
On the Automatizability of Resolution
and Related Propositional Proof Systems

Albert Atserias
�
and Marı́a Luisa Bonet

�
Departament de Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya
Barcelona, Spain�

atserias,bonet � @lsi.upc.es
October 15, 2003

Abstract

A propositional proof system is automatizable if there is an algorithm that, given a tautol-
ogy, produces a proof in time polynomial in the size of its smallest proof. This notion can be
weakened if we allow the algorithm to produce a proof in a stronger system within the same
time bound. This new notion is called weak automatizability. Among other characterizations,
we prove that a system is weakly automatizable exactly when a weak form of the satisfiability
problem is solvable in polynomial time. After studying the robustness of the definition, we
prove the equivalence between: (i) Resolution is weakly automatizable, (ii) Res(�) is weakly
automatizable and (iii) Res(�) has feasible interpolation, when ����� . In order to prove this
result, we show that Res(2) has polynomial-size proofs of the reflection principle of Resolu-
tion, which is a version of consistency. We also show that Res(�), for every �	�
� , proves its
consistency in polynomial size, while Resolution does not. In fact, we show that Resolution
proofs of its own consistency require almost exponential size. This gives a better lower bound
for the monotone interpolation of Res(2) and a separation from Resolution as a byproduct. Our
techniques also give us a way to obtain a large class of examples that have small Resolution
refutations but require relatively large width. This answers a question of Alekhnovich and
Razborov related to whether Resolution is automatizable in quasipolynomial-time.

�
Partially supported by CICYT TIC2001-1577-C03-02, ALCOM-FT IST-99-14186 and HA2000-41.�
Partially supported by CICYT TIC2001-1577-C03-02 and HA2000-41.

1

1 Introduction

Considerable effort has gone into studying algorithms for propositional satisfiability in several
areas of computer science, despite the problem is NP-complete. The complementary problem of
verifying propositional tautologies also received considerable attention, despite the fact that the
problem is obviously also hard, namely co-NP-complete. As a consequence of the pioneering
work of Cook and Reckhow [CR79], there is strong evidence that no propositional proof system�

can prove every tautology in polynomial size. Thus, there is strong evidence that for no proof
system

�
, there will be an algorithm that will produce

�
-proofs in time polynomial in the size of

the tautology. This is because in some cases we might require super-polynomial time just to write
down the proof.

Considering this limitation of proof systems, Bonet, Pitassi and Raz [BPR00] proposed the
following definition. A propositional proof system

�
is automatizable if there exists an algorithm

that, given a tautology, produces a
�

-proof of it in time polynomial in the size of its smallest�
-proof. The idea is that if short

�
-proofs exist, an automatization algorithm for

�
should find

them quickly. Somewhat surprisingly perhaps, this weaker notion turned out to be a strong require-
ment too for several natural systems. In the sequence of papers [KP98, BPR00, BDG � 99] it was
proved that no proof system that simulates bounded-depth Frege is automatizable, unless some
widely accepted cryptographic conjecture is violated. Later, Alekhnovich and Razborov [AR01]
proved that Resolution is not automatizable under a reasonable assumption in parameterized com-
plexity theory. The situation remains unknown for proof systems that lie between Resolution and
bounded-depth Frege. In particular, it is open whether a proof system that simulates Resolution is
automatizable.

In this paper we show the robustness of a notion that we call weak automatizability, and study
in detail the particular case of Resolution. We say that a proof system

�
is weakly automatizable

if there exists proof system � and an algorithm that, given a tautology, produces a � -proof of
it in time polynomial in its smallest

�
-proof. In such a case we say that

�
is automatizable in

terms of � . Obviously,
�

is automatizable exactly when it is automatizable in terms of itself.
Thus, our notion is a natural extension. In fact, we believe that weak automatizability might be
more interesting from the point of view of applications. This is because usually we want to verify
tautologies without restricting ourselves to having proofs in a particular system. But at the same
time it is desirable to have the time of the proof search algorithm measured in terms of a proof
system that we know a lot about (such as Resolution). We discuss the robustness of this new
definition by providing several characterizations that we describe next. Let us fix a refutational
proof system

�
and consider the following weak form of the satisfiability problem:

�����	��
���
for
�

Input: A CNF formula � and a positive integer � .
Output: Return � if � is satisfiable, � if � has a

�
-refutation of size

at most � , and anything in any other case.

Intuitively, an algorithm that solves this weak form of the satisfiability problem might provide a
wrong answer, but only on those CNF formulas that require long refutations in

�
, for a bound �

of our choice. Thus, if the unsatisfiable instances of our application have short refutations for some
application-dependent reason, a fast algorithm for this problem is of practical importance. Our first

2

result is that
�

is weakly automatizable if and only if the problem
��� �	��
���

for
�

is solvable
in time polynomial in � and the size of � .

As it turns out, the computational problem
��� �	�
���

for a system
�

is not new in the
proof complexity literature. Pudlák [Pud01, Pud03], following the work of Razborov [Raz94],
considered the problem of separating the canonical NP-pair of a proof system

�
by a polynomial-

time algorithm. It is almost immediate from the definitions (see Section 2), that our problem
is a reformulation of theirs. Moreover, Pudlák [Pud03] showed that the canonical NP-pair of�

is polynomially separable if and only if there exists a proof system that simulates
�

and is
automatizable. Summing up, all four concepts introduced so far are equivalent:

(i)
�

is weakly automatizable,

(ii) There is a proof system that simulates
�

and is automatizable,

(iii)
��������
���

for
�

is solvable in time polynomial in � and the size of � ,

(iv) The canonical NP-pair of
�

is polynomially separable.

For automatizability, we also present an equivalent notion which is related to the problem of
proof size approximation first considered in [ABMP01]. We provide details in Section 3.

Let us turn our attention to the particular case of Resolution. As pointed out already, it re-
mains open whether a system that simulates Resolution can be automatizable. Thus, in view of
our previous result, it remains open whether Resolution is weakly automatizable. In this paper
we show that this question is equivalent to whether Res(2) has feasible interpolation. In fact we
show that the following are equivalent for every

��� � : (i) Resolution is weakly automatizable,
(ii) Res(

�
) is weakly automatizable and (iii) Res(

�
) has feasible interpolation. The systems Res(

�
)

and the notion of feasible interpolation will be defined in Sections 4 and 2. Let us say for the
moment, that Resolution, Cutting Planes, Relativized Bounded Arithmetic, Polynomial Calculus,
Lovász-Schrijver, and Nullstellensatz all have feasible interpolation (see [IPU94, BPR97, Pud97,
CH99, Kra97a, Raz95, PS98, Pud99]). On the other hand, the stronger system Frege, and any sys-
tem that simulates bounded-depth Frege, do not have feasible interpolation under a cryptographic
conjecture [KP98, BPR00, BDG � 99].

To prove the three equivalences mentioned above we show that Res(2) has polynomial-size
proofs of the reflection principle of Resolution, which is a form of consistency saying that if a
CNF formula is satisfiable, then it does not have a Resolution refutation. We extend this result
by proving that Res(

�
) has small proofs of its own consistency for

��� � . In contrast we show
that Resolution requires almost exponential size to prove its own consistency. As a corollary we
get an almost exponential lower bound for the monotone interpolation of Res(2) improving over
the quasipolynomial lower bound in [ABE02]. It also shows that Res(2) is almost exponentially
stronger than Resolution (recently [SBI02] proved a truly exponential separation).

These results promote the Res(
�

) systems not only as proof systems of independent interest,
but also as an important tool for studying the complexity of Resolution. As a matter of fact, our
techniques strongly depend on the fact, first noted in this paper, that the proofs in the Res(

�
)

systems are in a sense translatable into Resolution and conversely. The precise results are stated in
Section 4. We believe these techniques, although technically simple, will be useful in future work
on the algorithmic aspects of Resolution.

3

Despite the discouraging results in [AR01] mentioned before, there is still some effort put into
finding good algorithms for the proof search problem of Resolution. The first implementations
were variants of the Davis-Putnam procedure [DP60, DLL62] for testing unsatisfiability which
either produce a tree-like Resolution refutation (if one exists), or give a satisfying assignment.
For various versions of this algorithm, one can prove that it is not an automatization procedure
even for tree-like Resolution. A theoretically better algorithm for finding tree-like Resolution
refutations was proposed by Beame and Pitassi [BP96]. They give an algorithm that works in
time quasipolynomial in the size of the smallest tree-like refutation. So tree-like Resolution is
automatizable in quasipolynomial time, but the algorithm is not a good automatization procedure
for general Resolution (see [BEGJ00, BSIW02, BG01]). A more efficient algorithm is the one of
Ben-Sasson and Wigderson based on the width of a refutation. This algorithm weakly automatizes
tree-like Resolution in quasipolynomial time and automatizes Resolution in subexponential time.
On the other hand, Bonet and Galesi [BG01] gave a class of tautologies for which the algorithm
will take subexponential time to finish, matching the upper bound. Using the techniques introduced
in this paper, we show that this is not an isolated example. We describe a method to produce
tautologies that have small Resolution refutations but require relatively large width, answering
an open problem of Alekhnovich and Razborov [AR01]. As they claim, this is a necessary step
towards proving that Resolution is not automatizable in quasipolynomial-time.

2 Automatizability, Interpolation, and Reflection Principles

We reserve the letter � possibly with subindices for finite alphabets. Let
 ���

be the set of
propositional tautologies appropriately encoded in some finite alphabet. The following definitions
are taken directly from Cook and Reckhow [CR79].

Definition 1 A propositional proof system is a polynomial-time computable function �������
	 ���
that is onto. We say that the proof system is polynomially bounded if and only if there is a

polynomial ������ such that for all �
� ��� there is ����� � such that ���������� and � ������� �!� �"�#� ,
where � $� denotes the length of a string $. If �%�&�'���� , then we will say that � is an � -proof of � ,
and � is a short proof of � if in addition �(�)�*�+��!� �"�#� .

Cook and Reckhow pointed out that
 ���

is in NP if and only if there exists a polynomially
bounded proof system. They also introduced a concept that compares the relative power of proof
systems. Here is their definition:

Definition 2 Let � and , be propositional proof systems. We say that , simulates � if and only
if there is a polynomial � such that for all � and � such that �'�-����.� , there exists �0/ satisfying
�(�1/2�3�4��5�(�)�6� and , ���1/7�8�9� .

We turn next to the following more recent definitions. For a fixed proof system �:��� � 	 ���
, consider the problem of finding a proof ����� � of a given ��� ��� . Clearly, this prob-

lem is solvable in polynomial-time only if � is polynomially bounded, and in fact, only if
 �;�� �

P. A weaker requirement possibly of wider relevance might be that of solving the problem in time
polynomial in the shortest � -proof of � . With this new requirement, a proof system might not be

4

polynomially bounded in general, but the problem of finding proofs might be solvable efficiently
when short proofs exist. A proof system with this property is called automatizable. The concept
was introduced by Bonet, Pitassi, and Raz [BPR00].

Definition 3 A proof system � ��� ��	 �;��
is automatizable if and only if there is a deter-

ministic Turing machine
�

and a polynomial � such that for every � � ��� it holds that
�'� � ���1� � � � and

�
on input � halts in time at most ��!� �)�6� where � �4� � is the shortest � -proof

of � .

In some practical situations, the only relevant question is that of finding proofs in some proof
system, not necessarily � itself. If proofs in another proof system can be found in time polynomial
in the shortest � -proof, we say that � is weakly automatizable.

Definition 4 A proof system � is weakly automatizable if and only if there exists another proof
system , , a deterministic Turing machine

�
, and a polynomial � such that for every ��� ��� it

holds that , � � �-� � �8��� and
�

on input � halts in time at most � �!� ���#� where � �4��� is the shortest
� -proof of � . In that case, we say that � is automatizable in terms of , .

Observe that if � is automatizable in terms of , , then , simulates � . After all, it could be that �
is not automatizable but some proof system that simulates it is. Finally, we consider several related
algorithmic problems with respect to a proof system � . The first problem that we consider is a
separation problem, namely, that of distinguishing a �4� �;�� with a proof of size at most �
from a � that does not even belong to

 ���
. This problem was introduced by Razborov [Raz95]

(see also [Pud03]) under the name of the separation problem for the canonical pair.

Definition 5 The canonical NP-pair of a proof system � is the following pair of languages:

���� � ���-�	� ��
� �*�
� ��� and �'�-�0�8� � for some � ��� � such that �(�)�*� ������ � � � ���-�	� ��
� �*���� ��� ���
Following Pudlák [Pud03], we say that a pair of disjoint languages � ��� � � ��� is polynomially

separable if there exists a polynomial-time computable function � � � � 	 � ��� ��� such that ����� � ���
� ��� and ����� � � �!� ��� . That is, ���-�0� � � if �4�"� � , ������ � � if �4�#� � , and ������ can be � or �
elsewhere.

Observe that when considering refutational systems, such as Resolution, one works with the set
of unsatisfiable CNF formulas, instead of

 ���
. In such a case, the canonical NP-pair consists

of the set of pairs � ��� �
 � where � is a CNF with refutations of size at most � , and the set of pairs
� ��� �
 � where � is a satisfiable CNF. It is immediately seen that the canonical pair is polynomially
separable if and only if the problem

�����	�
���
for � defined in the introduction is solvable in

time polynomial in � and the size of � .
The disjointness of the canonical NP-pair for a refutational proof system � is often expressible

as a contradictory set of clauses. Suppose that

��� $% ���&� $ � is a CNF formula meaning that “ $

encodes a truth assignment that satisfies the CNF formula encoded by � .” Here, ' is the number of
clauses of the CNF formula encoded by � , and � is the number of underlying variables (� �)�)�)�)�*($.
Similarly, suppose that + � � $%-,
 ���&� �1� is a CNF formula meaning that “ � encodes an � -refutation

5

of the CNF formula encoded by � .” Here, � is the size of the refutation encoded by � , and ' and
� are as before. Under these two assumptions, the disjointness of the canonical NP-pair for � is
expressible by the contradictions

 � $% �-�&� $ ����+ � � $%-,
 ���&� �1� �
This collection of CNF formulas is known as the reflection principle of � . Notice that it is a form
of consistency of � .

We define yet another separation problem, this time it is an NP/co-NP pair.

Definition 6 The canonical NP/co-NP-pair of a proof system � and a polynomial � is the following
pair of languages:

� � , �� � ����� � �
 � �3�'����8� � for some ����� � such that � ����� �������� , �� � ����� � �
 � � for all � � � � � ������8��� implies �(�)� � � � � � ���
Notice that the problem of separating the canonical NP/co-NP pair of a proof system, is equivalent
to the problem of approximating minimal proof size within a polynomial.

We turn next to the concept of feasible interpolation introduced by Krajı́ček [Kra97a] (see also
[BPR97, Pud97]). Suppose that

� � �-�&� � � ��� � � ���&� � � � is a contradictory CNF formula, where � , � � ,
and � � are disjoint sets of variables. Note that for every given truth assignment � for the variables
� , one of the formulas

� � ��� � � � � or
� � ���	� � � � must be contradictory by itself.

Definition 7 A refutational proof system � has feasible interpolation if there exists a Turing ma-
chine

�
and a polynomial � that, given a refutation ' of an unsatisfiable CNF formula

� � �-�&� � � ���� � ���&� � � � and given a truth assignment � for the common variables,
�

on input �-'���� � halts in
��5� '1�6� steps and returns)� � ��� � � such that

��
 ���	� �
 � is unsatisfiable.

We note that this definition is a uniform version of feasible interpolation as defined in [BPR00,
Kra97a, Pud97]. If in the definition we replace the Turing machine by a Boolean circuit we obtain
the non-uniform version. Moreover, this allows us to define the monotone version of feasible
interpolation. That is, a proof system has monotone feasible interpolation if the interpolating
circuit is monotone in � when either

� � ���&� � � � or
� � ���&� � � � are such that the � -variables appear

only positively or only negatively.

3 Robustness of the Definitions

The aim of this section is to show that the definitions of Section 2 lead to a nice theory. Our
first result establishes an informative characterization of weak automatizability. We note that the
equivalence between (ii) and (iii) was first noted by Pudlák [Pud01]. We reproduce it here for
completeness:

Theorem 1 If ���3� � 	 ���
is a proof system, then the following are equivalent:

(i) � is weakly automatizable,

6

(ii) There is a proof system , that simulates � and is automatizable,

(iii) The canonical NP-pair of � is polynomially separable,

Proof : We close a cycle of implications (iii) implies (ii), (ii) implies (i), and (i) implies (iii).
(iii) implies (ii) [Pud01]. Suppose that the canonical NP-pair of � is polynomially separated

by � . Let � � be a finite alphabet that is suitable to encode pairs of the form ��� � �
 � . Let , �
� � � 	 ���

be the following proof system. If � � � � � encodes a pair of the form �-�	� �
 �
and ��� ��� � �
 � � � � , then , ��� � � � . Otherwise , ��� ��� � ��� � . We show that , simulates � .
Indeed, if � is an � -proof, then �������� � � � ��� � is a , -proof of the same formula. We also show that ,
is automatizable. The algorithm is as follows: given � , find by binary search the minimal � such
that �"� ��� � �
 � �8� � , and output �-�	� �
 � . Such an � must exist and the running time is polynomial
in the length of �-�	� �
 � .

(ii) implies (i). Suppose that ,��1� �	 	 �;��
is an automatizable proof system that simulates

� . For every ����� � , let �"�-�� be the shortest , -proof of ������ . Let
 be a polynomial such that
� ���-�0� � ��
 �!� �)�6� . Such a polynomial exists because , simulates � . Let

�
and � be the Turing

machine and the polynomial that witness the fact that , is automatizable. We may assume that � is
a monotone non-decreasing function of its argument. We claim that the same machine

�
and the

polynomial � ��
3���"� � witness the fact that � is automatizable in terms of , . To see this, suppose that
��� ��� . Let � � � � be the shortest � -proof of � and let � / �������� . Observe that � � / �*��
 �!� �)�6� .
Moreover,

�
on input � halts in at most ��!� � / �6� � ���
3�!� ���#� � steps and its output � /(/ is such that

, ��� /(/ �8�9� . This shows that � is weakly automatizable.
(i) implies (iii). Suppose that � is weakly automatizable. Let , � � �	 	 � be the proof system

in terms of which � is automatizable. Let
�

and � be a Turing machine witnessing it. Let be
the Turing machine that behaves as follows. On input ��� � �
 � , it simulates

�
on input � for �� � �

steps. If
�

halted and the output is such that , � � �-� � � � � , then it outputs � . In any other case, it
outputs � . We claim that witnesses the fact that

� �� and
� � �

are polynomially separable. Clearly,
 runs in polynomial-time. Suppose now that � has an � -proof of length at most � . Then

�
on input � halts in at most �� � � steps and outputs some � such that , �-�� � � . If follows that
outputs � on �-�	� �
 � . On the other hand, if � �� ��� , then there is no � for which , ���� �&� . It
follows that outputs � on ��� � �
 � . � �

We turn next to a similar characterization of automatizability in terms of canonical pairs. Recall
that two systems are equivalent if they simulate each other.

Theorem 2 If ���3� � 	 ���
is a proof system, then the following are equivalent:

(i) There is a proof system equivalent to � that is automatizable,

(ii) The canonical NP/co-NP-pair of � and some polynomial is polynomially separable.

Proof : We prove both implications (i) implies (ii) and (ii) implies (i).
(i) implies (ii). Let , be the automatizable proof system that is polynomially equivalent to � .

Let
�

be the automatization algorithm, and
 the time in which
�

works. Given that � and , are
polynomially equivalent, there are two polynomials � / and � /(/ , such that if �'�-�� � � , there exists � /
satisfying � � / �*� � / �5�(�)�6� and , ��� / �8�9� , and if , �-�0�8�9� , there exists � / satisfying �(� / �3�4� /(/ �5�(�)�6� and
�'�-� / �8��� . Now we need to choose a polynomial � such that � /(/ ���

���
� � � � � � �
3� � / � � � � (if � /(/ �9���

7

then � /(/ ���
���
�9�

���
�). Now we will show that the canonical NP/co-NP pair for the polynomial � and

the system � is separable. On input �-�	� �
 � , run
�

on � for
 � � / � � � � steps. If the algorithm
�

returns a proof, return � , and otherwise � .
If � has an � -proof of size at most � , then � has a , -proof of size at most � / � � � , and the

algorithm will find a proof in time
3� � / � � � � . On the other hand, if � doesn’t have an � -proof of
size at most � � � � , then , doesn’t have a proof of � of size at most � /(/ � �

���
� � � � � � . In this case, given

that � /(/ � �
���
� � � � � � �
3� � / � � � � , the algorithm will not return a proof, and the output will be � .

(ii) implies (i). Suppose that the canonical NP/co-NP-pair of � for some polynomial � is
polynomially separated by the function � . We define the propositional proof system , as in part
(iii) implies (ii) of the previous theorem. We show there that , is an automatizable propositional
proof system that simulates � . Now we will also show that � simulates , . If , ����8�9���� � � � � , by
definition � � ��� � �
 � and ��� �-�	� �
 � � � � . Then there is � / such that �'�-� / � � � and �(� / � ���� � �
(otherwise �"� ��� � �
 � � would be �). If , ����)� � � � � , then construct a small � -proof of � � � � . � �

We close this section by recalling the known relationship between the concepts of feasible
interpolation, automatizability, and reflection principles. First, let us define the following mild
condition on a proof system � . We say � is projection-closed if, whenever

� �-�0� has an � -proof
of size � , any restriction of

� ���� by a partial truth assignment on � has an � -proof of size at
most polynomial in � . We note that most natural proof systems are projection-closed, and that the
definition applies as well to refutational systems.

Theorem 3 ([BPR00]) Let � be a refutational proof system that is projection-closed. If � is au-
tomatizable or weakly automatizable, then � has feasible interpolation.

In fact, in [BPR00], this result is stated and proved for � automatizable. We note that a similar
proof works for � weakly automatizable.

The following is a partial converse:

Theorem 4 ([Pud03]) If the reflection principle of � has polynomial-size refutations in a proof
system that has feasible interpolation, and the refutations are given uniformly in polynomial-time,
then � is weakly automatizable.

4 Resolution Based Propositional Proof Systems

Resolution is a refutational proof system for CNF formulas, that is, conjunctions of clauses. The
system has one inference rule, the resolution rule:

� � � � � � �� � �
where � is a variable, and

�
and � are clauses. The refutation finishes with the empty clause.

The size of a Resolution refutation is the number of clauses in it. The system tree-like Resolution
requires that each occurence of a clause is used at most once. When this restriction is not fulfilled,
we say that the refutation is in DAG form.

8

A
�

-term is a conjunction of up to
�

literals. A
�

-disjunction is an (unbounded fan-in) dis-
junction of

�
-terms. The refutation system Res(

�
), defined by Krajı́ček [Kra01], works with

�
-

disjunctions. There are three inference rules in Res(
�

): Weakening, � -Introduction, and Cut.
�

� � �
� ��� � � � � � 	 � �)�)� � ��� �� � � � � � � � �)�)� � � � �

� � � � � � �)�)� � ��� � � � ��� � � � �)� � ������ � �
Here

�
and � are

�
-disjunctions, the

�

’s are literals, and � � � . We also allow the axioms � � � � .

Observe that Res(1) is equivalent to Resolution since the axioms and the weakening rule are easy
to eliminate in this case. The size of a Res(

�
) refutation is the number of

�
-disjunctions in it. As in

Resolution, the tree-like version of Res(
�

) requires each occurrence of a
�

-disjunction to be used
only once.

For every set of literals
� � �)�)�)��� � � we define a new variable $1� � � �)�)�)�)� � � � meaning

� � � � �)� � � � .
The following clauses define $1� � � �)�)�)� � � � � :

� $1� � � �)�)�)��� � � � ���
 for every)� � � �)� �)�)��� ���� � � �)� � � ��� � � $1� � � � �)�)�)� � � �
Let � be a CNF formula on the variables � � �)�)�)� � � $. For every integer

� � � , we define � � � � as
the conjunction of � with all the defining clauses for the variables $1� � � �)� �)�)� � � � for all � � � .
Lemma 1 If � has a Res(

�
) refutation of size

, then � � � � has a Resolution refutation of size	 � �
 � . Furthermore, if the Res(

�
) refutation is tree-like, then the Resolution refutation is also

tree-like.

Proof: Let
 be a Res(
�

) refutation of size

. To get a Resolution refutation of � � � � , we will first
get a clause for each

�
-disjunction of
 . The translation consists in replacing each conjunction� � ���)�)��� � � for � � � in a
�

-disjunction of
 by $1� � � �)� �)� � � � � . Also we have to make sure that we
can make this new sequence of clauses into a Resolution refutation so that if
 is tree-like, then
the new refutation will also be. We have the following cases:

Case 1: In
 we have the step:
� � � � � ���)� ��� � � � � � ��� � � �)�)� � ��� �� � �

The corresponding clauses in the translation will be:
� / � $1� � � �)�)�)� � � � � , � / � ��� � � �)�)� � ��� � and� / � � / . To get a tree-like proof of

� / � � / from the two other ones, first obtain
� $1� � � �)�)�)� � � � � � � /

in a tree-like way from � / ����� � � �)� � ����� � and the clauses
� $1� � � �)� �)� � � � � ��
 . Finally resolve� $1� � � �)�)�)�)� � � � � � / with

� / � $1� � � �)�)�)� � � � � to get
� / � � / .

Case 2: In
 we have the step:
� ��� � � � � � 	 � �)�)� � � � �� � � � � � � � �)�)� � ��� �

The corresponding clauses in the translation will be:
� / ��� � , � / � $1� � 	 � �)�)�)� � � � and

� / � � / �
$1� � � �)�)�)��� � � � . Notice that there is a tree-like proof of

��� � � � $1� � 	 � �)�)�)� � � � � $1� � � �)� �)� � � � � from the
clauses of � � � � . Using this clause and the translation of the premises, we get

� / � � / � $1� � � �)�)�)�)� � � � .
9

Case 3: The Weakening rule turns into a weakening rule for Resolution which can be eliminated
easily.

At this point we have obtained a Resolution refutation of � � � � that may use axioms of the type
� � � � . These can be eliminated easily too. � �
Lemma 2 If � � � � has a Resolution refutation of size

, then � has a Res(

�
) refutation of size	 � �
 � . Furthermore, if the Resolution refutation is tree-like, then the Res(
�

) refutation is also
tree-like.

Proof : We first substitute each clause of the Resolution refutation by a
�

-disjunction by translating
$1� � � �)�)�)��� ��� � into

� � � �)�)��� ��� and
� $1� � � � �)�)�)� ��� � into

��� � � �)�)� � ����� . At this point the rules of the
Resolution refutation turn into valid rules of Res(

�
).

Now we only need to produce proofs of the defining clauses of the $ variables in Res(
�

) to
finish the simulation. The clauses

� $1� � � �)� �)�)� ��� � � �
 get translated into
��� � � �)�)� � ����� ���
 , which

is a weakening of the axiom
�
 � ���

. The clause
��� � � �)�)� � ����� � $1� � � �)�)�)��� ��� � gets translated into��� � � � �)� � ��� � � � � � � �)�)� � � � � which can be proved form the axioms

�
 � ���

using the rule for the

introduction of � . � �

5 Resolution: Reflection Principle and Weak Automatizability

In this section we establish the equivalence between: (i) Resolution is weakly automatizable, (ii)
Res(
�

) is weakly automatizable and (iii) Res(
�

) has feasible interpolation, when
� � � . In the

course of the proof we need to study the provability of the reflection principle of Resolution.
In what follows we will need a concrete encoding of the reflection principle. We start with the

encoding of

 � $% �-�&� $ � . The encoding of the set of clauses by the variables in � is as follows.

There are variables � ��,
 , � for every �
��� ��� ��� , 	�� � � �)� �)�)� �&� and �4� � � �)� �)�)� ' � . The meaning
of � � ,
 , � is that the literal (
 appears in clause � , while the meaning of � � ,
 , � is that the literal

� (

appears in clause � .

The encoding of the truth assignment � � � ��� ��� $ by the variables $ is as follows. There
are variables $
 for every 	 � � � �)�)�)��� �&� , and $ ��,
 , � for every � � � ��� � � , 	 � � � � �)�)��� � � and
� � � � �)�)� � � ' � . The meaning of $
 is that variable (
 is assigned true under the truth assignment.
The meaning of $ � ,
 , � is that clause � is satisfied by the literal (
 , and the meaning of $ � ,
 , � is that
clause � is satisfied by the literal

� (
 . Here is the set of clauses that formalizes

��� $% ���&� $ � :

$ � , � , � � $ � , � , � � �)� � � $ � , $, � � $ � , $, � � � � � $ � ,
 , � � $
 ���*�� $ ��,
 , � � � ��,
 , � ���*� � $ � ,
 , � � � $
 �	�3�
The meaning of clause (1) is that at least one literal is chosen to be satisfied in clause � . The
meaning of clauses (2) and (4) ensure the consistency of this choice between clauses. The meaning
of clause (3) is that if some literal satisfies clause � , then it appears in the clause.

The encoding of + � � $%-,
 �-� � � � is quite standard. The encoding of the set of clauses by the
variables in � is as before. The encoding of the Resolution refutation by the variables in � is as
follows. There are variables � ��,
 , � for every � � � ��� ��� , 	 � � � �)�)�)� � � � , and � � � � �)� �)�)� ��� .
The meaning of � � ,
 , � is that the literal (
 appears in clause � of the refutation. Similarly, the
meaning of � � ,
 , � is that the literal

� (
 appears in clause � of the refutation. There are variables

10

� � , � and
 �-, � for every �4� � � �)� �)�)� ��� and
� � � ' �)� �)� � � � . The meaning of � � , � (of
 ��� , �) is that

clause
� � is obtained from clause

� � (from clause
� ���), and

� � contains the resolved variable
positively (

� ��� contains it negatively). Finally, there are variables �
 , � for every 	 � � � �)� �)�)� �&�
and
� �"� '��)�)� � � ��� . The meaning of �
 , � is that clause

� � is obtained by resolving upon (
 . We
formalize this by the following set of clauses:

� � ��,
 , � � � ��,
 , � � � � � � ��,
 ,
 ��� �� � � ,
 , � � � � � ,
 , � ��� � � � , � � �)�)� � � � � � , � ��	 �

 � , � � �)�)� �
 � � � , � ��
 � � � �-, � � �
 � , � � � �*�� � � , � � � � � � , � � � � � �
 � , � � �
 � � , � � � �*�� � � , � � � �
 , � � � � ,
 , � � � � � �
 � , � � � �
 , � � � � ,
 , � � � �3�� � � , � � �
 , � � � � ��,
 , � � � ��,
 , � � � � � �
 � , � � �
 , � � � � ��,
 , � � � ��,
 , � � ���*�
� � , � � �)�)� � � $, � � ��� � � �
 , � � � �
 � , � � ��	*�

The index � / ranges over � � �)�)�)��� ��� with � / �� � , and the index 	 / ranges over � � � �)�)�)� �&� with
	 / �� 	 . The meaning of clause (5) is that the initial clauses of the refutation are those of the
formula. The meaning of clause (6) is that the last clause of the refutation is empty. The meaning
of clause (7) is that the clauses of the refutation are not tautologies. Clauses (8) and (9) indicate that
clause

� � is obtained from two previous clauses, one with the resolved variable positive and the
other negative. Clauses (10), (11) and (12) ensure the structure of the resolution rule. Clauses (13)
and (14) express that if a clause

� � is obtained from
� � by resolving on variable (
 (or

� (
), then (

(or

� (
) appears in
� � . Clauses (15) and (16) express that after applying the rule, the non-resolved

literals stay. Finally, clauses (17) and (18) say that
� � is obtained by resolving exactly one variable.

Notice that this encoding has the appropriate form of the monotone feasible interpolation
because the � -variables appear only positively in

����$% ���&� $ � and in fact, only negatively in
+ � � $%-,
 ���&� �1� too. This will be of use later.

Theorem 5 The reflection principle for Resolution,

����$% ���&� $ � � + � � $%-,
 ���&� �1� , has Res(2) refu-

tations of size ��� '� � � ��� �
���

.

Proof : The goal is to get the following 2-disjunction

� ���
$�

�� � �-� � ,
 , � � $
 � � �-� � ,
 , � � � $
 �

for every
� � � � �)�)�)� � ��� . The empty clause will follow by resolving �
 with (6). We distinguish

two cases:
� ��' and '�� � � � . Since the case

� ��' is easier, we leave it to the reader.
For the case '�� � � � , we show how to derive � � from � � �)�)�)��� � � � � . First, we derive� � � , � � �
�� , � � � � . From (14) and (7) we get

�
�� , � � � ��� , � � � � � , � , � . Resolving with ��� on � � , � , �
we get

�
 � , � � � � � , � � ��� � , � , � � � $ � � �
$�

� �"!�$#�"%
�-� � ,
 , � ��$
 � � ��� � ,
 , � � � $
 �*� (19)

A cut with $ � � � $ � on � � , � , � � � $ � gives

�
&� , � � � ��� , � � � $�� �
$�

� ��!�$#��%
��� � ,
 , ����$
 � � ��� � ,
 , ��� � $
 � � (20)

11

Let
 / ���
 . A cut with $ � � � � $ � � on � � , � � , � ��$ � � gives

�
 � , � � � � � , � � � $ � � $ � � � ��� � , � � , � � � $ � � � � �

��� � , � � ���

� ,
 , � ��$
 � � ��� � ,
 , � � � $
 � � (21)

From (16) and (18) we get
�
 � , � � � � � , � � � � � , � � , � � � � , � � , � . Resolving with (20) on � � , � � , � � $ � � gives

�
 � , � � � � � , � � � $ � � � � , � � , � � �-� � , � � , � � � $ � � � � �

��� � , � � ���

� ,
 , � � $
 � � ��� � ,
 , � � � $
 � � (22)

An introduction of conjunction between (21) and (22) gives

�
 � , � � � � � , � � � $ � � �-� � , � � , � � $ � � � � �-� � , � � , � � � $ � � � � �

��� � , � � ���

� ,
 , � ��$
 � � ��� � ,
 , � � � $
 �*� (23)

From (16) and (18) we also get
�
�� , � � � ��� , � � � � � , � � , � � � � , � � , � . Repeating the same procedure we

get

�
 � , � � � � � , � � � $ � � ��� � , � � , � ��$ � � � � ��� � , � � , � � � $ � � � � �

��� � , � � �-�

� ,
 , � ��$
 � � ��� � ,
 , � � � $
 � � (24)

Now, repeating this two-step procedure for every
 / ���
 , we get

�
�� , � � � ��� , � � � $ � � �

��� � ���

� ,
 , � �%$
 � � �-� � ,
 , � � � $
 � � (25)

A dual argument yould yield
� � �-, � ��� � � , � � $ � ���
��� � �-� � ,
 , � � $
 � � ��� � ,
 , � � � $
 � . A cut with

(25) on $ � gives
� � �-, � � �
 � , � � � � � , � � �
��� � �-� � ,
 , � � $
 � � �-� � ,
 , � � � $
 � . Weakening gives then� � � , � � �
 � , � � � � � , � � � � . Since the indices � ,

�
, and
 were arbitrary, we obtain the same formula

for every such triple. Using (17) gives
� � �-, � � �
 � , � � � � , again for every pair of indices � and

�
.

To complete the proof, we use this with (8) to get
�
 � , � � � � for every

�
, and then (9) to get � � .

For the size of the refutation, we consider both cases
� � ' and

� � ' . There are ' initial
clauses and each corresponding � � has size

	 ����� . Deriving all of these takes size ��� ' ��� �
���

. The
rest of � � ’s also have size

	 ���"� and there are ��� ' of these. Deriving � � �
�

from � � � �)�)��� � �
takes size ��� � ��� �

���
because

� � �
�

can be derived from any pair of previous clauses. Overall, this
is size ��� ' � � ��� �

���
. � �

The previous theorem can be generalized to reflection principles for Res(
�

). This requires a
modification of + � � $%-,
 ���&� �1� to refutations in Res(

�
). For Resolution, the refutation was encoded

by the variables � ��,
 , � meaning that the variable (
 appears in clause � positively or negatively. Now
we need variables � � ! ,
 ! ,������ , �
	 ,
 	 , � for

� � � � �)�)� �)� � � , � � �)� �)�)� � � � � ��� � � , 	 � �)�)�)����	 � � � � � �)�)�)� �&� , and
�4� � � �)� �)�)� ��� . Their meaning is that the

�
-disjunction

� � contains the term (� � !
�
 ! � �)�)����(� � 	

�
 	 ,

where (� �
�

is (
 and (�
���

is
� (
 . The structure of the refutation is encoded by variables � , � ,
 , and

� . The variables � � , � �)� �)�)���� , � for �4� � � �)�)�)� � ��� specify whether
� � is obtained by weakening,

introduction of conjunction, cut, or is an axiom respectively. The variables � �-, � � (
 � , � �) for � ��� / �
� � � �)�)�)� ��� indicate that the left (right) hypothesis of

� � � is
� � . The variables � � ! ,
 ! ,������ , ��	 ,
 	 , � have

different meanings depending on the rule. If
� � is obtained by cut, it means that the resolved term

is (� � !
�
 ! � �)�)��� (� � 	

�
 	 . If
� � is obtained by introduction of conjunction, it means that the introduced

12

conjunction is (� � !
�
 ! � �)�)��� (� � 	

�
 	 . Notice that the rule has a fixed format, namely, the first literal is
in the left hypothesis, and the conjunction of the rest is in the right hypothesis. If

� � is an axiom, it
specifies which variable is in the axiom and

� ��� in this case. If
� � is obtained by weakening, the

values of � are irrelevant. Writing the set of clauses expressing this is straightforward. We only
give an example of one of the new clauses. The clause

� � 	 , ��� � � � �-, ��� � � � � ! ,
 ! ,������ , � 	 ,
 	 , ��� � � � ! ,
 ! , �
means that if

� ��� is obtained by introduction of conjunction with
� � as left hypothesis, and the

introduced conjunction is (� � !
�
 ! � �)�)� � (� ��	

�
 	 , then the literal (� � !
�
 ! appears in

� � .
The resulting set of clauses is called + � � $, �%-,
 ���&� �1� . Notice the new superindex

�
in + � � to

indicate that the refutation is in Res(
�

).

Theorem 6 The reflection principle for Res(
�

),

��� $% ���&� $ � � + � � $, �%-,
 �-�&� � � , has Res(

� �) refu-
tations of size ��� '� � � � � � � �

���
.

Proof sketch: It suffices to prove, for every � � � � �)� �)�)� ��� , the following � � � � -disjunction

� � � � ��� � ! ,
 ! ,������ , � 	 ,
 	 , � ��$ � � !
�
 ! � � �)� �%$ � � 	

�
 	 �*�
where the disjunction ranges over

� � � � � �)�)��� � � , �
� �)�)�)�)� ��� � � ��� � � , 	 � �)�)� �)��	 � � � � � �)�)�)� �&� .

The meaning of � � is that at least one of the
�

-terms that appear in
� � is satisfied by the truth

assignment $ � � �)�)��� $ $. � �
We want to point out that a small change in the encoding of the reflection principle for Res(

�
)

preserves the form of the feasible interpolation and has polynomial-size proofs in Res(2). This
change consists in adding new $ -variables and new clauses to

����$% ���&� $ � . These variables will
encode the conjunctions of up to

�
literals on $ � �)�)�)��� $ $. More precisely, the new variables are

$1� � � �)�)�)��� � � � for � � � , where
�

is a literal on $ � �)�)�)� � $ $, as defined in Section 4. The new clauses
are those exposed in Section 4 defining $1� � � �)�)�)�)� � � � . The resulting formula is called

���$, �% ���&� $ � .
Again notice the new superindex

�
in

���

.

Theorem 7 The reflection principle for Res(
�

),

��� $, �% ���&� $ � � + � � $, �%-,
 �-�&� � � , has Res(2) refuta-

tions of size ��� � ' � � � � � � �
���

. Moreover,

��� $, �% ���&� $ � � + � � $, �%-,
 �-�&� � � preserves the form of

monotone feasible interpolation.

Proof sketch: Again, it suffices to prove, for every �
� � � � �)�)��� ��� , the following 2-disjunction

� ��� � ��� � ! ,
 ! ,������ , � 	 ,
 	 , � �%$1��$ � � !
�
 ! �)�)� � � $ � � 	

�
 	 � � �
where the disjunction ranges over

� � � � �)� �)� � � � , � � �)�)�)��� � � � � ��� ��� , 	 � �)�)� � ��	 � � � � � �)�)��� � � . � �
Let us note that the technique of the previous two theorems cannot be pushed to show that

Resolution proves the reflection principle of Res(
�

) while preserving the form of feasible interpo-
lation. This is because the formula � � in the proof has conjunctions that involve � and $ -variables,
which prevents us from defining their conjunction without mixing them.

Our next result shows the exact relationship between feasible interpolation and weak automa-
tizability for Res(

�
). In its proof, we will use what we have learned about reflection principles.

13

Theorem 8 For every constant
��� � , the following are equivalent:

(i) Resolution is weakly automatizable,

(ii) Res(
�

) is weakly automatizable,

(iii) Res(
�

) has feasible interpolation.

Proof : (i) � (ii) Suppose Resolution is weakly automatizable. Then by Theorem 1, the canonical
NP-pair of Resolution is polynomially separable. We claim that the canonical NP-pair of Res(

�
) is

also polynomially separable. Here is the separation algorithm: given � and a number � in unary,
we build � � � � and run the separation algorithm for the canonical pair of Resolution on � � � � and��� � � � in unary, where � is the hidden constant in Lemma 1. The running time of this algorithm
is polynomial in the size of � � � � and � , which is polynomial in the size of � and � because

�

is a constant. For the correctness, note that if � has a Res(
�

) refutation of size � , then � � � � has
a Resolution refutation of size at most ��� � � � by Lemma 1, and the separation algorithm for the
canonical pair of Resolution will return � on it. On the other hand, if � is satisfiable, so is � � � �
and the separation algorithm for Resolution will return � on it.

(ii) � (iii) This is Theorem 3.
(iii) � (i) This is a consequence of Theorem 5 and Theorem 4 because

��� � . � �
It is known that Resolution has feasible interpolation, and in fact monotone [Kra97a, Pud97].

However, it is not clear whether Res(
�

) has feasible interpolation for
��� � . We know, how-

ever, that Res(
�

) does not have monotone feasible interpolation (see [ABE02] and Corollary 1 in
this paper). On the other hand, tree-like Res(

�
) has feasible interpolation, even monotone, since

Resolution polynomially simulates it [EGM02].
If
�

is no longer a constant, say
� �
	��� � , the weak automatizability of Resolution would

imply the feasible interpolation of Res(
�

) in time � � � �
�
. This is because computing � � � � requires

time � � � �
�
. Therefore, in order to establish that Resolution is not weakly automatizable it would

suffice to prove that Res(��� �) does not have feasible interpolation in time � � ������� $ � .
6 Resolution: Lower Bound for the Reflection Principle

The next natural question to ask is whether the reflection principle for Resolution

��� $% ���&� $ � �

+ � � $%-,
 ���&� �1� has refutations of moderate size in Resolution itself. Since Resolution has feasible
interpolation [Kra97a, Pud97], a positive answer would imply that Resolution is weakly automati-
zable. Unfortunately, as the main result of this section shows, this will not happen. Before stating
it we need two technical well-known results.

The first is a result due to Alon and Boppana. Let � � ��� � � � / � be the set of monotone functions
that separate

�
-cliques from

� / -colorings on � nodes.

Theorem 9 ([AB87]) If � � � � ��� � � � / � where � � � / � � and
��� � / � ���*� 	�	��� � � , then

 � �-�"� � �	 �
�

� � � � / 	��� ���
��� � � �

��� � 	
�

where

 � ����� is the monotone circuit size of � .

14

The second result that we need is due to Maciel, Pitassi and Woods. Let
��� �
$ be the set of

clauses encoding the pigeonhole principle with � pigeons and � holes. That is,
��� �
$ is

�
 , � � � � � � �
 , $ � (26)� �
 , � � � � �-, � � (27)

where 	 ��� � � � � �)�)�)� ��� , 	 �� � , and
� � � � � �)�)�)� �&� .

Theorem 10 ([MPW02])
��� � 	 $$ has Res � � 	��� �"��� �

���
� refutations of size �

������� $ ����� !��
.

In addition to these two results, we also need the fact that Resolution has monotone feasible
interpolation as shown in [Kra97b, Pud97]. Recall the definition of monotone feasible interpolation
in Section 2 just after Definition 7. We are now ready to state and prove the main result of this
section. Its proof uses an idea due to Pudlák [Pud03].

Theorem 11 Let � be a parameter. For a choice of � , ' , and � of the order of a quasipolynomial
�
� ����� � � ��� !��

, every Resolution refutation of

���$% ���&� $ � � + � � $%-,
 �-� � � � requires size at least �
	 �

� !��� �
.

Proof : Suppose for contradiction that there is a Resolution refutation of size

 � ��� �

� !��� �
. Let

� �
�
� � 	

, and let
� 	 � � � � �
 � be the CNF formula expressing that
 encodes a

�
-coloring of the graph

on � nodes encoded by �5�
 � � . An explicit definition is the following: For every 	 � � � � �)�)�)��� � ,
there is a clause of the form

� �� � �

 � ; and for every 	 ����� � � �)�)� �)��� � with 	 �� � and
� � � � � �)�)�)� � � ,

there is a clause of the form
�

 � ���
 � � � � �
 � . Let

� 	 � � ��� �
*� be the result of replacing the
�
 � -variables in

� 	 � � � � �
 � by the values � � � depending on whether the edge � 	 ��� � is or is not in
� . Obviously, if � is

�
-colorable, then

� 	 � � ��� �
 � is satisfiable, and if � contains a � � -clique,
then

� 	 � � ��� �
*� is unsatisfiable. More importantly, if � contains a � � -clique, then the clauses
of
��� � 	 �� are contained in

� 	 � � ��� �
*� . Now, for every graph � on � nodes, let � ���;� be the
clauses

� 	 � � ��� �
 � together with all clauses defining the extension variables for the conjunctions
of up to � 	��� � � � literals on the
 -variables. Here, � is a constant so that the �

������� � ���
� !��
upper bound

on
��� � 	 �� of Theorem 10 can be done in Res � � 	��� � � � � . From Theorem 10 and Lemma 1, if �

contains a � � -clique, then � ���;� has a Resolution refutation of size �
������� � � ��� !��

.
In the following, let � be the number of variables of � ���;� , let ' be the number of clauses of

� ���;� , and let � � �
� ����� � ����� !��

. Consider the formulas

 � $% �������;�*� $ � ��+ � � $%-,
 ���������*� �1� where

�����;� is the � -encoding of the formula � ���;� . By assumption, these formulas have Resolution
refutations of size at most

. Let

�
be the monotone circuit that interpolates these formulas given

by the monotone feasible interpolation of Resolution. The size of
�

is

 � �

���
. Moreover, if � is

�
-colorable, then

��� $% �-�"���;� � $ � is satisfiable, and
�

must return � on �"���;� . Also, if � contains
a � � -clique, then + � � $%-,
 ���������*� �1� is satisfiable, and

�
must return � on ������� . Now, an anti-

monotone circuit for separating � � -cliques from
�

-colorings can be built as follows: given a graph
� , build the assignment �"���;� (anti-monotonically, see below for details), and apply the monotone
circuit given by the monotone interpolation. The size of this circuit is � � �

� !��� �
, and this contradicts

Theorem 9.
It remains to show how to build an anti-monotone circuit that, on input � � �5������� , produces

�����;� , that is, the values of � ��,
 , � that correspond to the encoding of � ���;� in terms of the � -
variables. There are three types of clauses in � ���;� :

15

1. Clauses of the type
� �� � �

 � : Let � be the numbering of this clause in � ���;� . Then, its encod-

ing in terms of the � -variables is produced by outputting the constant � for � � , � � ! , � �)�)�)��� � � , � ��� , � .
The rest of the outputs of clause � are � .

2. Clauses of the type
�

 � � �
 � � � � �
 � : Let � be the numbering of this clause in � ����� . The

encoding is � � , � � 	 , � � � , � � , ��� 	 , � � � , � � , � � � , � � � �
 � and the rest are zero. Notice that this
encoding is anti-monotone in the �
 � ’s. Notice also that the encoded � ���;� contains some
� -variables (and not only
 -variables as the reader might have expected) but this will not be
a problem since the main properties of � ���;� are preserved as we show below.

3. Finally, the clauses defining the conjunctions of up to � 	��� � � � literals are independent of �
since only the
 -variables are relevant here. Therefore, the encoding is done as in the first
case.

The reader can easily verify that when � contains a � � -clique, the encoded formula contains
the clauses of

��� � 	 �� and the definitions of the conjunctions up to � 	��� � � � literals. Therefore
+ � � ���������*� �1� is satisfiable because

��� � 	 �� has a small Res � � 	��� � � � � refutation. Similarly, if �
is
�

-colorable, the formula

 � �-�"���;� � $ � is satisfiable by setting $ � � � � �
 � and

 � � � if and

only if node 	 gets color
�
. Therefore, the main properties of � ���;� are preserved, and the theorem

follows. � �
An immediate corollary of the last two results is that Res(2) is exponentially more powerful

than Resolution. In fact, the proof shows a lower bound for the monotone interpolation of Res(2)
improving over the quasipolynomial lower bound in [ABE02].

Corollary 1 Monotone circuits that interpolate Res(2) refutations require size � 	 �
� !��� �

on Res(2)
refutations of size �

� ����� � ���
� !��
.

7 Short Proofs that Require Large Width

The width of a Resolution refutation is the number of literals of the largest clause. Ben-Sasson and
Wigderson [BSW01] proved that the following relationship holds. Let � be a

�
-CNF formula with

� variables and a Resolution refutation of size

. Then � has a Resolution refutation of width at
most

�
� 	��� �
 � � . This suggests the following proof search procedure for Resolution: Derive

all possible clauses using derived clauses of increasing width � � ��� ���)�)�)� until the empty clause is

found. The running time of this algorithm is bounded by � � � � $ ����� ��� � � � �
, which is subexponential

if

is polynomial in � , say.
Bonet and Galesi [BG01] gave an example of a � -CNF formula with small Resolution refu-

tations that requires relatively large width (square root of the number of variables). This showed
that the size-width trade-off of Ben-Sasson and Wigderson could not be improved. Also it showed
that the algorithm of Ben-Sasson and Wigderson for finding Resolution refutations could perform
very badly in the worst case. This is because their example requires large width, and the algorithm
would take almost exponential time, while we know that there is a polynomial size Resolution
refutation.

16

Alekhnovich and Razborov [AR01] posed the question of whether more of these examples
could be found. They say this is a necessary first step for showing that Resolution is not autom-
atizable in quasipolynomial-time. Here we give a way of producing such bad examples for the
algorithm. Basically the idea is finding CNFs that require sufficiently high width in Resolution,
but that have polynomial size Res(

�
) refutations for small

�
, say

� � 	��� � . Then the example
consists in adding to the formula the clauses defining the extension variables for all the conjunc-
tions of at most

�
literals. Below we illustrate this technique by giving a large class of examples

that have small Resolution refutations but that require large width. Moreover, deciding whether a
formula is in the class is hard (no polynomial-time algorithm is known).

Let � � � ����� � � � be a bipartite graph on the sets
�

and
�

of cardinality � and � respectively,
where � � � . The � -

��� �
$, defined by Ben-Sasson and Wigderson [BSW01], states that there is
no matching from

�
into

�
. For every edge ���&� (��� � , let � � , � be a propositional variable meaning

that � is mapped to (. The principle is then formalized as the conjunction of the following clauses:

� � , � ! � �)�)� � � � , ��� for � � � � 	�)���� ��� (� � �)�)��� (% ���� � � , � � � � � � , � for (�� � �
� ��� / � ��)�-(1� �� ���� / �
Here, 	�)��� � denotes the set of neighbors of � in � . Note that if � has left-degree at most � , then
the width of the initial clauses is bounded by � .

Ben-Sasson and Wigderson proved that whenever � is expanding in a sense defined next, every
Resolution refutation of � -

��� �
$ must contain a clause with many literals. We observe that this
result is not unique to Resolution and holds in a more general setting. Before we state the precise
result, let us recall the definition of expansion:

Definition 8 ([BSW01]) Let �:� � ����� � � � be a bipartite graph where � � �3� � , and � � � � � .
For

� /�� �
, the boundary of

� / , denoted by � � / , is the set of vertices in
�

that have exactly one
neighbor in

� / ; that is, � � / � � (�� � ��� �-(1� � � / � ��� � . We say that � is � ��� � �*' � ��� -expanding
if every subset

� / � �
of size at most ' is such that � � � / � � � � � � / � .

The proof of the following statement is the same as in [BSW01] for Resolution.

Theorem 12 ([BSW01]) Let
�

be a sound refutation system with all rules having fan-in at most
two. Then, if � is � ��� � � '�� �"� -expanding, every

�
-refutation of � -

��� �
$ must contain a formula
that involves at least ' � � � distinct literals.

Now, for every bipartite graph � with � � � � , let �����;� be the set of clauses defining � -��� �
$ together with the clauses defining all the conjunctions up to � 	��� �"� � literals, where � is
a large constant so that the �

������� $ � �
� !��
upper bound on

��� � 	 $$ of Theorem 10 can be done in
Res � � 	��� �"� � � .
Theorem 13 Let � be an � ��� � ��� ��� � 	��� � �*��� 	��� � � -expander with � � � � and left-degree at
most 	��� � . Then (i) �8���;� has initial width 	��� � , (ii) any Resolution refutation of �8���;� requires
width at least � ��� �*� 	��� �"� � � , and (iii) �8���;� has Resolution refutations of size �

� ��� � $ ���
� !��
.

17

Proof : Part (i) is obvious. For (ii), suppose for contradiction that �����;� has a Resolution refuta-
tion of width � ���*��� �*� 	��� �"� � � . Then, by the proof of Lemma 2, � -

��� �
$ has a Res � � 	��� �"��� �
refutation in which every � 	��� �"� � -disjunction involves at most � 	��� ��� � � ���*���"� literals. This con-
tradicts Theorem 12. For (iii), recall that

��� �
$ has a Res � � 	��� �"��� � refutation of size �
� ��� � $ ���
� !��

by Theorem 10 since � � � � . Now, setting to zero the appropriate variables of
��� �
$, we get

a Res � � 	��� �"��� � refutation of � -
��� �
$ of the same size. By Lemma 1, �8���;� has a Resolution

refutation of roughly the same size, which is polynomial in the size of the formula. � �

8 Conclusions and Open Problems

It is surprising that the weak pigeonhole principle
��� � 	 $$ has short Resolution proofs when en-

coded with the clauses defining the extension variables for the small conjunctions. We exploited
this fact in the proof of Theorem 11. The astute reader will notice that any small refutation in
any Frege system could be translated into a short Resolution refutation when the CNF is enriched
with clauses defining new variables for each of the intermediate formulas that are used in the Frege
proof. However, the crucial difference of this approach is that the new encoding is not canonical:
there is no uniform method to obtain it. As a matter of fact, although the pigeonhole principle has
polynomial-size proofs in Frege, this approach would not allow us to improve the non monotone
interpolation to a truly exponential lower bound because the � � -clique of the graph is unknown to
us beforehand.

We showed that the connection between weak automatizability of Resolution and interpolation
of Res(2) extends to Res(

�
) for any

� � � . As a matter of fact, in order to prove that Resolu-
tion is not weakly automatizable, it suffices to show, for example, that Res(��� �) does not have
interpolation in subexponential-time. This leaves some hope of proving such a result with current
techniques because Res(��� �) is a fairly strong system (e.g. it proves the weak pigeonhole prin-
ciple in quasipolynomial-size). However, let us note that the non-interpolation for bounded-depth
Frege of [BDG � 99] assuming that numbers cannot be factored in subexponential-time does not
seem to establish the non-interpolation for any particular constant depth. Notice that Res(��� �) is
a depth-two system.

Of course, it remains open whether Resolution is weakly automatizable, or automatizable in
quasipolynomial-time. Let us note that the width method for Resolution leads to some non-obvious
results along these lines. For example, the width-based algorithm of Ben-Sasson and Wigderson
solves

�����	�
���
for tree-like Resolution in time � � �������
 � � � � � � ��� , where � is the number of

variables of � . This is quasipolynomial if � is polynomial in � . Similarly, it allows us to solve�����	�
���
for general Resolution in time � � � � $ ��� �
 � � �
� � � ��� . This is subexponential if � is

polynomial. The negative results of [AR01] do not rule out further improvements on these. Also,
it would be interesting to get results of this type for other propositional proof systems.

Acknowledgment. We are grateful to Pavel Pudlák for stimulating discussions on the idea of Theorem 11.

18

References

[AB87] N. Alon and R. B. Boppana. The monotone circuit complexity of boolean functions.
Combinatorica, 7:1–22, 1987.

[ABE02] A. Atserias, M. L. Bonet, and J. L. Esteban. Lower bounds for the weak pigeonhole
principle and random formulas beyond resolution. Information and Computation,
176(2):136–152, 2002. A preliminary version appeared in ICALP’01.

[ABMP01] M. Alekhnovich, S. Buss, S. Moran, and T. Pitassi. Minimum propositional proof
length is NP-hard to linearly approximate. Journal of Symbolic Logic, 66:171–191,
2001.

[AR01] M. Alekhnovich and A. A. Razborov. Resolution is not automatizable unless W[P]
is tractable. In 42nd Annual IEEE Symposium on Foundations of Computer Science,
pages 210–219, 2001.

[BDG � 99] M. L. Bonet, C. Domingo, R. Gavaldà, A. Maciel, and T. Pitassi. Non-automatizability
of bounded-depth Frege proofs. In 14th IEEE Conference on Computational Com-
plexity, pages 15–23, 1999. Accepted for publication in the Journal of Computational
Complexity.

[BEGJ00] M. L. Bonet, J. L. Esteban, N. Galesi, and J. Johansen. On the relative complexity of
resolution refinements and cutting planes proof systems. SIAM Journal of Computing,
30(5):1462–1484, 2000. A preliminary version appeared in FOCS’98.

[BG01] M. L. Bonet and N. Galesi. Optimality of size-width trade-offs for resolution. Com-
putational Complexity, 2001. To appear. A preliminary version appeared in FOCS’99.

[BP96] P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In 37th
Annual IEEE Symposium on Foundations of Computer Science, pages 274–282, 1996.

[BPR97] M. L. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting planes proofs with small
coefficients. Journal of Symbolic Logic, 62(3):708–728, 1997. A preliminary version
appeared in STOC’95.

[BPR00] M. L. Bonet, T. Pitassi, and R. Raz. On interpolation and automatization for Frege
systems. SIAM Journal of Computing, 29(6):1939–1967, 2000. A preliminary version
appeared in FOCS’97.

[BSIW02] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson. Near-optimal separation of general
and tree-like resolution. Combinatorica, 2002. To appear.

[BSW01] E. Ben-Sasson and A. Wigderson. Short proofs are narrow–resolution made simple.
Journal of the ACM, 48(2):149–169, 2001.

[CH99] S. A. Cook and A. Haken. An exponential lower bound for the size of monotone real
circuits. Journal of Computer and System Sciences, 58:326–335, 1999.

19

[CR79] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44:36–50, 1979.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7:201–215, 1960.

[EGM02] J. L. Esteban, N. Galesi, and J. Messner. On the complexity of resolution with
bounded conjunctions. In 29th International Colloquium on Automata, Languages
and Programming, volume 2380 of Lecture Notes in Computer Science, pages 220–
231. Springer-Verlag, 2002.

[IPU94] R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper and lower bounds for tree-like
cutting planes proofs. In 9th IEEE Symposium on Logic in Computer Science, pages
220–228, 1994.

[KP98] J. Krajı́cek and P. Pudlák. Some consequences of cryptographical conjectures for

 �	

and
� � . Information and Computation, 140(1):82–94, 1998.

[Kra97a] J. Krajı́cek. Interpolation theorems, lower bounds for proof systems, and indepen-
dence results for bounded arithmetic. Journal of Symbolic Logic, 62:457–486, 1997.

[Kra97b] J. Krajı́cek. On methods for proving lower bounds in propositional logic. In Logic
and Scientific Methods, pages 69–83. Kluwer Academic Publishers, 1997.

[Kra01] J. Krajı́cek. On the weak pigeonhole principle. Fundamenta Mathematicæ, 170(1–
3):123–140, 2001.

[MPW02] A. Maciel, T. Pitassi, and A. R. Woods. A new proof of the weak pigeonhole principle.
Journal of Computer and Systems Science, 64:843–872, 2002.

[PS98] P. Pudlák and J. Sgall. Algebraic models of computation and interpolation for alge-
braic proof systems. In P. W. Beame and S. R. Buss, editors, Proof Complexity and
Feasible Arithmetic, volume 39 of DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, pages 279–296. American Mathematical Society, 1998.

[Pud97] P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone com-
putations. Journal of Symbolic Logic, 62(3):981–998, 1997.

[Pud99] P. Pudlák. On the complexity of the propositional calculus. In Sets and Proofs, In-
vited Papers from Logic Colloquium ’97, pages 197–218. Cambridge University Press,
1999.

[Pud01] P. Pudlák. On reducibility and symmetry of disjoint NP-pairs. In 26th International
Symposium on Mathematical Foundations of Computer Science, Lecture Notes in
Computer Science, pages 621–632. Springer-Verlag, 2001.

20

[Pud03] P. Pudlák. On reducibility and symmetry of disjoint NP-pairs. Theoretical Computer
Science, 295:323–339, 2003.

[Raz94] A. A. Razborov. On provably disjoint NP-pairs. Technical Report RS-94-36, BRICS,
1994.

[Raz95] A. A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of
bounded arithmetic. Izvestiya of the RAN, 59(1):205–227, 1995.

[SBI02] N. Segerlind, S. Buss, and R. Impagliazzo. A switching lemma for small restrictions
and lower bounds for

�
-DNF resolution. In 43rd Annual IEEE Symposium on Foun-

dations of Computer Science, pages 604–614, 2002.

21

