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Network analysis

Two major approaches: visual and statistical analysis (e.g., large
scale properties).

(from Webopedia)
Statistical analysis: compression of information (e.g., one value
that summarizes some aspect of the network).

Ramon Ferrer-i-Cancho & Argimiro Arratia Introduction to network metrics



Outline
Network metrics

Distance metrics
Clustering metrics
Degree correlation metrics

Perspectives

Metrics as compression of an adjacency matrix.
Three perspectives:

I Distance between nodes.

I Transitivity

I Mixing (properties of vertices making an edge).
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Geodesic path

I Geodesic path between two vertices u and v = shortest path
between u and v [Newman, 2010]

I dij : length of a geodesic path from the i-th to the j-th vertex
(network or topological distance between i and j).

I I dij = 1 if i and j are connected.
I dij =∞ if i and j are in different connected components.

I Computed with a breadth-first search algorithm (in
unweighted undirected networks).
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Local distance measures

li : mean geodesic distance from vertex i
I Definitions:

li =
1

N

N∑
j=1

dij or

li =
1

N − 1

N∑
j=1(i 6=j)

dij as dii = 0

Ci : closeness centrality of vertex i .
I Definition (harmonic mean)

Ci =
1

N − 1

N∑
j=1(i 6=j)

1

dij
,

as dii = 0.
I Better than C ′i = 1/li .
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Global distance metrics

I Diameter: largest geodesic distance.

I Mean (geodesic distance):

l =
1

N

N∑
i=1

li

I Problem: l might be ∞.
I Solutions: focus on the largest connected component, mean

over l within each connected component, ...

I Mean closeness centrality:

C =
1

N

N∑
i=1

Ci
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Global distance metrics

I Closeness measures have rarely been used (for historical
reasons).

I The closeness centrality of a vertex can be seen as measure of
the importance of a vertex (alternative approaches: degree,
PageRank,...).
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Transitivity

Zachary’s Karate Club

I A relation ◦ is transitive if
a ◦ b and b ◦ c imply a ◦ c .

I Example: a ◦ b = a and b
are friends.

I Edges as relations.

I Perfect transitivity: clique
(complete graph) but real
network are not cliques.

I Big question: how
transitive are (social)
networks?
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Clustering coefficient

I A path of length two uvw is closed if u and w are connected.

C =
number of closed paths of length 2

number of paths of length 2

A proportion of transitive triples
I C = 1 perfect transitivity / C = 0 no transitivity (e.g.,: ?).
I Algorithm: Consider each vertex as v in the path uvw ,

checking if u and w are connected (only vertices of degree
≥ 2 matter).

I Number of paths of length 2 = ?.
I Equivalently:

C =
number of triangles× 3

number of connected triples of vertices

I Key: triangle = set of three nodes forming a clique; number
of connected triples = number of labelled trees of 3 vertices
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Alternative clustering coefficient

Watts & Strogatz (WS) clustering coefficient
[Watts and Strogatz, 1998]

I Local clustering:

Ci =
number of pairs of neighbors of i that are connected

number of pairs of neighbours of i

I Assuming undirected graph without loops:

Ci =

∑N
j=1

∑j−1
k=1 aijaikajk(ki

2

)
I Global clustering:

CWS =
1

N

N∑
i=1

Ci
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Comments on clustering coefficients I

I Given a network, C and CWS can differ substantially.

I CWS has been used very often for historical reasons (CWS was
proposed first).

I C is can be dominated by the contribution of vertices of high
degree (which have many adjancent nodes).

I CWS is can be dominated by the contribution of vertices of
low degree (which are many in the majority of networks).

I CWS needs taking further decision on Ci when ki < 2 (C is
more elegant from a mathematical point of view).
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Comments on clustering coefficients II

I Conclusion 0: C and CWS meassure transitivity in different
ways (different assumptions/goals).

I Conclusion 1: each measure has its strengths and weaknesses.

I Conclusion 2: explain your methods with precision!
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Comments on efficient computation

I Computational challenge: time consuming computation of
metrics on large networks.

I Solution: Monte Carlo methods for computing.

I Instead of computing

CWS =
1

N

N∑
i=1

Ci

estimate CWS from a mean of Ci over a small fraction of
randomly selected vertices.

I High precision exploring a small fraction of nodes (e.g., 5%).
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Degree correlations I

What is the dependency between the degrees of vertices at both
ends of an edge?

I Assortative mixing (by degree): high degree nodes tend to be
connected to high degree nodes, typical of social networks
(coauthorship in physics, film actor collaboration,...).

I Disassortative mixing (by degree): high degree nodes tend to
be connected to low degree nodes, e.g., neural network (C.
Elegans), ecological networks (trophic relations).

I No tendency (e.g., Erdös-Rényi graph, Barabási-Albert
model).
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Degree correlations II

I ki : degree of the i-th vertex.

I k ′i = ki − 1: remaining degree of the i-th after discounting the
edge i ∼ j .

Correlation

I correlation between ki and kj for every edge i ∼ j .

I correlation between k ′i and k ′j for every edge i ∼ j .

I metric ρ: −1 ≤ ρ ≤ 1.
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Interclass correlation

Theoretical (interclass) correlation:

ρ(X ,Y ) =
COV (X ,Y )

σXσY

=
E [(X − E [X ])(Y − E [Y ])]

σXσY

=
E [XY ]− E [X ]E [Y ]

σXσY

Symmetry: ρ(X ,Y ) = ρ(Y ,X ), ρS(X ,Y ) = ρS(Y ,X ).
Empirical correlation:

I Paired mesurements: (x1, y1),...,(xi , yi ),...,(xn, yn).
I Sample (interclass) correlation:

ρs(X ,Y ) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − x̄)2
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Intraclass correlation

Theoretical intraclass correlation:

ρ =
COVintra(X )

σ(X )2

Empirical correlation:
I Paired measurements: (x1,1, x1,2),...,(xi ,1, xi ,2),...,(xn,1, xn,2)

ρs =
1

(N − 1)σ2
s

n∑
i=1

(xi ,1 − x̄)(xi ,2 − x̄)

x̄ =
1

2N

n∑
i=1

(xi ,1 + xi ,2)

σ2
s =

1

2(N − 1)

n∑
i=1

[
(xi ,1 − x̄)2 + (xi ,2 − x̄)2

]
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Interclass vs intraclass correlation

Interclass correlation:

I Correlation between two variables.

Intraclass correlation:

I Correlation between two different groups (same variable)

I Extent to which members of the same group or class tend to
act alike.
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Degree correlations III

Intraclass Pearson degree correlation: in an edge i ∼ j , X = k ′i and
Y = k ′j [Newman, 2002].
Three possibilities

I Assortative mixing (by degree): ρ > 0, ρs � 0

I Disassortative mixing (by degree): ρ < 0, ρs � 0

I No tendency ρ = 0, ρs ≈ 0

See Table I of [Newman, 2002] arxiv.org.
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General comments on degree correlations I

I A priori, a least two ways of measuring degree correlations:
I X = ki and Y = kj (Pearson correlation coefficient)
I X = rank(ki ) and Y = rank(kj) (Spearman rank correlation)

I rank(k): the smallest k has rank 1, the 2nd smallest k has
rank 2 and so on. In case of tie, the degrees in a tie are
assigned a mean rank.

I Example:

Sorted degrees 1 3 5 6 6 6 8
The ranks are 1 2 3 4+5+6

3
4+5+6

3
4+5+6

3 7
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General comments on degree correlations II

I For historical and sociological reasons, Pearson correlation
coefficient has been dominant if not the only approach.

I A test of significance of ρS has been missing (potentially
problematic for ρS close to 0).

I Spearman rank correlation can capture non-linear
dependencies.

I Both can fail if the dependency is not monotonic.
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General comments on degree correlations II

Some general myths about correlations:
I ”ρS must be large to be informative” (e.g. ρS > 0.5).

I A low value of ρS can be significant (very small p-value).
Rigorous testing is the key.

I Low but significant ρS can be due to: trends with lots of noise,
or clear trends in a narrow domain.

I ”No useful information can be extracted from clouds of
points”. Counterexamples:

I Vietnam draft (see pp. 248-249 of ”Gnuplot in action”, by
Phillipp K. Janert).

I Menzerath’s law in genomes.
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General comments on degree correlations III

The limits of degree correlations

I Degree correlations are global measures.

I The kind of mixing of a vertex might depend on its degree.
I Solution:

I The mean degree of nearest neighbours of degree k, i.e.

〈knn〉 (k)

I An estimate of

E [k ′|k] =
∑
k′

k ′p(k ′|k),

the expected degree k ′ of 1st neighbours (adjacent nodes) of a
node of degree k .

I [Lee et al., 2006]. Statistical properties of sampled networks. Fig. 10 of

arxiv.org / Fig. 9 of doi: 10.1103/PhysRevE.73.016102
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