Introduction to network metrics

Ramon Ferrer-i-Cancho \& Argimiro Arratia

Universitat Politècnica de Catalunya

Version 0.4
Complex and Social Networks (2020-2021)
Master in Innovation and Research in Informatics (MIRI)

Official website: www.cs.upc.edu/~csn/
Contact:

- Ramon Ferrer-i-Cancho, rferrericancho@cs.upc.edu, http://www.cs.upc.edu/~rferrericancho/
- Argimiro Arratia, argimiro@cs.upc.edu, http://www.cs.upc.edu/~argimiro/

Network metrics
Distance metrics
Clustering metrics
Degree correlation metrics

Network analysis

Two major approaches: visual and statistical analysis (e.g., large scale properties).

(from Webopedia)
Statistical analysis: compression of information (e.g., one value that summarizes some aspect of the network).

Perspectives

Metrics as compression of an adjacency matrix. Three perspectives:

- Distance between nodes.
- Transitivity
- Mixing (properties of vertices making an edge).

Geodesic path

- Geodesic path between two vertices u and $v=$ shortest path between u and v [Newman, 2010]
- $d_{i j}$: length of a geodesic path from the i-th to the j-th vertex (network or topological distance between i and j).
- $\quad d_{i j}=1$ if i and j are connected.
- $d_{i j}=\infty$ if i and j are in different connected components.
- Computed with a breadth-first search algorithm (in unweighted undirected networks).

Local distance measures

l_{i} : mean geodesic distance from vertex i

- Definitions:

$$
\begin{gathered}
l_{i}=\frac{1}{N} \sum_{j=1}^{N} d_{i j} \quad \text { or } \\
l_{i}=\frac{1}{N-1} \sum_{j=1(i \neq j)}^{N} d_{i j} \quad \text { as } d_{i i}=0
\end{gathered}
$$

C_{i} : closeness centrality of vertex i.

- Definition (harmonic mean)

$$
C_{i}=\frac{1}{N-1} \sum_{j=1(i \neq j)}^{N} \frac{1}{d_{i j}}
$$

as $d_{i i}=0$.

- Better than $C_{i}^{\prime}=1 / I_{i}$.

Global distance metrics

- Diameter: largest geodesic distance.
- Mean (geodesic distance):

$$
I=\frac{1}{N} \sum_{i=1}^{N} l_{i}
$$

- Problem: / might be ∞.
- Solutions: focus on the largest connected component, mean over / within each connected component, ...
- Mean closeness centrality:

$$
C=\frac{1}{N} \sum_{i=1}^{N} C_{i}
$$

Global distance metrics

- Closeness measures have rarely been used (for historical reasons).
- The closeness centrality of a vertex can be seen as measure of the importance of a vertex (alternative approaches: degree, PageRank,...).

Transitivity

Zachary's Karate Club

- A relation \circ is transitive if $a \circ b$ and $b \circ c$ imply $a \circ c$.
- Example: $a \circ b=a$ and b are friends.
- Edges as relations.
- Perfect transitivity: clique (complete graph) but real network are not cliques.
- Big question: how transitive are (social) networks?

Clustering coefficient

- A path of length two $u v w$ is closed if u and w are connected.

$$
C=\frac{\text { number of closed paths of length } 2}{\text { number of paths of length } 2}
$$

A proportion of transitive triples

- $C=1$ perfect transitivity / $C=0$ no transitivity (e.g.,: ?).
- Algorithm: Consider each vertex as v in the path $u v w$, checking if u and w are connected (only vertices of degree ≥ 2 matter).
- Number of paths of length $2=$?
- Equivalently:

$$
C=\frac{\text { number of triangles } \times 3}{\text { number of connected triples of vertices }}
$$

- Key: triangle $=$ set of three nodes forming a clique; number of connected triples $=$ number of labelled trees of 3 vertices

Alternative clustering coefficient

Watts \& Strogatz (WS) clustering coefficient [Watts and Strogatz, 1998]

- Local clustering:

$$
C_{i}=\frac{\text { number of pairs of neighbors of } i \text { that are connected }}{\text { number of pairs of neighbours of } i}
$$

- Assuming undirected graph without loops:

$$
C_{i}=\frac{\sum_{j=1}^{N} \sum_{k=1}^{j-1} a_{i j} a_{i k} a_{j k}}{\binom{k_{i}}{2}}
$$

- Global clustering:

$$
C_{W S}=\frac{1}{N} \sum_{i=1}^{N} C_{i}
$$

Comments on clustering coefficients I

- Given a network, C and $C_{\text {WS }}$ can differ substantially.
- $C_{\text {WS }}$ has been used very often for historical reasons ($C_{\text {WS }}$ was proposed first).
- C is can be dominated by the contribution of vertices of high degree (which have many adjancent nodes).
- CWS is can be dominated by the contribution of vertices of low degree (which are many in the majority of networks).
- $C_{\text {WS }}$ needs taking further decision on C_{i} when $k_{i}<2$ (C is more elegant from a mathematical point of view).

Comments on clustering coefficients II

- Conclusion 0: C and CWS meassure transitivity in different ways (different assumptions/goals).
- Conclusion 1: each measure has its strengths and weaknesses.
- Conclusion 2: explain your methods with precision!

Comments on efficient computation

- Computational challenge: time consuming computation of metrics on large networks.
- Solution: Monte Carlo methods for computing.
- Instead of computing

$$
C_{W S}=\frac{1}{N} \sum_{i=1}^{N} C_{i}
$$

estimate $C_{W S}$ from a mean of C_{i} over a small fraction of randomly selected vertices.

- High precision exploring a small fraction of nodes (e.g., 5\%).

Degree correlations I

What is the dependency between the degrees of vertices at both ends of an edge?

- Assortative mixing (by degree): high degree nodes tend to be connected to high degree nodes, typical of social networks (coauthorship in physics, film actor collaboration,...).
- Disassortative mixing (by degree): high degree nodes tend to be connected to low degree nodes, e.g., neural network (C. Elegans), ecological networks (trophic relations).
- No tendency (e.g., Erdös-Rényi graph, Barabási-Albert model).

Degree correlations II

- k_{i} : degree of the i-th vertex.
- $k_{i}^{\prime}=k_{i}-1$: remaining degree of the i-th after discounting the edge $i \sim j$.

Correlation

- correlation between k_{i} and k_{j} for every edge $i \sim j$.
- correlation between k_{i}^{\prime} and k_{j}^{\prime} for every edge $i \sim j$.
- metric $\rho:-1 \leq \rho \leq 1$.

Interclass correlation

Theoretical (interclass) correlation:

$$
\begin{aligned}
\rho(X, Y) & =\frac{\operatorname{COV}(X, Y)}{\sigma_{X} \sigma_{Y}} \\
& =\frac{E[(X-E[X])(Y-E[Y])]}{\sigma_{X} \sigma_{Y}} \\
& =\frac{E[X Y]-E[X] E[Y]}{\sigma_{X} \sigma_{Y}}
\end{aligned}
$$

Symmetry: $\rho(X, Y)=\rho(Y, X), \rho_{S}(X, Y)=\rho_{S}(Y, X)$.
Empirical correlation:

- Paired mesurements: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{i}, y_{i}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- Sample (interclass) correlation:

$$
\rho_{s}(X, Y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{x}\right)^{2}}}
$$

Intraclass correlation

Theoretical intraclass correlation:

$$
\rho=\frac{\operatorname{COV}_{\text {intra }}(X)}{\sigma(X)^{2}}
$$

Empirical correlation:

- Paired measurements: $\left(x_{1,1}, x_{1,2}\right), \ldots,\left(x_{i, 1}, x_{i, 2}\right), \ldots,\left(x_{n, 1}, x_{n, 2}\right)$

$$
\begin{gathered}
\rho_{s}=\frac{1}{(N-1) \sigma_{s}^{2}} \sum_{i=1}^{n}\left(x_{i, 1}-\bar{x}\right)\left(x_{i, 2}-\bar{x}\right) \\
\bar{x}=\frac{1}{2 N} \sum_{i=1}^{n}\left(x_{i, 1}+x_{i, 2}\right) \\
\sigma_{s}^{2}=\frac{1}{2(N-1)} \sum_{i=1}^{n}\left[\left(x_{i, 1}-\bar{x}\right)^{2}+\left(x_{i, 2}-\bar{x}\right)^{2}\right]
\end{gathered}
$$

Interclass vs intraclass correlation

Interclass correlation:

- Correlation between two variables.

Intraclass correlation:

- Correlation between two different groups (same variable)
- Extent to which members of the same group or class tend to act alike.

Degree correlations III

Intraclass Pearson degree correlation: in an edge $i \sim j, X=k_{i}^{\prime}$ and $Y=k_{j}^{\prime}$ [Newman, 2002].
Three possibilities

- Assortative mixing (by degree): $\rho>0, \rho_{s} \gg 0$
- Disassortative mixing (by degree): $\rho<0, \rho_{s} \ll 0$
- No tendency $\rho=0, \rho_{s} \approx 0$

See Table I of [Newman, 2002] arxiv.org.

General comments on degree correlations I

- A priori, a least two ways of measuring degree correlations:
- $X=k_{i}$ and $Y=k_{j}$ (Pearson correlation coefficient)
- $X=\operatorname{rank}\left(k_{i}\right)$ and $Y=\operatorname{rank}\left(k_{j}\right)$ (Spearman rank correlation)
- $\operatorname{rank}(\mathrm{k})$: the smallest k has rank 1 , the 2 nd smallest k has rank 2 and so on. In case of tie, the degrees in a tie are assigned a mean rank.
- Example:
$\begin{array}{lccccccc}\text { Sorted degrees } & 1 & 3 & 5 & 6 & 6 & 6 & 8 \\ \text { The ranks are } & 1 & 2 & 3 & \frac{4+5+6}{3} & \frac{4+5+6}{3} & \frac{4+5+6}{3} & 7\end{array}$

General comments on degree correlations II

- For historical and sociological reasons, Pearson correlation coefficient has been dominant if not the only approach.
- A test of significance of ρ_{S} has been missing (potentially problematic for ρ_{S} close to 0).
- Spearman rank correlation can capture non-linear dependencies.
- Both can fail if the dependency is not monotonic.

General comments on degree correlations II

Some general myths about correlations:

- " ρ_{S} must be large to be informative" (e.g. $\rho_{S}>0.5$).
- A low value of ρ_{S} can be significant (very small p-value). Rigorous testing is the key.
- Low but significant ρ_{S} can be due to: trends with lots of noise, or clear trends in a narrow domain.
- "No useful information can be extracted from clouds of points". Counterexamples:
- Vietnam draft (see pp. 248-249 of "Gnuplot in action", by Phillipp K. Janert).
- Menzerath's law in genomes.

General comments on degree correlations III

The limits of degree correlations

- Degree correlations are global measures.
- The kind of mixing of a vertex might depend on its degree.
- Solution:
- The mean degree of nearest neighbours of degree k, i.e.

$$
\left\langle k_{n n}\right\rangle(k)
$$

- An estimate of

$$
E\left[k^{\prime} \mid k\right]=\sum_{k^{\prime}} k^{\prime} p\left(k^{\prime} \mid k\right),
$$

the expected degree k^{\prime} of 1st neighbours (adjacent nodes) of a node of degree k.

- [Lee et al., 2006]. Statistical properties of sampled networks. Fig. 10 of arxiv.org / Fig. 9 of doi: 10.1103/PhysRevE.73.016102

嗇 Lee，S．H．，Kim，P．－J．，and Jeong，H．（2006）． Statistical properties of sampled networks． Phys．Rev．E，73：016102．

囦 Newman，M．E．J．（2002）．
Assortative mixing in networks．
Phys．Rev．Lett．，89：208701．
圕 Newman，M．E．J．（2010）．
Networks．An introduction．
Oxford University Press，Oxford．
圖 Watts，D．J．and Strogatz，S．H．（1998）．
Collective dynamics of＇small－world＇networks． Nature，393：440－442．

