Proving Termination of
Imperative Programs Using Max-SMT

Daniel Larraz, Albert Oliveras, Enric Rodriguez-Carbign&lbert Rubio
Universitat Politecnica de Catalunya, Barcelona, Spain

Abstract—We show how Max-SMT can be exploited in Moreover, by giving different weights to the constraintsves
constraint-based program termination proving. Thanks to &- set priorities and favor those invariants and (quasi-) iramk
pressing the generation of a ranking function as a Max-SMT functions that lead to the furthest progress.

optimization problem where constraints are assigned diffeent The techni has b imol ted i Gobl
weights, quasi-ranking functions —functions that almost atisfy all e technique has been implemented in our ©Gpplinv,

conditions for ensuring well-foundedness— are produced ia lack Which analyses programs with integer variables and linear
of ranking functions. By means of trace partitioning, this dlows expressions. Thanks to it, we have proved termination of

our method to progress in the termination analysis where oter g wide set of programs, which have been taken from the

approaches would get stuck. Moreover, Max-SMT makes it easy ; ; ;
to combine the process of building the termination argumentvith Ere(;%rr?nr:lar‘?ll(ngu:?easrr:rlwn?heerri\t/gg:lrjnd[g;ge.org [1] and from

the usually necessary task of generating supporting invaants.
The method has been implemented in a prototype that has
successfully been tested on a wide set of programs.

A. Related Work.
As mentioned above, our method is based[dn [5]. Namely,
. INTRODUCTION we have borrowed the core argument for termination proofs,
Proving termination is necessary to ensure total corrgstnevhich is based on iteratively discarding those transitithat
of programs. Still, termination bugs are difficult to traceda cannot be executed infinitely. However, we improve on the way
are hardly notified: as they do not arise as system failurés lsupporting invariants are generated. While [in [5] invaisan
as unresponsive behavior, when faced to them users tendate pre-computed in a process that is independent from the
restart their devices without reporting to software depefs. termination analysis and which turns out to be the bottlenec
Due to this, approaches for proving termination of impe>i of the approach, we find lazily the invariants needed to ensur
programs have regained an increasing interest in the |#sat ranking functions meet their requirements.
decade[[1]-H4]. Our research also builds upohl [6], where the constraint-
One of the major difficulties in these methods is that oftemased method [9] was first applied to termination. However, w
supporting invariantare needed. E.g., inl[5] linear invariantextend this work in several aspects. First, in that approach
are exhaustively computed before termination analysishén linear programs with unnested loops can be handled, while we
same paper a heuristic approach is also presented, whigh ardn deal with arbitrary control structures. Moreover/[ihtfée
requires a light-weight invariant generator by restrigtitdo generation of their lexicographic ranking functions reqgia
single-variable ranking functions. Another solution isposed higher-level loop that, before sending the constraint jenokto
in [6], where invariant generation is not performed eagerihe solver, determines the precedence of the transitiottsein
but on demand. By formulating both invariant and rankingxicographic order. On the other hand, in our approach this
function synthesis as constraint problems, both can be=dohouter loop is not needed. Finally, thanks to assigning wisigh
simultaneously, so that only the necessary supportingiinvato the constraints, unlike_[6] we do not need to stipulate
ants for the targeted ranking functions —namkdyjcographic the number of supporting invariants that will be needed a
linear ranking functions need to be discovered. priori, and hence our constraint problems are simpler.Heuyt
Based on[[b],[[6], we present a Max-SMT constraint-basedkights allow us to guide the solving engine in the search of
approach for proving termination. The crucial observaiion appropriate ranking functions and invariants.
our method is that, albeit our goal is to show that transition In [10], the lexicographic approach df|[6] is extended so as
cannot be executed infinitely by finding a ranking functioto handle programs with complex control flow. However, their
or an invariant that disables them, if we only discover amethod still requires to search for the right ordering of the
invariant, or an invariant and quasi-ranking functionthat transitions in order to obtain a successful terminationopro
almost fulfills all needed properties for well-foundedness Moreover, in this technique the procedures for synthegizin
have made some progress: either we can renparé of a ranking functions and auxiliary invariants do not shareugyio
transition and/or we have improved our knowledge on thaformation, while in our proposal these mechanisms are
behavior of the program. A natural way to implement thisghtly coupled. Finally, in[[8] a method closely relateddors
idea is by considering that some of the constraintsteel is presented. Both approaches, which have been developed
(the ones guaranteeing invariance) and otherssafe(those independently, go in the same direction of achieving a bette
guaranteeing well-foundedness) in a Max-SMT frameworkooperation between the invariant and the ranking function

the quasi-ranking functions produced in the absence ofimgnk Int @,y z

syntheses. Still, a significant difference is that we cangkp ' "t m™in0) {
. . . o : while (y>1) { O(l) = true
functions in order to progress in the termination analysis. '

In addition to lexicographic ranking functions, there is a ly: while (y<z) {
group of effective tools whose termination arguments are T 2- -
based on Ramsey’s Theorem and the notiontrahsition ¥ n 73
invariant [1]. Transition invariants are over-approximations :‘}/:}Hy; O(ly) = false

of the transitive closure of the transition relation regéed
to the reachable state space. The crucial observationtitha p,: y>1, v/ =21, y =y,
transitive relation that iglisjunctively well-founded.e., thatis pn: y<z 2'=x+1, ¥y =y,
included in the union of well-founded relations, must belwel 7= ¥ =2 &' =, y=r+y,
founded too. Hence, if one is able to find a transition invaria
that is also disjunctively well-founded, the program must
be terminating. In[[12], this transition invariant is conted

iteratively, starting from the empty relation, by discamer or not it is satisfiable i.e., if it has anodel an assignment of
unranked paths of the program thanks to a reachability cheglpolean values to variables that satisfies the formula.
and using the approach il [3] for synthesizing new ranking An extension of SAT is thesatisfiability modulo theories
functions for them. On the other hand, in [13] the generation (SMT) problem [L7]: to decide the satisfiability of a given
the disjunctively well-founded transition invariantisrfiemed quantifier-free first-order formula with respect to a backagrd
bottom-up from innermost loops by identifying invariantdan theory. Here we will consider the theorieslofear arithmetic
transitive relations among a set of templates that arernlisju (LA), where literals are linear inequalities, and the more
tively well-founded by construction. Nested loops are thegeneral theory ofon-linear arithmetic (NA)where literals
handled thanks to loop summarization. Our techniques &N ajre polynomial inequalities.
be seen as producing a disjunctively well-founded tramsiti Another generalization of SAT is th®lax-SAT problem
invariant, being the difference with respect to the presio; it consists in, given aveightedformula F where each
approaches in the way new unranked paths are identified &iMlseC; has a weightv; (a positive number or infinity), to
how a termination argument is generated for them. find the assignment such that the cost, i.e., the sum of the
Finally, a problem related to proving termination that hageights of the falsified clauses, is minimized. Clauses with
recently raised interest in the area is that adnditional infinite weight are calledhard, while the rest are calledoft
termination:to synthesize automatically preconditions on thgquivalently, the problem can be seen as finding the model
inputs that ensure program termination. In this contexfl] of the hard clauses such that the sum of the weights of the
the authors consider what they cpditential ranking functions falsified soft clauses is minimized.
which are functions over program states that are bounded bufinally, the problem ofMax-SMT [18] merges Max-SAT
not necessarily decreasing. The quasi-ranking functibas tand SMT, and is defined from SMT analogously to how Max-
we consider here are more general, as for instance functi®sT is derived from SAT. Namely, th&lax-SMT problem
that are decreasing but not bounded are also included. In [1ébnsists in, given a weighted formula, to find an assignment

the problem of conditional termination is also considefte that minimizes the sum of the weights of the falsified clauses
approach is based on disjunctively well-founded relat@®# in the background theory.

[12], but instead of identifying unranked program pathants . . _ _
to a dual inclusion the authors partition the transitiomtieh B- Transition Systems, Invariants and Ranking Functions
into those behaviors already proved to be terminating amseth ~ Henceforth we will model imperative programs by means
whose status is still unknown. In our work we also proceedf transition systemsA transition systemS = (7, L£,0,7)
by splitting the transition relation into a terminating pand consists of a tuple ofariablest, a set oflocations£, a map
an unknown part. However, in [1L6] this division is achieve® from locations to formulas characterizing the initial vedu
by means of a fixpoint computation, while our approach &f the variables, and a set &fansitions7". Each transition
constraint-based. T € T is atriple (¢,¢, p), wheret, ¢ € L are thepre and
post locations respectively, and is the transition relation
[I. PRELIMINARIES a formula over the program variables and their primed
versionst’, which represent the values of the variables after
A. SMT and Max-SMT the transition. See Fi%l 1 for an example of a program togethe
Let P be a finite set ofpropositional variableslf p € P, with a corresponding representation as a transition system
thenp and —p areliterals. The negationof a literal 7, written From now on we assume that variables takegervalues
—l, denotes—p if [is p, andp if [is —p. A clauseis a and programs ardinear, i.e., the initial conditions® and
disjunction of literals. Apropositional formulds a conjunction transition relations) are described as conjunctions of linear
of clauses. The problem pfopositional satisfiabilitfabbrevi- inequalities. Strict inequalities may be translated irda-strict
ated as SAT) consists in, given a formula, to determine wdretlones thanks to the integer type of the variables.

v v
I
SRR

|
—_

Fig. 1. Program and its transition system.

A stateis an assignment of a value to each of the variables the states along any path containedCircannot increase,
in 7. A configurationis a pair(¢, o) consisting of a locatiod thanks to the non-increase property. Moreover, in any cycle
and a stater. A computationis a (possibly infinite) sequencecontained inC traversingr, the value ofR strictly decreases,
of configurations(¢o, 09), (¢1,01), ... such thavy = ©(¢;), due to the strict decrease property. Now, let us assume that
and for each pair of consecutive configuratidiig o;) and there was a computation wheravas executed infinitely. Such
(iy1,0:41), there exists a transition = (¢;,%;11,p) € T a computation would eventually visit only locations (.
such that(o;,0:41) E p. A configuration(/, o) is reachable Because of the previous observations, by evaluafinat the
if there exists a computation ending & o). A transition states at which is executed we could construct an infinitely
system is said to béerminatingif all its computations are decreasing sequence of non-negative integers, a corttoadic
finite. The problem that we target in this work is, given a Finitely executable transitions can be safely removed from
transition system, to determine if it is terminating or not. the transition system as regards termination analysiss iFhi
A transition T = (¢,¢,p) is disabledif it can never be turn may break the SCC’s into smaller pieces. If by applying
executed, i.e., if for all reachable configuratith o), there this reasoning recursively one can prove that all transstiare
does not exist any”’ such that(c,c’) = p. A transition finitely executable, then the transition system is terninuat
7 is called finitely executablef in any computation,r is
only executed a finite number of times (in particularsifs
disabled). Otherwise, i.e., if there exists a computatidvens Here we review theconstraint-based program analysis
7 is executed infinitely, we say thatis infinitely executable approach [[6], [[9]. The idea is to consider a template for
An assertionis a first-order formula oves. An assertion/ candidate invariant properties (respectively, rankingtions),
is aninvariant at location/ if for any reachable configuratione.g., linear inequalities (linear expressions). Theseptatas
(¢,0), it holds thato = I. An invariant mapy assigns an involve both program variables as well as unknowns whose
invariant 1(¢) to each of the locationé. An important class values have to be determined so as to ensure the required prop

C. Constraint-Based Program Analysis

of invariant maps is that ohductive invariant maps erties. To this end, the implications in Definitibh 1 (Defioit
Definition 1: An invariant mapy is said to benductiveif: [2) are expressed by meansafnstraints(hence the name of
« [Initiation] For every locatior? € £: ©(¢) = p(¢) the approach) on_the unknowns. If impl_ications_are _encoded
« [Consecution] For every transitionr = (£,',p) € T soundly, any spluuon to _the constraints ylglds an invanaap
1) A p =ty (ranking function). Specifically, if linear arithmetic ise target

Invariant maps are fundamental when analyzing pro rallgnnguage, this can be achieved with Farkas’ Lemma:
p yZIng Programry e orem 1 (Farkas’ Lemma):et S be a system of linear

L ; " S
termination. _Formstf_;mce,_atrapmtlon: (0 ,_p) is proved to inequaliies Az + b < 0 (A € R™%".p € R™) over real
be disabled if there is an invariant/) at location¢ such that : T . e . .

) - o . . variablesz! = (x1,...,2,). WhenS is satisfiable, it entails
wu(f) A p is unsatisfiable. In general, jf is an invariant map, _ . : S " . .
then any transitionr = (¢,¢',p) can be safely strengthenea";l linear inequalitye "z + d < 0 (c € R", d € R) iff there is
by replacing the transitior’1 rélati by u(¢) A A € R™ such thath > 0, ¢” = \TA andd < ATb. Further,

y rep g omby 4 p- S is unsatisfiable iffl < 0 can be so derived.

The basic _|dee_1 of th? approach we fOHOW. fpr proving g, clarity, henceforth the following notation is used. &iv
program termination[]5] is to argue by contradiction that ng

transition is infinitely executable. First of all, no disabl a conjunction of linear inequalitied + b < 0 and a linear

transition can be infinitely executable trivially. Moreoyene inequalityc”z+d < 0, where the coefficients,;, b;, ¢;, d may
. " L : . be real numbers or unknowns, we denote &ty +b <0 F
just needs to focus on transitions joining locations in thceTx + d < 0 the set of constraints on the unknown coefficients
same strongly connected component (SCC): if a transitiona{%d on fresh real unknowns — O\ Ann), consisting in
executed over and over again, then its pre and post Iocatig\ng 0. T = \TA andd < \Tb Lo mh
must belong to the same SCC. So let us assume that one has ™ - ’
found aranking functionfor such a transitiornr, according to: I1l. TERMINATION ANALYSIS WITH MAX-SMT
Definition 2: Let 7 = (¢,¢, p) be a transition such that
and ¢’ belong to the same SCC, denoted Gy A function

R :7 — Z is said to be aanking functionfor 7 if:

In this section we first describe a constraint-based method
for termination analysis that uses SMT and identify some of
its shortcomings (Sedi.1I[HA). Then we show how Max-SMT

. {g?f“:dgdness]f)]#ﬁg 0 o can be used to overcome these limitations (Sect.ill-B).
« [Strict Decrease]p >

« [Non-increase] For every? = (,#',p) € T such that A. An SMT Approach to Proving Termination

tleCpER>R Following the approach described in SEJIFB [5], to show
Note that boundedness and strict decremsly depend on that a transitionr is finitely executable and thus discard it,
7, while non-increase depends atft transitions in the SCC. one needs either a disability argument or a ranking function
The key result is that ifr = (¢,¢',p) admits a ranking for it. To this end we construct a constraint system, i.e. 6T S
function R, then it is finitely executable. Indeed, first noticdormula, whose solutions correspond to either an invaifzeut
that if one can execute from a configuration(¢,c) then proves disability, or a ranking function. Given an SCC, the
R(o) > 0, because of boundedness. Also, the valueRof constraint system, if satisfiable, will allow discarding lgast,

but possibly more than) one of the transitions in the SCC. By Another problem with this method for analyzing termination
iterating this procedure until no cycles are left we will @int is that the kind of termination proofs it yields may be too

a termination argument for the SCC. restricted. More specifically, when one proves that a ttaomsi
To construct the constraint system, first of all we consider: is finitely executable, then a single termination argument
. for each locatior?, a linear invariant templaté,(v) = shows there is no computation whereappears infinitely.

00,0 T Yopey it - v < 0, Whereig, iy, are unknown; Although this produces compact proofs, on the other hand
« alinear ranking function templa(v) =ro+>_, .5 700, sometimes there may not exist such a unique reason for

whererg, r, are unknown. termination, and it becomes necessary a more fine-grained
Recall that ranking functions are associated to trangfiorxamination. However, the approach as presented so far does
not to locations. However, instead of introducing a temelafot provide a natural way or guidance for refining the analysi

for each transition, we just have one single template, which g A Max-SMT Approach to Proving Termination
the constraint system has a solution, will be a ranking fionct : o .
" . The main contribution of our work is to show that the
for a transitionto be determined by the solver .)
i - . , constraint system can be expressed in such a way that, even

Similarly to [6], we take the following constraints from the . - : !

L . C . - . when it turns out to be unsatisfiable, some information usefu
definitions of inductive invariant and ranking function:

def for refining the termination analysis can be obtained. The ke

Initiation: Forl e L: I, =0)FI1 observation is that, even though our aim is to prove traorssti
Disability: Forr = (¢,0',p) € T:D, def IiApF1<0 to be finitely executable (by finding a ranking function or an
Consecution: For 7 = (£,¢/,p) € T C def 1o invariant that disables them), if we just find an invariamtan
' ’ I,p T e enPT e invariant and aquasi-ranking functiorthat is close to fulffill
Boundedness: For7 = ({,{',p) € T:B; = Iy Ap-R>0 gl required conditions, we have progressed in our analysis
Strict Decrease:For 7 = (£, 0/, p) € TS, A pFR>R The idea is to consider the constraints guaranteeing mvari
(

00, p) € TN, def LApFR>R ance adard, so that any solution to the constra_lnt system WI||
) N . satisfy them, while the rest asoft Let us consider proposi-

Let L andT be the §ets of locations and transmons_ln theonal variables, ps andpy, which intuitively represent if the

SCC in hand, respectively. Let alsd be the set opending conditions of boundedness, strict decrease and non-seiaa

transitions, i.e., which have not been proved to be finitelye yefinition of ranking function are violated respectiyend
executable yet. Then we build the next constraint system: corresponding weightsp, ws andwy. We consider now the

/\]15/\/\ (D-VC,) /\\/ (D, V(B /\gT))/\((/\ Nr)\/\/ D,). next constraint system (where soft constraints are writter,

el 1eT reP P P and hard ones as usual):

The first two conjuncts guarantee that an invariant map A I, A /\ (]DDT\/(CT)/\ \/ (DT\/((BT\/p[B)/\(ST\/pS)))/\

computed; the other two, that at least one of the pendingr reT TEP

transitions can be discarded. Notice that, if there is naldéesl (/\ NV \/ DT\/pN)/\[ﬁpB, wp) A[=ps, ws) A[—pn, wi]-

transition, we ask thadll transitions inP are non-increasing, reP repP

but only that at leasbne transition in P (the next to be Note that ranking functions have cost 0, and (if no transitio

removed) is both bounded and strict decreasing. Note alsodisabled) functions that fail in any of the conditions are

that for finding invariants one has to take into accoatt penalized with the respective weight. Thus, the Max-SMT

transitions in the SCC, even those that have already begiver looks for the best solution and gets a ranking fumctio

proved to be finitely executable: otherwise some reachaliiefeasible; otherwise, the weights guide the search to get

states might not be covered, and the invariant generatiwariants and quasi-ranking functions that satisfy as ynan

would become unsound. Hence in our termination analysis wenditions as possible.

consider two transition systems: the original transitipstsm Hence this Max-SMT approach allows recovering informa-

for invariant synthesis, whose transitions &eand which tion even from problems that would be unsatisfiable in the

remains all the time the same; and tieemination transition initial method. This information can be exploited to perfor

systemwhose transitions ar®, i.e, where transitions alreadydynamic trace partitioning [19] as follows. Assume that the

shown to be finitely executable have been removed. THtimal solution to the above Max-SMT formula has been

duplication is similar to theooperation graplof [8]. computed, and let us consider a transitiore P such that
However, this first approach is problematic when a rankidg- v ((B; V pg) A (S; V ps)) evaluates to true in the solution.

function needs several invariants. A possible solutionois Then we distinguish several cases depending on the pregerti

add more templates iteratively, so that for example inytial Satisfied byr and the computed functioR:

invariants consisting of a single linear inequality aredri o If 7 is disabled then it can be removed.

if unsuccessful then invariants consisting of a conjunctd « If Ris non-increasing and satisfies boundedness and strict

two linear inequalities are tried, etc. But when proceeding decrease for, thent can be removed tod? is a ranking

this way, all problems before the right number of invariants function for it.

is found are unsatisfiable. This is wasteful, as no constreict « If R is non-increasing and satisfies boundednessrfor

information is retrieved from unsatisfiable constraintteyss. but not strict decrease, one can spliin the termination

Non-increase: For r =

transition system into two new transitions: one where
R > R’ is added tor, and another one wherB = R’
is enforced. Then the new transition witR > R’ is
automatically eliminated, ag is a ranking function for
it. Equivalently, this can be seen as addiRg= R’ to .
Now, if the solver could not prov& to be a true ranking | ™
function for = because it was missing an invariant, this
transformation will guide the solver to find that invariant
so as to disable the transition wifh = R'. G
« If R is non-increasing and satisfies strict decreaserfor v
but not boundedness, the same technique from above can
be applied: it boils down to adding < 0 to 7. (a)
o If R is non-increasing but neither strict decrease nor
boundedness are fulfilled far, thenr can be split into

T3

(b)

O(ly) = true

two new transitions: one witlR < 0, and another one Py y>1, o' =x—1, y =y, 2=z
with R>0AR=R'. P, <0, y>1, ' =2—1, ¢y =y, 7=z
. . . . S /o I
o If R does not satisfy the non-increase property, then it #= Yy i 2, a,/fx—&—l y 7y,+ d=z 1
is rejected; however, the invariant map from the solution 77" D A
ntoy>1, y>z 2 =u, y=xz+ty 2=z

can be used to strengthen the transition relations for the

following iterations of the termination analysis. Fig. 2. Evolution of the termination transition systemtially (a) and after
the first (b), second (c) and third (d) round.

Note this analysis may be worth applying on other transi-
tions 7 in the termination transition system apart from those

that makeD; V ((B- V pg) A (S; V ps)) true. E.g., ifRis @ Example[1 below). Hence, it can be propagated forward in
ranking function for a transitiom but fails to be so for another the termination transition system to the transitions gaing
one' because strict decrease does not hold, then, accordifigh ¢. To produce termination implications, for each location
to the above discussiom; can be strengthened with = R’. / 3 new linear inequality templaté (o) is introduced and the
On the other hand, working in this iterative way requirefllowing constraint is imposed"-\fz(é.z.p)ep(Dr VI;Apk
imposing additional constraints to avoid getting to a s&ifid 7/) . Additional constraints are enforced to ensure that new
Namely, in the case where non-increase does not hold agemination implications are not redundant with the algead
so one would like to exploit the invariant, it is necessary teomputed invariants and termination implications.
impose that the invariant is not redundant. More in detalil, Example 1:Let us show a termination analysis of the

let us consider a fixed locatiof, and let7;",....1;"’ be program in Fig.[ll. In the first round, the solver finds the
the previously computed invariants at locatiérnrhen/,, the invarianty > 1 at ¢, and the ranking functior: for .
invariant to be generated df is redundant if it is implied whjle y > 1 can be added to (resulting into a new
by Iz(l), Iék), ie., if B, < vo (Iél)(ﬁ) Ao Iék) (v) — transition3), the ranking function allows eliminating from
I;(v)). So we imposen — — /\ ., ¢ to ensure that violating the termination transition system (see Hipy. 2 (b)).
non-increase leads to non-redundant invariants. Comditioe In the second round, the solver cannot find a ranking
added similarly to avoid redundant quasi-ranking funation function. However, thanks to the Max-SMT formulation, inca
Another advantage of this Max-SMT approach is that byroduce the quasi-ranking functian which is non-increasing
using different weights we can express priorities over ¢ondand strict decreasing for;, but not bounded. This quasi-
tions. Since, as explained above, violating the propertyoni- ranking function can be used to split transitien into two
increase invalidates the computed functi®nit is convenient new transitions; ; andr; » as follows:
to makewy the largest weight. On the other hand, when non- L 2>0, y>1 Y =y
increase and boundedness are fulfilled but not strict deerea ™' x < 0’ N 1’ r_ ’
an equality is added to the transition, whereas when non- Pras r U= v
increase and strict decrease are fulfilled but not boundmdnéhen 711 is immediately removed, since is a ranking
just an inequality is added. As we prefer the former to tHginction for it. The current termination transition systesn

2=z

2=z

o =x-1,
¥ =z-1,

latter, in our implementation (see Sdcl. V) we sgt> ws.

A further improvement is the generation ¢érmination
implications A termination implication at a locatio# is an
assertion.J(7) such that any transition in théermination
transition systemthat leads into/ implies it, i.e., it holds

given in Fig.[2 (c).

In the third and final round, the termination implication
x < 0 is generated af,, together with the ranking function
y for transition 74. Note that the termination implication is
crucial to prove the strict decrease gffor 75, and that the

that p |= J(3'), wherep is the relation of the transition. Previously generated invariapt> 1 at ¢, is needed to ensure
Thus, J will eventuallyhold when/ is reached (although, boundedness. Now; can be removed, which makes the graph
unlike ordinary invariants, may not initially be true; seécyclic (see Fid.]2 (d)). This concludes the terminatiorofiro

assertionSPost(p)(v) = Jw p(w,v). Finally the SCC is
analysed for termination. If it could not be proved termingt

2 <0 the procedure stops. Otherwise the next SCC is dealt with.
The analysis of termination of SCC's is orchestrated by the

Fig. 3. Chain of locations obtained from a sequence of stabtsn function proved_SCC_term

assume(z # 0); assunme(y # 0); assune(z # 0). Note disequalities are hool proved SCC term(Set Loc L, Set Trans 7', Set Trans P) {
not natively supported, and so have to be split into disjonstof inequalities. if (dis trans(L, T, P) or rank fun(L, T', P) or term impl(L, T, P)){
if (P ==0) return true;
for (C’ SCC in the graph of) {
T’ = transitiondC");
if (T’ # 0 and not proved SCC term(L, T, T")) return false; }

The method presented in Sect] 11l has been implemented in U tue ; }
else return false; }

the tool Cppln - This secFion dgscribes this impllementatiorh takes as arguments: a set of locatidnand a set of transi-
Cpplnv admits code written irC++ as well as in the lan- yions 7 corresponding to an SCC of the transition system:; and
guage ofT2 [10]. The system analyses programs with integef,q 1ormination transition systena non-empty seP C T of

variables, linear expressions and function calls. Vaealbf . qitions that still have to be proved finitely executaidle

other data types, such as floating-point variables, areemeaexplained in SecEIEB, one may assume that the graph irtiuce

as unknown values. Function calls are handled with tecmiquy P is strongly connected. The function returimge if all
similar to those in[[20], although currently the returnedLrea transitions inP can be proved finitely executable. We found

is ignored. Further, for recursive functions, after a fioecall o ¢ that instead of directly solving the full constrainsgm
we assign unknowns to all variables that can be modified in (i 4\,ced in SecETIEB. in practice it is preferable tmpeed
call (i.e., global variables and variables passed by ratep phases. Each ph#séunctions dis_trans, rank_fun and

In the transformation from the source code to the interngj/rm imp) attempts to remove transitions frof by_different
transition system representatio@ppinv attempts to reduce eans and returnsue if P has become empty or it is no
the number of locations by composing transitions. Stills th|,nger strongly connected. In the former case, we are done. |
preprocessing may result in an exponential growth in thge |atter, the same procedure is recursively called. #rat

number of transitions. As our technique does not requifgaseqp is non-empty, we report failure to prove termination.
minimized transition systems for soundness, the tool ioBS |, the first phase (functiortis trang), Cpplnv attempts
location minimization if a threshold number of transitioSS i, aliminate transitions with disability arguments by gen-
reached. Moreover, whenever a chain of locations connec@gting the appropriate invariants (neither ranking fiomet
by transitions that do not modify variables (see Hi§. 3) igor termination implications are considered at this point)
detectedCpplinv does not attempt to eliminate the locationsyhjs is achieved by solving the following Max-SMT formula:
since no variable is updated, in these transitions any iomct Aver AN cp(DVCAN. o p D V) A[pp wD]E where
. g c Te T T Te T) ’
satisfies the non-increase condition, while no rankingtionc , “s 5 propositional variable meaning that no transition can
is possible. For this reason, when producing the conssiainie gisapled, andsy is the corresponding weight. Transitions
these transitions are ignored as far as termination is €0Bde 5t gre detected to be disabled (by means of a call to an
and are only con;idered for the generatioq .of invariants. gt solver) are removed both from the original and the
Once the input is represented as a transition system, the @¢mination transition system. Invariants are used togtieen
tual termination analysis starts. See funcwaved TS €Mt e ransition relations as described in SEGLIII-B. Thecpss

bool proved TS term(Trans SysS = (T, £, ©, 7)) { is repeated while new transitions can be disabled.

/I C is the list of SCC’s topologically sorted according to ordgr<)
(C, <) = compute SCCsand topologically sort(S): bool dis_trans(SetlLoc L, Set Trans 7', Set Trans P) {

z>0

IV. IMPLEMENTATION

cont = true;
forgf(f‘l;i{(('};%;%éw)’ transitiong(C)): W*(‘:'Lfl t(czofnatl)s é |
o (€L) < T <0 <0 i TN 1 s
retil]; r n(nt(r)LtJep;rO\}IGd_ SCCterm(L, T, P)) retumn false; } if (P - 0) return trué; '
The SCC's are computed and topologically sorted, and each ' [é\L e T/E\T(DT VeI T\E/T(DT V)

SCC is processed according to this order. Processing an SCCS = [~pp, wp; o _
involves first performing a copy of the transitions for kegpi ~ (/>¢) = SOV&H A S); /I I invariant map, cost of solution
L if (c == o0) break; /I No solution to hard clauses
track of those not proven finitely executable yet. Then the tor (¢ ¢ L, (¢, ¢, p) € T) /I Strengthen relation with invariant
initial conditions are updated with the strongest postétooms p=pAIL);
of the incoming transitions from previous SCC’s, where the [f (¢ ==0)cont = true; } _
L . A return not is_strongly connected P); }
strongest postcondition of a transition relatipfv,v’) is the
2These phases have a time limit in our implementation althdbig is not
1Cpplnv, together with all benchmarks used in the experimentaluetiain ~ made explicit in the pseudo-code shown below.
of Sect[V, is available at www.Isi.upc.edtdlbert/cppinv-term-bin.tar.gz. 3Constraints that avoid redundancy are not included for ity

www.lsi.upc.edu/~albert/cppinv-term-bin.tar.gz

In the second phase (functigank_fun), the system elim-

inates transitions by using ranking functions as arguments

(termination implications are not considered at this poitit

the computed functio? satisfies the non-increase property, | ggl

then each of the transitions in the termination transition
system is examined and either removedHifis a ranking

function for 7, or split otherwise, as described in Séct TlI-B.

bool rank_fun(Set Loc L, Set TransT', Set Trans P){
while (true) {
H= NI, AN Cr A\ (Br Vpr)A (S Vps)) A\ (N-Vpy)
el TeT TeEP TEP
S = [-pp, ws] A [-ps, ws] A [-pN, wi];
(I, R,c) = solvéH A S);
if (c == oo) return false; // No solution to hard clauses
for (¢ € L, (£,¢,p) € T) Il Strengthen relation with invariant
p=pANI)
for (r=(,0,p) € P)
if (pis UNSAT) // r is disabled
(T, P)=(T = {7}, P—{7});
if (non_increasd R))
for (r € P)
if (boundedr, R) and strict_decreasér, R)) P = P — {7};
else split (v, R, P); /| SplitsT
if (P == 0 or not is_strongly_connecte@P)) return true ; } }

The third and final phase (functiderm_impl, not detailed

TABLE |
RESULTS WITH BENCHMARKS FROMT2

noMS
212
245

MS
220
252

T2
245
279

#Ins.
449
472

MS+QR
228
262

MS+OR+TI
238
276

TABLE I
RESULTS WITH BENCHMARKS FROMJutge.org.

T2
328
140

T2
329
793

#ns.
362
854

#ins.
367
149

Cppinv
324
143

CppInv
324
780

P11655
P12603

P40685
P45965

P12828| 783 707 710 P70756| 280 243 235
P16415] 98 81 81 P81966| 3642 2663 926
P24674| 177 171 168 P82660| 196 174 177
P33412] 603 478 371 P84219| 413 325 243

provide here a comparison with the new versiorTaf which
according to the results given inl [8] is performing much &ett
when proving termination than most of the existing tools, in
cludingTerminator [12], AProVE [25] or ARMC [24], among
others. We have also triedProver [13] and Loopfrog [14],

but the results were not good on these sets of benchmarks. All
_experiments were performed on an Intel Core i7 with 3.40GHz

here for lack of space) is very similar to the previous onehW|CIOCk speed and 16 GB of RAM

the difference that termination implications are also tided.

_The first two considered sets of benchmarks are those

As regards the constraints, we restrain ourselves to mvem,ovided by theT2 developers. Following the experiments

ants and ranking functions witihteger coefficients, since this

allows us to exploit efficient non-linear solving technigue

[21]. Moreover, in order to perform integer reasoning,

Chvatal cutting plane rulé [22], is employed:

Lemma llet Ax+b <0 (A € R™*" b € R™) be a system
of linear inequalities over integer variable$ = (1, ..., z,),
andc”z+d < 0 (c € Z™, d € R) be alinear inequality. If there
isSAeR™, ieZandf € R such thathx > 0, ¢7 = AT 4,
Mb=i—f,0< f<1andi>d, thenAx +b < 0 entails
cTe+d<0.

Lemmal[l allows transforming afVv problem into an3

problem. If all coefficients in the premise are known values,
the resulting satisfiability problem is an SMT problem over

LA. Otherwise, an SMT problem over NA is obtained. Fu
thermore, as some unknowns are integer (the coefficients)

some are real (the multipliers), the resulting problemsehav

mixed types.

in [8], we have set a 300 secs. timeout. To show the impact of
the different techniques described in the paper, Tabledaores

. L , thﬂ"ue number of instances in each set (#ins.) and the number of
following variation of Farkas’ Lemma, based on the Gomor

Yhose that we proved terminating with the following setting
(noMS)implements the generation of invariants and rank-
ing functions using a translation to SMT(NA), but without
using Max-SMT, i.e. with all constraintsard. The fact
that this plain version can already prove many instances
hints on the goodness of our underlying algorithm and
the impact of using our NA-solver in this application.
(MS)implements the generation of invariants and ranking
functions using Max-SMT(NA), where the constraints
imposed by the ranking function are addedsa#
(MS+QR)adds to the previous case the possibility to use
quasi-ranking functions.

(MS+QR+TI) adds to the previous case the possibility to
infer termination implications.

r-
an

Cpplnv uses Barcelogic [23] for solving the generated Note that every added improvement allows us to prove
constraints. The Max-SMT(NA) solver for mixed non-lineafome more instances, while none is lost due to the additional
arithmetic inBarcelogic extends the techniques presented iROMPplexity of the constraints generated. _

[21] for solving SMT(NIA) problems. This is achieved by Moreover, by looking into the results in more detail, we
allowing integer and real variables in the underlying lined'@ve observed that our tool ai@ complement each other

arithmetic solver, and wrapping this solver with a branok-a 0 Some extent: in SetCpplnv can prove 7 instances which
bound scheme for optimizatioh [18]. cannot be proved by2, while we cannot prove 14 which

can be handled by2; similarly, in Set2Cpplnv can prove
V. EXPERIMENTAL EVALUATION 8 programs which cannot be proved B, while we cannot
In this section we show experiments that evaluate tipgove 11 that can be handled BR2. The average time in YES
performance oCpplnv on a wide set of examples, which haveanswers ofT2 is 2.9 secs and o€pplnv is 12.8 secs.
been taken from the online programming learning envirortmen In Table [1l, we show the comparison dpplnv (with
Jutge.org [[7] (se€ www.jutge.org), and from benchmark suiteall described techniques) ant2 on our benchmarks from
in [8] and in [research.microsoft.com/en-us/projecis/i®€ the programming learning environmeditge.org, which is

www.jutge.org
http://research.microsoft.com/en-us/projects/t2/

y>0Ay’:y—1Ax’:w—1/y<0\\ y<OAYy =y+uz ACKNOWLEDGMENT

@ This research was supported by Spanish MEC/MICINN
under grant TIN 2010-21062-C02-01. We thahkge.org for
o) =z>y O(ly) = false providing benchmarks, and Byron Cook for giving us access

to T2 and their benchmarks and for his helpful comments.
Fig. 4. Program that requires invariants from previous SCC’
REFERENCES

[1] D. Dams, R. Gerth, and O. Grumberg, “A heuristic for theoavatic
currently being used in several programming courses in the 9eneration of ranking functions,” iorkshop on Advances in Verifica-

. : . . tion, 2000, pp. 1-8.
Universitat Politécnica de Catalunya. The benchmarkeswt2] M. Colon and H. Sipma, “Synthesis of linear ranking ftioos,” in

consists of thousands of solutions written by students to TACAS ser. LNCS, vol. 2031. Springer, 2001, pp. 67-81.

. . . of linear ranking functions,” IVMCAI, ser. LNCS, vol. 2937. Springer,
considered challenging since most often they are not the 5404 py 239-251,

most elegant solution but one with many more conditional] A. Tiwari, “Termination of linear programs,” irCAV, ser. LNCS, vol.

statements than necessary (e.g., the largest instance iwe ca 3114. Springer, 2004, pp. 70-82.

- [5] M. Colon and H. Sipma, “Practical methods for provingogram
successfully handle has nearly 700 transitions). Here,tdue ™ o/ yination” inCAV, ser. LNCS, vol. 2404. Springer, 2002, pp. 442—

the size of the benchmark suites (see column #ins.), for the 454,
execution of both tools we have set a 120 secs. timeouf] A. Bradley, Z. Manna, and H. Sipma, “Linear ranking witrachability,”

. . . in CAV, ser. LNCS, vol. 3576. Springer, 2005, pp. 491-504.
The average time in YES answers B2 is 1.7 secs. and of |71 ; peiit, 0. Giménez, and S. Roura, “Jutge.org: an eie program-

Cpplnv is 1.6 secs. Note that, in order to run these benchmarks ming judge,” inSIGCSE ACM, 2012, pp. 445-450.
in T2, we have translated them inf62 format using our [8] M. Brockschmidt, B. Cook, and C. Fuhs, “Better termioatiproving

. . L . . through cooperation,” irfCAV, 2013, to appear.
intermediate transition graph. This may be a disadvantage f[g] M. Colon. S. Sankaranarayanan, and H. Sipma, “Linesariant Gen-

T2, as it happens in the reverse way wt&oplnv is run onT2 eration Using Non-linear Constraint Solving,” DAV, ser. LNCS, vol.
benchmark set. In particular, we think the bad performarice o 2725. Springer, 2003, pp. 420-432.

. 0] B. Cook, A. See, and F. Zuleger, “Ramsey vs. lexicogi@pérmination
T2 in sets P33412, P81966 and P84219 may be related to te oo nacha ser. LNGS vol 1708 Soringor oL, ph. 4761,

way we handle division, which is crucial in these examples[11] A. Podelski and A. Rybalchenko, “Transition invarisfin LICS |EEE
Computer Society, 2004, pp. 32-41.
[12] B. Cook, A. Podelski, and A. Rybalchenko, “Terminatipnoofs for

VI. CONCLUSIONS AND FUTURE WORK systems code,” ifPLDI, ACM, 2006, pp. 415-426.
L . [13] A. Tsitovich, N. Sharygina, C. M. Wintersteiger, and Broening,
In short, the contributions of this paper are: “Loop summarization and termination analysis,” TACAS ser. LNCS,

.] vol. 6605. Springer, 2011, pp. 81-95.
« anovel Max-SMT constraint-based approach to prOVInHA] D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich,da@. Winter-

termination Thanks to expressing the synthesis of a = steiger, “Loopfrog: A Static Analyzer for ANSI-C Program) ASE

ranking function and a supporting invariant as a Max- _ |EEE, 2009, pp. 668—670.

. . . [15] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and Magdiv,
SMT prOblem' we achieve a better gwded and more me" “Proving conditional termination,” inCAV, ser. LNCS, vol. 5123.

grained termination analysis than SMT-based methods. Springer, 2008, pp. 328-340.
Max-SMT reveals to be a convenient framework foll6l P. Ganty and S. Genaim, “Proving termination startingnf the end,”

constraint-based termination analysis. In addition to oy, n %@Yéz,c\)ﬂlitﬁ.aﬁga?H'van Maaren, and T. Walsh. Etiandbook

method, other techniques suchwasffecting score max- of Satisfiability ser. Frontiers in Artificial Intelligence and Applicatien
imization [L0] can be naturally modeled in Max-SMT. IOS Press, February 2009, vol. 185.

. . [18] R. Nieuwenhuis and A. Oliveras, “On SAT Modulo Theoriesd
« aprototype of termination analyzer for (a SUbset@ﬁ)"" Optimization Problems,” irt6AT, ser. LNCS, vol. 4121. Springer, 2006,

One of the shortcomings of our approach is that invariant PP 156-169. , o _ _
I I[[]1_9] L. Mauborgne and X. Rival, “Trace partitioning in atestt interpretation
synthesis is restricted to a single SCC. If invariants fro based static analyzers,” BSOP ser. LNCS, vol. 3444. Springer, 2005,

previous SCC'’s have not been generated but are later réguire pp. 5-20.

our technique cannot prove termination. E.g., in the progre20] B. Cook, A. Podelski, and A. Rybaichenko, *Summariaatfor termi-
shown in Fig.[%, the invariant > 0 must be discovered nation: no return!”Formal Methods in System Desigwol. 35, no. 3,
g.L&, pp. 369-387, 2000.

at /; so as to prove that the rightmost transition is finitelj21] C. Borralleras, S. Lucas, A. Oliveras, E. Rodrigueri@nell, and

executable, although it is not necessary for proving that th A Rubio, “SAT Modulo Linear Arithmetic for Solving Polyno
Constraints,”J. Autom. Reasoningol. 48, no. 1, pp. 107-131, 2012.

leftmost |OOp _'S terminating. For fu_ture_ work V_’e p_Ian t(:[22] J. A. Robinson and A. Voronkov, Edsdandbook of Automated Rea-
develop techniques to overcome this kind of situations. A soning (in 2 volumes) Elsevier and MIT Press, 2001.

promising idea is to consider initiation conditions as soft23] X-F?uogiig' thgiéiﬁi'?&;f’sﬁ%igﬁﬁsﬁiEA\FfOs‘jer:gfﬁ??Ovnﬁ"’sfz"g
then the generateguasi-invariantsrepresent what is missing Springer, 2008, pp. 294-298.

from previous SCC's, and then can be propagated backwards} A. Podelski and A. Rybalchenko, “ARMC: the logical chei for

Alternatively, these quasi-invariants can be used to $b§t software model checking with abstraction refinement,”"PADL, ser.
initial diti fth t SCC. Einall b LNCS, vol. 4354. Springer, 2007, pp. 245-259.
Iniiial condiions of the curren - Finally, as a byprogu [25] C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl, ttknated

this would allow us to solve the conditional termination termination analysis of java bytecode by term rewritingd RTA
problem as well. Volume 6 of LIPIcs., Schloss Dagstuhl, 2010, 259-276.

	Introduction
	Related Work.

	Preliminaries
	SMT and Max-SMT
	Transition Systems, Invariants and Ranking Functions
	Constraint-Based Program Analysis

	Termination Analysis with Max-SMT
	An SMT Approach to Proving Termination
	A Max-SMT Approach to Proving Termination

	Implementation
	Experimental Evaluation
	Conclusions and Future Work
	References

