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Models that generate networks [Caldarelli, 2007]

I The Barabási-Albert model (growth and preferential
attachment).

I Copying models

I Fitness based model

I Optimization models

Each model produces a network through different dynamical
principles/rules.
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The effect of replacing preferential by random attachment

The Barabási-Albert model

Example from citation networks, where p(k) ∼ k−3 [Redner, 1998].

The evolution of an undirected network over time t.

1. t = 0, a disconnected set of n0 vertices (no edges).
2. At time t > 0, add a new vertex with m0 edges:

I The new vertex connects to the i-th vertex with probability

π(ki ) =
ki∑
j kj

Thus
n = n0 + t

m =
1

2

n∑
j=1

ki = m0t
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The effect of replacing preferential by random attachment

The growth of a vertex degree over time I

The dependence of ki on time

I Treat ki as a continuous variable (although it is not).

I The variation of degree over time (on average) is

∂ki
∂t

= m0π(ki ) = m0
ki

2m0t
=

ki
2t

I ti is the time at which the i-th vertex was introduced.

I m0 is the degree of the i-th vertex at time ti .

I Integrate on both sides of

∂ki
ki

=
∂t

2t
→
∫ ki

m0

∂ki
ki

=
1

2

∫ t

ti

∂t

t
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The effect of replacing preferential by random attachment

The growth of a vertex degree over time II

Finally,

ki (t) ≈ m0

(
t

ti

)1/2

Marta Arias, Ramon Ferrer-i-Cancho, Argimiro Arratia Introduction to network dynamics



Outline
Introduction

The Barabási-Albert model
The copying model

The fitness model
Optimization models

The effect of replacing preferential by random attachment

A non-rigorous proof that p(k) ≈ k−3 I

Sketch of the proof [Barabási et al., 1999]

I Starting point: ki (t) = m0

(
t
ti

)1/2

I Final goal: obtain p(k) through

p(k) ≈ ∂p(ki < k)

∂k

I Intermediate goal: calculate p(ki < k)

A rigorous proof is available [Bollobás et al., 2001]
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The effect of replacing preferential by random attachment

A non-rigorous proof that p(k) ≈ k−3 II

I p(ki < k): the probability that the i-th vertex has degree
lower than k.

I

p(ki < k) = p

(
m0

(
t

ti

)1/2

< k

)
= p

(
ti >

m2
0t

k2

)
I p(ti = τ) = 1/(n0 + t) for n0 = 1 (for ti ≤ τ).

I p(ti = τ) ≈ 1/(n0 + t) for n0 > 1 but small.

p

(
ti >

m2
0t

k2

)
= 1− p

(
ti ≤

m2
0t

k2

)
= 1−

m2
0t

k2∑
τ=0

p(ti = τ)
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The effect of replacing preferential by random attachment

A non-rigorous proof that p(k) ≈ k−3 III

I

p

(
ti >

m2
0t

k2

)
≈ 1− m2

0t

n0 + t
k−2

I

p(k) ≈ ∂p(ki < k)

∂k
≈ 2m2

0t

n0 + t
k−3

I p(k) ≈ ck−γ with γ = 3 and c =
2m2

0t
n0+t .

More rigorous proofs are available [Newman, 2018].
Exercise: a more precise calculation for p(ti = τ).
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The effect of replacing preferential by random attachment

Deeper thinking

I m0 ≤ n0 is needed.
I Initial conditions: if there are n0 disconnected vertices, then
π(ki ) is undefined initially. Solutions:
I Another initial condition, e.g., a complete graph of n0 nodes.
I Same initial condition but different preferential attachment

rule, e.g.,

π(ki ) =
ki + 1∑
j(kj + 1)

I Some limitations:
I Global knowledge is required by π.
I p(k) ∼ k−γ with γ = 3 is suitable for article citation networks

[Redner, 1998] but γ < 3 in many real networks, e.g., global
syntactic dependency networks (lab session and
[Ferrer-i Cancho et al., 2004]).
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The effect of replacing preferential by random attachment

The origins of the power-law in Barabási-Albert model I

Controlling for the role of growth and preferential attachment
[Barabási et al., 1999]

I Hypothesis: preferential attachment is vital for obtaining a
power-law (in that model)

I Test: Replacing the preferential attachment by uniform
attachment (all vertices are equally likely) → p(k) = ae−ck .

I Hypothesis: growth is vital for obtaining a power-law (in that
model)

I Test: suppressing growth: fixed number vertices → k follows
a “Gausian” distribution.
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The effect of replacing preferential by random attachment

The origins of the power-law in Barabási-Albert model II

Controlling for the hidden assumptions of the preferential
attachment rule

I Generalizing the preferential attachment
[Krapivsky et al., 2000]

π(ki ) =
kδi∑
j k

δ
j

I δ = 1→ original B.A. model.
I δ > 1→ one node dominates (very pronounced effect for

δ > 2).
I δ < 1→ combination of power-law with stretched exponential.
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The effect of replacing preferential by random attachment

The effect of replacing preferential attachment by random
attachment

The growth of a vertex degree over time

I Recall n(t) = n0 + t.

I The variation of degree over time (on average) is

∂ki
∂t

=
m0

n(t − 1)

I Integrate on both sides of

∂ki = m0
∂t

n(t − 1)
→
∫ ki

m0

∂ki = m0

∫ t

ti

∂t

n(t − 1)
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The effect of replacing preferential by random attachment

The effect of replacing preferential by random attachment

Finally,

ki (t) ≈ m0

(
log n(t−1)

n(ti−1) + 1
)

= m0

(
log n0+t−1

n0+ti−1 + 1
)
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The effect of replacing preferential by random attachment

A non-rigorous proof that p(k) ∼ ek/m0 I

Sketch of the proof [Barabási et al., 1999]

I Starting point: ki (t) = m0

(
log n0+t−1

n0+ti−1 + 1
)

I Final goal: obtain p(k) through

p(k) ≈ ∂p(ki < k)

∂k

I Intermediate goal: calculate p(ki < k)
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The effect of replacing preferential by random attachment

A non-rigorous proof that p(k) ∼ ek/m0 II

I p(ki < k): the probability that the i-th vertex has degree
lower than k .

I

p(ki < k) = p

(
m0

(
log

n0 + t − 1

n0 + ti − 1
+ 1

)
< k

)
= p

(
ti > (n0 + t − 1)e

1− k
m0 − n0 + 1

)
I Recall p(ti = τ) ≈ 1/(n0 + t) for n0 > 1 but small.

p (ti > ...) = 1− p (ti ≤ ...) = 1−
...∑
τ=0

p(ti = τ)
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The effect of replacing preferential by random attachment

A non-rigorous proof that p(k) ∼ ek/m0 III

I

p (ti > ...) ≈ 1− 1

n0 + t
...

I Then,

p(ki < k) = p(ti > ...) = 1− 1

n0 + t

(
(n0 + t − 1)e

1− k
m0 − n0 + 1

)
I Finally (for long times)

p(ki < k) = 1− e
1− k

m0

I

p(k) ≈ ∂p(ki < k)

∂k
≈ e

m0
e
− k

m0

I p(k) ≈ Be−βk with B = e/m0 and β = 1/m0.
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The effect of replacing preferential by random attachment

The effect of suppressing vertex growth

The new vertex is replaced by a vertex chosen uniformly at random.

Evolution of the degree distribution as t increases
[Barabási et al., 1999]

I Initial phase: power-law.

I Intermediate phase: Gausian-like.

I Final state (complete graph): δn0−1,k (Kronecker’s delta
function).
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Copying vertices

Motivation:

I Producing a new web page by copying another web page and
making some modifications (some of the hyperlinks may
remain while new hyperlinks may be added).

I Protein interaction networks [Vázquez et al., 2003]. Genetic
evolution: duplication of DNA + mutations may produce new
proteins that inherit some interaction properties from the
original protein.

Features:

I Network growth (new vertices) + copying + rewiring.

I Local rule (no global knowledge, the degree of all vertices).
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The copying model I

I Start with some initial configuration.
I At every time-step: a the vertex is chosen uniformly at

random).
I Duplication: the vertex is duplicated to produce a new vertex

(the new vertex has out-degree m0).
I Divergence: each out-going connection is rewired with

probability α or kept with probability 1− α.
I Rewiring means changing the end-point by a vertex chosen

uniformly at random.
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The copying model II

I Here: simple copying model [Caldarelli, 2007].
I Directed network. Every new vertex sends m0 edges to old

vertices.
I For vertices added at time t > 0, out-degree is constant (m0)

while in-degree varies.

I Other versions of the copying model with more or different
parameters
[Vazquez et al., 2003, Pastor-Satorras et al., 2003].
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The mathematical properties of a copying model I

∂k ini (t)

∂t
=

1− α
N

k ini (t) + m0
α

N
,

where
I 1−α

N k ini (t) is the contribution from retained edges of a vertex
pointing to vertex i that is duplicated.

I m0
α
N is the contribution from rewired edges of the duplicated

vertex (the expected number of times that the i-th is hit in
those rewirings).

I N ≈ t (linearly growing network)

I Warning: wild assumptions about
∂k in

i (t)
∂t are being made and

thus numerical calculations to check the analytical results are
needed.
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The mathematical properties of a copying model II

I

k ini (t) =
m0α

1− α

[(
t

ti

)1/2

− 1

]
I ti : arrival time of the i-th vertex.

I

p(k in) ∼
[
k in +

m0α

1− α

]− 2−α
1−α

I p(k in) ∼ k−2 for α = 0
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The copying model versus the Barabási-Albert model

Nice properties:

I Emergence of the preferential attachment rule from local
principles! (the original preferential attachment is a global
principle)

I A wider and more realistic range of exponents is captured!
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Zipf’s law

Connecting according to vertex fitness (not vertex degree)

I An alternative to preferential attachment, e.g., when the
degree of other vertices is not available to newcomers.

I Linking according to intrinsic properties (that determine the
fitness of a vertex)
I Authoritativeness, social success or status, scientific relevance,

interaction strength (of the vertex).
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Zipf’s law

A general fitness model [Caldarelli et al., 2002]

I Setup: start with N vertices.
I Fitness: assign to every vertex a fitness.

I xi is the fitness of the i-th vertex.
I The fitness of a vertex is obtained producing a random number

following the probability density function ρ(x) (harder
calculations with a probability mass function)

I Linkage: for every couple of vertices i and j , draw an edge
with a probability given by a linking function f (xi , xj) (in
undirected networks, f is symmetric, f (xi , xj) = f (xj , xi )).

Comments:

I A generalization of the Ërdos-Rényi model, where
f (xi , xj) = p.

I Reminiscent of the network configuration model.
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Degree distribution in a fitness model I

I The degree distribution is not necessarily a power law (e.g.,
f (xi , xj) = p).

I Consider f (xi , xj) = (xixj)/x
2
M where xM is the largest value

of x in the network. Then the mean degree of a node of
fitness x is

k(x) = N

∫ ∞
0

f (x , y)ρ(y)dy

=
N x

x2
M

∫ ∞
0

yρ(y)dy =
N 〈x〉
x2
M

x .

(1)

and

p(k) =
x2
M

N 〈x〉
ρ

(
x2
M

N 〈x〉
k

)
(2)
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Degree distribution in a fitness model II

I If fitness follows a power law, i.e.

ρ(x) ∼ x−β (3)

then p(k) ∼ k−β [Caldarelli et al., 2002]

I Motivation: Zipf’s law: p(x) ∼ x−β in many contexts (word
frequencies, population size of cities...).
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Zipf’s law

George Kingsley Zipf

I The founder of modern quantitative
linguistics.

I Interested in unifying principles of
nature (principle of least effort).

I Zipf, G. K. (1949) Human Behavior and the Principle of Least
Effort. Addison-Wesley.

I Zipf. G. K. (1935) The Psychobiology of Language.
Houghton-Mifflin.
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Zipf’s law

The rank histogram (number-rank)

I Empirical law
[Zipf, 1949].

I Apparently
universal.

I Popularized but not
discovered by G. K.
Zipf

I n(i) ∼ i−α

I α ≈ 1
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Zipf’s law

Zipf’s law: a less popular version

The frequency histogram (number-frequency)

I Less popular than
the rank histogram.

I n(f ) ∼ f −β

I β ≈ 2

I β = 1/α + 1
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Degree distribution in a fitness model III

I If fitness is not power-law distributed, it is still possible to
obtain a power-law distributed degrees [Caldarelli et al., 2002].

I Example:
I ρ(x) = e−x (probability density function ρ(x) = λe−λx with

λ = 1, x ≥ 0)
I f (xi , xj) = θ(xi + xj − z) where

I z is a threshold parameter
I θ(x) is the Heaviside function, i.e.

θ(x) =

{
1 if x > 0
0 otherwise

I p(k) ∼ k−2

I Generalization f (xi , xj) = θ(xai + xaj − za) being a an integer,

still p(k) ≈ k−2 (logarithmic corrections might be necessary).
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Optimization in a network

Desired properties of a network:

I Small geodesic distance.

I Small number of edges (edge = cost).

Trade-off between both:

I Smallest geodesic distance: complete graph.

I Smallest number of links: tree (but a linear tree has the
largest distance possible).
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The energy function to minimize II

Two normalized metrics

I ρ = 〈k〉 /(N − 1) (density of an undirected network without
loops)

I ∆ = d/dlinear with dlinear = (N + 1)/3 (do you remember
(N + 1)/3 somewhere else?)

Networks that minimize

E (λ) = λ∆ + (1− λ)ρ

with the the following constraints:

I The network size (in vertices) is constant.

I The network has to remain connected.
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The energy function to minimize II

E (λ) = λ∆ + (1− λ)ρ

I λ = 0: only the number of links is minimized.

I λ = 1: only the geodesic distances are minimized.

I Networks with exponential and power-law degree distribution
appear in between.

I See Fig. 7.4 [Ferrer-i Cancho and Solé, 2003].
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Figure 7.4 [Ferrer-i Cancho and Solé, 2003]
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Further comments

I E (λ) is reminiscent of AIC = − log L + 2K .

I The regimes in Fig. 7.4 [Ferrer-i Cancho and Solé, 2003] are
reminiscent of those of a generalized BA model
[Krapivsky et al., 2000]. Is there some equivalence between
both (λ vs δ)?

I Future work: remove the connectedness constraint. How?
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