Introduction to network metrics

Ramon Ferrer-i-Cancho & Argimiro Arratia

Universitat Politècnica de Catalunya

Version 0.4 Complex and Social Networks (2020-2021) Master in Innovation and Research in Informatics (MIRI)

/⊒ > < ≣ >

- ∢ ⊒ →

Official website: www.cs.upc.edu/~csn/ Contact:

- Ramon Ferrer-i-Cancho, rferrericancho@cs.upc.edu, http://www.cs.upc.edu/~rferrericancho/
- Argimiro Arratia, argimiro@cs.upc.edu, http://www.cs.upc.edu/~argimiro/

★ E ► < E ►</p>

Network metrics

Distance metrics Clustering metrics Degree correlation metrics

イロン イヨン イヨン イヨン

æ

Distance metrics Clustering metrics Degree correlation metrics

Network analysis

Two major approaches: visual and statistical analysis (e.g., large scale properties).

Distance metrics Clustering metrics Degree correlation metrics

イロト イヨト イヨト イヨト

Perspectives

Metrics as compression of an adjacency matrix. Three perspectives:

- Distance between nodes.
- Transitivity
- Mixing (properties of vertices making an edge).

Distance metrics Clustering metrics Degree correlation metrics

イロン イ部ン イヨン イヨン 三日

Geodesic path

- Geodesic path between two vertices u and v = shortest path between u and v [Newman, 2010]
- ► d_{ij}: length of a geodesic path from the *i*-th to the *j*-th vertex (network or topological distance between *i* and *j*).
- $\bullet \quad \bullet \quad d_{ij} = 1 \text{ if } i \text{ and } j \text{ are connected.}$
 - $d_{ij} = \infty$ if *i* and *j* are in different **connected components**.
- Computed with a breadth-first search algorithm (in unweighted undirected networks).

Distance metrics Clustering metrics Degree correlation metrics

Local distance measures

- I_i : mean geodesic distance from vertex i
 - Definitions:

$$l_i=rac{1}{N}\sum_{j=1}^N d_{ij}$$
 or $l_i=rac{1}{N-1}\sum_{j=1(i
eq j)}^N d_{ij}$ as $d_{ii}=0$

- C_i : closeness centrality of vertex i.
 - Definition (harmonic mean)

$$C_i = \frac{1}{N-1} \sum_{j=1 \ (i \neq j)}^N \frac{1}{d_{ij}},$$

as $d_{ii} = 0$. • Better than $C'_i = 1/I_i$.

Ramon Ferrer-i-Cancho & Argimiro Arratia

Introduction to network metrics

- ∢ ⊒ →

Distance metrics Clustering metrics Degree correlation metrics

Global distance metrics

- Diameter: largest geodesic distance.
- Mean (geodesic distance):

$$l = \frac{1}{N} \sum_{i=1}^{N} l_i$$

- Problem: I might be ∞ .
- Solutions: focus on the largest connected component, mean over / within each connected component, ...
- Mean closeness centrality:

$$C = \frac{1}{N} \sum_{i=1}^{N} C_i$$

- 4 回 2 - 4 □ 2 - 4 □

Distance metrics Clustering metrics Degree correlation metrics

- ∢ ⊒ ⊳

Global distance metrics

- Closeness measures have rarely been used (for historical reasons).
- The closeness centrality of a vertex can be seen as measure of the importance of a vertex (alternative approaches: degree, PageRank,...).

Distance metrics Clustering metrics Degree correlation metrics

Transitivity

Zachary's Karate Club

- A relation is transitive if a ○ b and b ○ c imply a ○ c.
- ► Example: a ∘ b = a and b are friends.
- Edges as relations.
- Perfect transitivity: clique (complete graph) but real network are not cliques.

・ロト ・回ト ・ヨト ・ヨト

 Big question: how transitive are (social) networks?

Clustering metrics Degree correlation metrics

Clustering coefficient

► A path of length two *uvw* is closed if *u* and *w* are connected.

 $C = \frac{\text{number of closed paths of length 2}}{\text{number of paths of length 2}}$

A proportion of transitive triples

- C = 1 perfect transitivity / C = 0 no transitivity (e.g.,: ?).
- Algorithm: Consider each vertex as v in the path uvw, checking if u and w are connected (only vertices of degree > 2 matter).
- Number of paths of length 2 = ?.
- Equivalently:

 $C = \frac{\text{number of triangles} \times 3}{\text{number of connected triples of vertices}}$

► Key: triangle = set of three nodes forming a clique; number of connected triples = number of labelled trees of 3 vertices =

Distance metrics Clustering metrics Degree correlation metrics

Alternative clustering coefficient

Watts & Strogatz (WS) clustering coefficient [Watts and Strogatz, 1998]

Local clustering:

 $C_i = \frac{\text{number of pairs of neighbors of } i \text{ that are connected}}{\text{number of pairs of neighbours of } i}$

Assuming undirected graph without loops:

$$C_{i} = \frac{\sum_{j=1}^{N} \sum_{k=1}^{j-1} a_{ij} a_{ik} a_{jk}}{\binom{k_{i}}{2}}$$

Global clustering:

$$C_{WS} = \frac{1}{N} \sum_{i=1}^{N} C_i$$

回 と く ヨ と く ヨ と

Distance metrics Clustering metrics Degree correlation metrics

・ロン ・回と ・ヨン ・ヨン

Comments on clustering coefficients I

- Given a network, C and C_{WS} can differ substantially.
- ► C_{WS} has been used very often for historical reasons (C_{WS} was proposed first).
- C is can be dominated by the contribution of vertices of high degree (which have many adjancent nodes).
- C_{WS} is can be dominated by the contribution of vertices of low degree (which are many in the majority of networks).
- ► C_{WS} needs taking further decision on C_i when k_i < 2 (C is more elegant from a mathematical point of view).</p>

Distance metrics Clustering metrics Degree correlation metrics

イロン イヨン イヨン

Comments on clustering coefficients II

- Conclusion 0: C and C_{WS} measure transitivity in different ways (different assumptions/goals).
- Conclusion 1: each measure has its strengths and weaknesses.
- Conclusion 2: explain your methods with precision!

Distance metrics Clustering metrics Degree correlation metrics

イロン イヨン イヨン イヨン

Comments on efficient computation

- Computational challenge: time consuming computation of metrics on large networks.
- Solution: Monte Carlo methods for computing.
- Instead of computing

$$C_{WS} = \frac{1}{N} \sum_{i=1}^{N} C_i$$

estimate C_{WS} from a mean of C_i over a small fraction of randomly selected vertices.

▶ High precision exploring a small fraction of nodes (e.g., 5%).

Distance metrics Clustering metrics Degree correlation metrics

・ロト ・回ト ・ヨト ・ヨト

Degree correlations I

What is the dependency between the degrees of vertices at both ends of an edge?

- Assortative mixing (by degree): high degree nodes tend to be connected to high degree nodes, typical of social networks (coauthorship in physics, film actor collaboration,...).
- Disassortative mixing (by degree): high degree nodes tend to be connected to low degree nodes, e.g., neural network (*C. Elegans*), ecological networks (trophic relations).
- No tendency (e.g., Erdös-Rényi graph, Barabási-Albert model).

Distance metrics Clustering metrics Degree correlation metrics

イロト イヨト イヨト イヨト

Degree correlations II

- ► *k_i*: degree of the *i*-th vertex.
- k_i' = k_i − 1: remaining degree of the *i*-th after discounting the edge i ~ j.

Correlation

- correlation between k_i and k_j for every edge $i \sim j$.
- correlation between k'_i and k'_i for every edge $i \sim j$.

• metric
$$\rho$$
: $-1 \le \rho \le 1$.

Distance metrics Clustering metrics Degree correlation metrics

Interclass correlation

Theoretical (interclass) correlation:

$$o(X, Y) = \frac{COV(X, Y)}{\sigma_X \sigma_Y}$$

=
$$\frac{E[(X - E[X])(Y - E[Y])]}{\sigma_X \sigma_Y}$$

=
$$\frac{E[XY] - E[X]E[Y]}{\sigma_X \sigma_Y}$$

Symmetry: $\rho(X, Y) = \rho(Y, X)$, $\rho_S(X, Y) = \rho_S(Y, X)$. Empirical correlation:

- Paired mesurements: $(x_1, y_1), \dots, (x_i, y_i), \dots, (x_n, y_n)$.
- Sample (interclass) correlation:

$$\rho_{s}(X,Y) = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i=1}^{n} (y_{i} - \bar{x})^{2}}}$$

< E

Distance metrics Clustering metrics Degree correlation metrics

Intraclass correlation

Theoretical intraclass correlation:

$$\rho = \frac{COV_{intra}(X)}{\sigma(X)^2}$$

Empirical correlation:

▶ Paired measurements: $(x_{1,1}, x_{1,2}), ..., (x_{i,1}, x_{i,2}), ..., (x_{n,1}, x_{n,2})$

$$\rho_{s} = \frac{1}{(N-1)\sigma_{s}^{2}} \sum_{i=1}^{n} (x_{i,1} - \bar{x})(x_{i,2} - \bar{x})$$

$$\bar{x} = \frac{1}{2N} \sum_{i=1}^{n} (x_{i,1} + x_{i,2})$$

$$\sigma_s^2 = \frac{1}{2(N-1)} \sum_{i=1}^n \left[(x_{i,1} - \bar{x})^2 + (x_{i,2} - \bar{x})^2 \right]$$

æ

Distance metrics Clustering metrics Degree correlation metrics

Interclass vs intraclass correlation

Interclass correlation:

Correlation between two variables.

Intraclass correlation:

- Correlation between two different groups (same variable)
- Extent to which members of the same group or class tend to act alike.

Distance metrics Clustering metrics Degree correlation metrics

イロン イヨン イヨン イヨン

Degree correlations III

Intraclass Pearson degree correlation: in an edge $i \sim j$, $X = k'_i$ and $Y = k'_j$ [Newman, 2002]. Three possibilities

- Assortative mixing (by degree): $\rho > 0$, $\rho_s \gg 0$
- Disassortative mixing (by degree): $\rho < 0$, $\rho_s \ll 0$
- No tendency $\rho = 0$, $\rho_s \approx 0$

See Table I of [Newman, 2002] arxiv.org.

イロン イヨン イヨン イヨン

General comments on degree correlations I

- ► A priori, a least two ways of measuring degree correlations:
 - $X = k_i$ and $Y = k_j$ (Pearson correlation coefficient)
 - $X = rank(k_i)$ and $Y = rank(k_j)$ (**Spearman** rank correlation)
- rank(k): the smallest k has rank 1, the 2nd smallest k has rank 2 and so on. In case of tie, the degrees in a tie are assigned a mean rank.
- Example:

Sorted degrees 1 3 5 6 6 6 8 The ranks are 1 2 3 $\frac{4+5+6}{3}$ $\frac{4+5+6}{3}$ $\frac{4+5+6}{3}$ 7

Distance metrics Clustering metrics Degree correlation metrics

イロト イポト イヨト イヨト

General comments on degree correlations II

- For historical and sociological reasons, Pearson correlation coefficient has been dominant if not the only approach.
- A test of significance of ρ_S has been missing (potentially problematic for ρ_S close to 0).
- Spearman rank correlation can capture non-linear dependencies.
- Both can fail if the dependency is not monotonic.

イロト イヨト イヨト イヨト

General comments on degree correlations II

Some general myths about correlations:

- " ρ_S must be large to be informative" (e.g. $\rho_S > 0.5$).
 - A low value of ρ_S can be significant (very small p-value).
 Rigorous testing is the key.
 - Low but significant ρ_S can be due to: trends with lots of noise, or clear trends in a narrow domain.
- "No useful information can be extracted from clouds of points". Counterexamples:
 - ► Vietnam draft (see pp. 248-249 of "Gnuplot in action", by Phillipp K. Janert).
 - Menzerath's law in genomes.

Distance metrics Clustering metrics Degree correlation metrics

General comments on degree correlations III

The limits of degree correlations

- Degree correlations are global measures.
- The kind of mixing of a vertex might depend on its degree.
- Solution:
 - ▶ The mean degree of nearest neighbours of degree k, i.e.

$$\langle k_{nn} \rangle (k)$$

An estimate of

$$E[k'|k] = \sum_{k'} k' p(k'|k),$$

the expected degree k' of 1st neighbours (adjacent nodes) of a node of degree k.

[Lee et al., 2006]. Statistical properties of sampled networks. Fig. 10 of arxiv.org / Fig. 9 of doi: 10.1103/PhysRevE.73.016102

Distance metrics Clustering metrics Degree correlation metrics

伺 ト イヨト イヨト

- Lee, S. H., Kim, P.-J., and Jeong, H. (2006). Statistical properties of sampled networks. *Phys. Rev. E*, 73:016102.
- Newman, M. E. J. (2002). Assortative mixing in networks. *Phys. Rev. Lett.*, 89:208701.
- Newman, M. E. J. (2010). Networks. An introduction. Oxford University Press, Oxford.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. *Nature*, 393:440–442.