2!4 � N Q � =�� , � � N Q � =��7� � � � ��2 � � N Q � =��7� 5�7 � � 5�9
for some constants @ �� and 0 ��� . The conclusion fol-
lows because

� 5�9
grows faster than any polynomial, and

there are polynomially many possible = . � �
When � �	� , the rooted structure

� � , �:� can be identi-
fied with the structure � . Moreover, the number of

� � , �:� -
extensions of the empty tuple =*�
� in � coincides with
the number of copies of � in � . Thus, we have the follow-
ing corollary.

Corollary 1 Let � be a structure with � elements and
�

tuples, and let K be the maximal density of its substructures.
Let ����� , let � L � � �-, .� where  � ��� �-��� � , and let N
be the number of copies of � in � .

(i) If ��� �?> K , then N � � , almost surely,

(ii) If � 7 �?> K , then N�� � , almost surely.

Moreover, � � N:�E� ��� � < ��� � � , and in case (ii) N L � � N:� ,
almost surely.

Let us now concentrate on random 3-CNF formulas, and
in particular, on the planted distribution � � � �-, .� . Our aim
is to show that essentially the same result as in Theorem 3
holds for the planted distribution. The key difference is in
the need to require � � �

; this guarantees that the extension
is satisfiable in case (ii) and makes the proof possible. Let us
note that the proof requires an application of Tarsi’s Lemma
[1] and is significantly different for case (ii).

Theorem 4 Let
� ��, �:� be a rooted 3-CNF formula of type� �., � � , and let K be the maximal density of its subextensions.

Let � � �
, let � L�� � � �-, .� where  � ��� ����� � , and for

every tuple = of � distinct elements in � , let N � =�� be the
number of

� ��, �:� -extensions of = in � .

(i) If ��� �?> K , then N � =�� � � for some = , almost surely,

(ii) If � 7 �?> K , then N � =�� ��� for every = , almost surely.

Moreover, � � N � =�� � � ��� � < ��� � � , and in case (ii) N � =��3L� � N � =��7� for every = , almost surely.

Proof : For (i) we proceed as in Theorem 3. The expectation� � N O � =��7� is again certainly bounded by � � � < S ����� � S � .
Therefore, if � � �?> K , then N O � =�� ��� almost surely for
the H of maximal density, so N8Q � =�� � � almost surely.
The case (ii) requires a totally new proof.

Suppose �J7 �?> K . Fix a tuple =D� � 
 0 , "<"<" , 
 � � of dis-
tinct elements of � . Consider the

� ��, � � -extensions of = .
Note that some of the elements of = are in the first half of
the variables and some are in the second. Since � � �

, this
implies that the maximum density of every subextension is
strictly below

�
. It follows from this that � is a satisfiable

3-CNF even when the variables in = are set to the truth value
according to the half of the variables they belong to. Indeed,
if it were unsatisfiable it would have a minimally unsatisfi-
able subformula whose density would be above

�
by Tarsi’s

Lemma [1], which contradicts the assumption � 7 � > K .
We now use this fact in a crucial way. Fix a truth assign-
ment to the non-root variables that satisfies � , and let �
be the number of non-root variables of � that are set to
false by this assignment, and let � be the number of non-
root variables of � that are set to true by this assignment.
Notice that ���� � � Q . Let us compute an upper bound
and a lower bound for � � N Q � =��7� . The number of possible
occurrences of � is generously bounded by � <�� . Hence� � NRQ � =��7� �3� � � <��  � � � . For the lower bound, note that
the number of placements of � of non-zero probability is
at least �

� > % ,  � �
�
� > % ,  � � ,

because any placement all whose clauses are satisfied by
the planted truth assignment has non-zero probability. The
probability of each such placement is at least  � � � ��, .� ����
for some fixed constant

���Q that depends on � only. Hence,
the expectation of N8Q � =�� is at least�

� > % ,  � �
�
� > % ,  � �  � � � ��, .� ���� "

Since ���� � � Q ,  is a constant, and  � � � � � ,
the upper and lower bounds are related by a constant, so� � NRQ � =��7� � ��� � <�� ����� � � � .

The rest of the argument is now essentially the same ar-
gument as in Theorem 3. In this case, though, notice that
some of the random variables W �YX , E � = ,B> �7� will be con-
stants set to � because the corresponding clause will not
be satisfied by the planted truth assignment. This is al-
lowed in the hypothesis of Theorem 2. The computation
of � � � N Q � =��7� is the same since we only aim for an upper
bound. The result follows. � �
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4. More on Rooted Structures

The purpose of this section is to extend the concepts in
[32] to general relational structures and the planted distri-
bution. For this section we fix an irrational number ��� � .
Recall the definition of rooted structure, or extension, from
Section 3.

Definition 3 Let
� ��, � � be an extension of type

� �., � � . If� , � � is positive we call
� ��, �:� sparse. If � ,"� � is negative

we call
� ��, � � dense.

Notice that since � is irrational, every extension is either
sparse or dense; this will play a crucial role in the proofs.
Recall that we identify structures with their universes when
this does not lead to confusion. Let � FIH 
 � . We call� ��,�H � a subextension of

� ��, � � . Let � 
 H_F � . We call� H�, �:� a nailextension of
� ��, �:� . Observe that a rooted

structure is a subextension and a nailextension of itself.

Definition 4 An extension is called rigid if all its nailexten-
sions are dense. It is called safe if all its subextensions are
sparse.

Next we turn to the key concept of closure. A prelimi-
nary version of this concept was introduced in [29, 30] and
used in [31]. Unfortunately, the original definition suffered
some technical problems and required later refinement (see
[32]). We extend it to general structures.

Definition 5 Let � be a structure, let = � ��
 0 , " "<" , 
 � �
be a tuple of elements of � , and let � $� . The � -closure
of = , denoted ��� �� � =�� , is the smallest � 
 � contain-
ing � 
 0 , " "<" , 
 � � that does not have rigid extensions with at
most � non-roots.

The closure of = is constructively obtained by letting� � �3� 
 0 , "<"<" , 
 � � , and letting
� � � , � � 
	0 � be any rigid ex-

tension of � � with at most � non-roots, if there is one. The
last � � is ��� �� � =�� . It is not hard to see that both approaches
lead to the same set. Since the structure � is usually under-
stood from context, we may drop the superscript in ��� �� � =�� .
Here are a couple of properties of closures with easy proofs:

Lemma 1 Let � be a structure, and let = � � 
 0 , " "<" , 
 � �
be a tuple of distinct elements of � .

(i) If
?  ��� � � =�� , = , then ��� � � = , ? � 
 ��� � 
 � � =�� .

(ii) If � � � !�� and ��� � � =����� � , then
� ��� � � =�� , � � is safe.

Proof : Statement (i) is clear. For (ii), if
� ��� � � =�� , � � is

not safe and ��� � � =��	�� � , then it has a dense subexten-
sion

� ��� � � =�� ,^H � since � is irrational. Let H be minimal
with that property. Then

� ��� � � =�� ,^H � is actually rigid for
otherwise some nailextension

��
 ,�H � would be sparse and

� ��� � � =�� , 
 � would have to be dense contradicting the mini-
mality of H . Here we used the irrationality of � again. But
since � H �0! � � � !�� , necessarily H 
 ��� � � =�� ; a contradic-
tion. � �

The following lemma states that closures are almost
surely bounded in size. Its proof is adapted from that of
Theorem 6.2 in [32] for undirected graphs. We note that it
also works for the planted distribution:

Lemma 2 For every # �� and � ��� , there exists a con-
stant  � � such that, for � L � � �-, �� or � L�� � �-, .�
with  � ��� ����� � , almost surely � ��� � � =�� � 7� for all tuples= � � 
 0 , "<" " , 
 � � of distinct elements of � .

Proof : Let �/� & ' ( � � � , � � � > � � � !�� , � , � � 7���� .
Let  � � be such that # ���I7 � ; since �I7 � , such
a  exists. The existence of a closure ��� � � � � of size at
least  for some � 
 � of size # implies the existence
of � � H � 
������ 
 H�� where each

� H � ,^H � 
	0 � is rigid
with at most � non-roots and    ! H�� !�   	� .
Let

� � � , �-� � be the type of
� H � ,^H � 
	0 � . Since

� H � ,�H � 
	0 � is
rigid, it is dense, so � � , � � � 7 � . Moreover, � � � � $	 .
Now, the expected number of such sequences of extensions
is bounded by � � � < ��� � � where � � #  � � � � and

� �
� � � � . However,

� , � � � #  � � � ��, � � � �-� �

� #  � � � � � , � � � ��!
! #  � � � � � !
! # ���E"

Recall that ��7�� for the last inequality. Now, # ��� 7��
by our choice of  . Therefore, the number of such exten-
sions is zero almost surely. Since there is a bounded number
of possible sequences H � 
������ 
 H�� as above, the number
of closures of size at least  is also zero almost surely. � �
5. Proof of Main Result

In this section we prove Theorem 1. Since the first part of
the theorem is much easier, let us concentrate on the second
part first. This will require the argument that we sketched
in the introduction and that we sketch again here. Draw two
random 3-CNF formulas, one from the usual distribution
and the other from the planted distribution which ensures
that the formula is satisfiable. The key of the argument is
that these two formulas are a.s. indistinguishable by first-
order formulas of any fixed number of quantifers. The re-
sult will follow since then, a first-order formula is unable
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to distinguish the first, which is almost surely unsatisfiable,
from the second, which is always satisfiable.

Before we jump into the proof, we need some prepara-
tion. Two tuples with isomorphic � -closures can be viewed
as having the same “special” extension properties. The term
“special” is justified by noting that the expected number of
occurrences of dense extensions is zero.

Definition 6 Let � and N be
�

-structures, and let = �� 
 0 , " "<" , 
 � � and > � ��? 0 , " "<" , ? � � be tuples of elements of
� and N respectively. We say the tuples are � -equivalent,
denoted =�� � > if their � -closures, in � and N respectively,
are isomorphic with


 � mapped to
? � .

We conclude this section by showing that equivalent tu-
ples enjoy a nice back-and-forth property. The proof fol-
lows the ideas of Theorem 7.3 in [31] but of course needs to
be adapted to the new distributions. Note the requirement
that � � �

, needed in Theorem 4, and that � be irrational,
needed in Lemma 1.

Theorem 5 Let ��� �
be irrational, and let � L � � � �-, ��

and N L � � � �-, .� be random 3-CNF formulas drawn from
the non-planted and planted distribution respectively, where
 � ��� ����� � . For every � $�� and #3$�� , there exists ��$ �
such that the following holds almost surely: for every pair
of tuples =:� ��
 0 , "<" " , 
 � � in � and > � �@? 0 , "<"<" , ? � � in N
such that =���� > , and for every further


 � 
	0 in � , there ex-
ists

? � 
	0 in N such that
� 
 0 , "<" " , 
 � 
 0 ����� ��? 0 , "<"<" , ? � 
	0 � ,

and for every further
? � 
 0 in N , there exists


 � 
	0 in � such
that

��
 0 , " "<" , 
 � 
	0 ����� �@? 0 , " "<" , ? � 
	0 � .
Proof : Let  be the constant in Lemma 2 for tuple-length#  �

and closure-bound � . Let � ��� � .
Suppose = � � 
 0 , " "<" , 
 � � and > � ��? 0 , "<" " , ? � � are such

that =�� � > . Let
4 � ��� � � =�� � ��� � � > � be the isomorphism

witnessing that =�� � > . We consider the forth property, the
back is dual. Let


 � 
	0  � be different from

 0 , "<"<" , 
 � .

We consider two cases:
Case 1:


 � 
	0  ���
	 � =�� . Then ��� � � = , 
 � 
 0 � 
 ��� � � =�� by
Lemma 1 (i). Set

? � 
	0 � 4�� 
 � 
	0 � . Clearly, ����� � = , 
 � 
	0 � L�
����� � >E, ? � 
	0 � , so

��
 0 , " "<" , 
 � 
	0 ����� �@? 0 , " "<" , ? � 
	0 � .
Case 2:


 � 
	0 � ��� 	 � =�� . Let � � ���� � = , 
 � 
	0 � , and letH 
 � be the  -closure of = in � . Note that � � ��! 
by our choice of  , and that


 � 
	0  � , H . Then,
� H-, �:�

is safe by (ii) in Lemma 1. Let
� � , � � be its type. Note

that H 
 ����� � =�� . Let � be an enumeration of H , and let
�
�

be an enumeration of
4�� H � . By Theorem 4, the num-

ber of
� H-, �:� -extensions of �

�
is

��� � < ��� � � . Therefore, the
number of injective homomorphisms A � ��� � � = , 
 � 
	0 � � �
with A � �A� ���

�
is � � � < ��� � � . By letting

? � 
	0 � A ��
 � 
	0 � ,
the images of these homomorphisms are substructures of
��� � � >E, ? � 
	0 � possibly with missing elements and/or tuples.

We just showed that there are � � � < ��� � � many
? � 
	0 with

����� � >E, ? � 
	0 � which is isomorphic to either � or � � for some

� � containing � as a proper substructure. Fix such an � �
of the second sort, and let

� � � , � � � be the type of the
� H�, � � �

extension that � � forms over H . Note that
� � , � � � has type� � � , �., � � , � � , and if � 7 � � , it is dense because � � is a

closure and thus rigid over its roots. Thus, if � 7 � � , then� � , � , � ��� � , � � 7 � . On the other hand, if � � � � ,
then

� 7 � �
, so � � , � � � 7 � , � � . In both cases we

have � � , � � � 7 � , � � . There are at most � � � < � ��� ��� �
many

� H�, � � � -extensions of �
�
, and since the exponent is

smaller, this is � � �
< ��� � � . This shows that for every fixed

possible � -closure containing � as a proper substructure,
there are only � � �

< ��� � � ? � 
	0 with ���� � >E, ? � 
	0 � isomorphic
to it. However, � -closures are bounded in size, so there are
only a bounded number of possible � -closures up to isomor-
phism. It follows that the required

? � 
	0 exists, and in fact
� � � < ��� � � many. � �

The back-and-forth property implied by Theorem 5 can
now be used to show that two random 3-CNF formulas
drawn from

� � � �-, .� and � � � �-, �� are almost surely indis-
tiguishable by first-order formulas of any fixed quantifer
rank. The quantifier rank of a formula is defined induc-
tively as follows:

2�� �� � � � if
�

is atomic,
2�� �� � � 2�� ��� �

if
� � � � ,

2�� ��� � � &�')( � 2�� ��� � , 2�� ��� � � if
� � �����

, and2�� �� � � 2�� ��� �  �
if
� � ��� 
 � �� � . In other words,

2�� ��� �
is the maximum nesting of quantifiers in

�
.

To show this we will use an Ehrenfeucht-Fraı̈ssé game.
The game is played by two players, the Spoiler and the Du-
plicator, on two structures � and N over the same lan-
guage. In round # of the game, the Spoiler chooses one
structure and an element


 �  � (or
? �  N ) of that struc-

ture, and the Duplicator replies by choosing one element? �  N (or

 �  � ) of the other structure. If after  

rounds of play, the mapping

 � C� ? � is a partial isomor-

phism between � and N , then the Duplicator wins the  -
round game. Otherwise, the Spoiler wins. The main result
about Ehrenfeucht-Fraı̈ssé games is the following:

Theorem 6 ([14]) Let � and N be
�

-structures and  $
� . Then the Duplicator wins the  -round Ehrenfeucht-
Fraı̈ssé game on � and N if and only if � and N are
indistiguishable by first-order sentences of quantifer rank
at most  .

Now we can show that two random 3-CNF formulas
from

� � � �-, �� and � � � �-, .� respectively are almost surely
a win for the Duplicator. Note again the need for ��� �

.

Lemma 3 Let � � �
be irrational, and let � L � � � �-, .�

and N L � � � �-, �� be random 3-CNF formulas drawn from
the non-planted and planted distribution respectively, where
 � ��� ����� � . For every  $�� , the Duplicator almost surely
wins the  -round Ehrenfeucht-Fraı̈ssé game on � and N .
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Proof : Let � � � � , and for #  � � , "<" " ,  ,5� � in decreasing
order, let � � be the � in Theorem 5 when � � � � 
 0 . The-
orem 5 gives then the winning strategy for the Duplicator:
at round # , the Duplicator chooses

? �  N (or

 �  � )

in response to the Spoiler’s move

 �  � (or

? �  � ) in
such a way that

��
 0 , "<" " , 
 � ��� � � ��? 0 , "<" " , ? � � . By the end
of the game, we have

� 
 0 , "<"<" , 
� � � � ��? 0 , "<" " , ? � � , so the
Duplicator wins. � �

Finally, the proof of Theorem 1:

Proof of Theorem 1.2: Let  � ��� �E��� � for an irrational
� � �

. Suppose for contradiction that
�

implies unsatisfia-
bility and is almost surely true. Let  be the quantifier rank
of
�

. By Lemma 3 and Theorem 6, two random 3-CNF for-
mulas � L � � � �-, .� and N L � � � �-, .� are almost surely
indistinguishable by

�
. Hence,

�
holds almost surely on N .

However,
�

implies unsatisfiability and N is satisfiable. A
contradiction. � �
Proof of Theorem 1.1: This is the easy part of the theorem.
Let  � ��� �-��� � for an arbitrary ��7/��7 �

. Let ���� be
such that  > �   � � � � . Consider the following formula� with  variables:

 0 ��� � 
 0 � 
 � � � � � 
 � � 
 � � � ����� ��� � 
 	 ��0 � 
 	 � � � 
 	 "
Clearly, � is unsatisfiable. By padding each clause with
repeated literals we can view it as a 3-CNF formula. The
maximal density of its subformulas is

�   � � >  . Now
we apply Corollary 1 and conclude that � contains a copy
of � almost surely. Thus, the subformula induced by the
variables of this copy is unsatisfiable. � �
6. Conclusion

Our main result establishes the breakpoint where first-
order definability can certify unsatisfiability for power prob-
abilities  � ����� . We believe the result stands by itself
independently of its implications or non-implications about
the random 3-SAT hypothesis for polynomial-time. On the
one hand, definability on random structures is sometimes
surprisingly strong as the motivating example in the intro-
duction shows. On the other hand, definable properties of
random 3-CNF formulas, and their correlation with satis-
fiability or other important properies of formulas, seem to
deserve independent study.

Such an independent study would ask about classical
concepts of logic on random structures, such as the 0-
1 laws, convergence laws, and their deep model-theoretic
consequences [5]. Let us mention that it follows from our
results that the 0-1 law for sparse random graphs in [29, 30]
extends to sparse random 3-CNF formulas, and even to the

planted distribution (always for irrational � ). We omit de-
tails in this version. One consequence is that the almost
sure theory of such random 3-CNF formulas is a complete
theory. Another consequence is that our main inexpressibil-
ity result is actually stronger. Indeed, it shows that first-
order logic cannot even certify unsatisfiability with positive
asymptotic probability at � � ��� �	����� � , when ��� � is
irrational. Let us note that, somewhat trivially, first-order
logic can certify unsatisfiability with inverse polynomial de-
caying probability. All these questions deserve further study
and should be considered somewhere else.
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[16] P. Erdös and A. Rényi. On the evolution of random
graphs. Publ. Math. Inst. Hungar. Acad. Sci., 5:17–
61, 1960.

[17] R. Fagin. Probabilities on finite models. Journal of
Symbolic Logic, 41:50–58, 1976.

[18] U. Feige. Relations between average case complexity
and approximation complexity. In 34th Annual ACM
Symposium on the Theory of Computing, pages 534–
543, 2002.

[19] J. Friedman and A. Goerdt. Recognizing more unsatis-
fiable random 3-SAT instances efficiently. In 28th In-
ternational Colloquium on Automata, Languages and
Programming, volume 2076 of Lecture Notes in Com-
puter Science, pages 310–321. Springer-Verlag, 2001.

[20] Y. V. Glebskii, D. I. Kogan, M. I. Liagonkii, and V. A.
Talanov. Range and degree realizability of formulas in
the restricted predicate calculua. Cybernetics, 5:142–
154, 1969.

[21] A. Goerdt and M. Krivelevich. Efficient recognition
of random unsatisfiable k-SAT instances by spectral
methods. In 18th International Symposium on Theo-
retical Aspects of Computer Science, volume 2010 of
Lecture Notes in Computer Science, pages 294–304.
Springer-Verlag, 2001.

[22] A. C. Kaporis, L. M. Kirousis, and E. G. Lalas. The
probabilistic analysis of a greedy satisfiability algo-
rithm. In 10th Annual European Symposium on Al-
gorithms, volume 2461 of Lecture Notes in Computer
Science, pages 574–585. Springer, 2002.

[23] J. H. Kim and V. H. Vu. Concentration of multi-
variate polynomials and its applications. Combinator-
ica, 20(3):417–434, 2000.

[24] Ph. G. Kolaitis and M. Y. Vardi. 0-1 laws and decision
problems for fragments of second-order logic. Infor-
mation and Computation, 87:302–338, 1990.

[25] Ph. G. Kolaitis and M. Y. Vardi. Conjunctive-query
containment and constraint satisfaction. Journal of
Computer and System Sciences, 61(2):302–332, 2000.

[26] J. F. Lynch. Almost sure theories. Annals of Mathe-
matical Logic, 18:91–135, 1980.

[27] R. Monasson and R. Zecchina. Statistical mechanics
of the random k-satisfiability model. Physical Review
E, 56(2):1357–1370, 1997.

[28] B. Selman, D. G. Mitchell, and H. J. Levesque. Gen-
erating hard satisfiability problems. Artificial Intelli-
gence, 81:17–29, 1996.

[29] S. Shelah and J. Spencer. Threshold spectra for ran-
dom graphs. In 19th Annual ACM Symposium on the
Theory of Computing, pages 421–424, 1987.

[30] S. Shelah and J. Spencer. Zero-one laws for sparse
random graphs. Journal of the American Mathemati-
cal Society, 1(1):97–115, 1988.

[31] J. Spencer. Threshold spectra via the Ehrenfeucht
game. Discrete Applied Mathematics, 30:235–252,
1991.

[32] J. Spencer. The Strange Logic of Random Graphs.
Springer, 2001.

9


