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Outline

The limits of visual analysis

A syntactic dependency network [Ferrer-i-Cancho et al., 2004]
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Outline

The empirical degree distribution

» N: finite number of vertices / k vertex degree
» n(k): number of vertices of degree k.

» n(1),n(2),...,n(N) defines the degree spectrum (loops are
allowed).

» n(k)/N: the proportion of vertices of degree k, which defines
the (empirical) degree distribution.

» p(k): function giving the probability that a vertex has degree
k, p(k) =~ n(k)/N.

» p(k): probability mass function (pmf).
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Outline

Example: degree spectrum

» Global syntactic
1 dependency network
I (English)

» Nodes: words

» Links: syntactic
dependencies

Not as simple:

» Many degrees occurring
just once!

» Initial bending or hump:
power-law?
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Outline

Example: empirical degree distribution

» Notice the scale of the
y-axis.

n(k)/N

» Normalized version of the
degree spectrum (dividing
over N).
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Outline

Example: in-degree (red) degree versus out-degree (green)

» The distribution of in-degree
and that of out-degree do not
need to be identical!

» Similar for global syntactic
dependency networks?
Differences in the distribution or
the parameters?

» Known cases of radical
differences between in and
out-degree distributions (e.g.,
web pages, wikipedia articles).
In-degree more power-law
like than out-degree.
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Outline

What is the mathematical form of p(k)?

Possible degree distributions

» The typical hypothesis: a power-law p(k) = ck~7 but what
exactly? How many free parameters?

» Zeta distribution: 1 free parameter.

» Right-truncated zeta distribution: 2 free parameters.
>

Motivation:
» Accurate data description (looks are deceiving).

» Help to design or select dynamical models.
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Outline

Zeta distributions |

Zeta distribution:

1
p(k) = mk kS
being
M=>x"
x=1

the Riemann zeta function.

> (here it is assumed that -y is real) ((-y) converges only for
7> 1 (7> 1is needed).

> ~ is the only free parameter!
» Do we wish p(k) > 0 for k > N?
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Outline

Zeta distributions |

Right-truncated zeta distribution

being

kmax

H(kmaxa 'Y) = Z x7
x=1

the generalized harmonic number of order ka5 of 7.
Or why not
p(k) = ck Ve kP

(modified power-law, Altmann distribution,...) with 2 or 3 free
parameters?
Which one is best? (standard model selection)
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Outline

What is the mathematical form of p(k)?

Possible degree distributions

» The null hypothesis (for a Erdés-Rényi graph without loops)

p(k) = (N; 1> 7h(1 — m)N-1-k

with 7 as the only free parameter (assuming that N is given
by the real network).
Binomial distribution with parameters N — 1 and 7, thus
(ky = (N — 1) =~ Nr.

» Another null hypothesis: random pairing of vertices with
constant number of edges E.
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Outline

The problems I

» Is f(k), a good candidate? Does f(k) fit the empirical degree
distribution well enough?

» f(k) is a (candidate) model.
» How do we evaluate goodness of a model? Three major
approaches:
» Qualitatively (visually).
» The error of the model: the deviation between the model and
the data.
» The likelihood of the model: the probability that the model
produces the data.

Ramon Ferrer-i-Cancho & Argimiro Arratia The degree distribution



Visual fitting

Visual fitting

Assume a two variables: a predictor x (e.g., k, vertex degree) and
a response y (e.g., n(k), the number vertices of degree k; or
p(k)...).
> Look for a transformation of the at least one of the variables
showing approximately a straight line (upon visual inspection)
and obtain the dependency between the two original variables.
» Typical transformations: x’ = log(x), y' = log(y).
1. If y' = log(y) = ax + b (linear-log scale) then
y = e¥*h = ce? with ¢ = e’ (exponential).
2. If y' = log(y) = ax’ + b = alog(x) + b (log-log scale) then
y = e¥8()+h — cx2 with ¢ = eb (power-law).
3. If y = ax’ + b = alog(x) + b (log-linear scale) then the
transformation is exactly the functional dependency between
the original variables (logarithmic).
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Visual fitting

What is this distribution?

linear-linear scale (normal scale) linear-log scale
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Visual fitting

Solution: geometric distribution

y = (1— p)*~1p (with p = 1/2 in this case).
In standard exponential form,

_ x P _ xlog(1—p) p

1— LA g(l-p)_F

y ( p)l_p e -
= ce™

with a = log(1 — p) and ¢ = p/(1 — p).

Examples:

» Random network models (degree is geometrically distributed).

» Distribution of word lengths in random typing (empty words
are not allowed) [Miller, 1957].

» Distribution of projection lengths in real neural networks
[Ercsey-Ravasz et al., 2013].
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Visual fitting

A power-law distribution

linear-linear scale (normal scale) linear-log scale
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Visual fitting

Solution: zeta distribution

with a = 2.
Formula for ¢(a) is known for certain integer values, e.g.,
¢(2) = 7%/6 ~ 1.645.
Examples:
» Empirical degree distribution of global syntactic dependency
networks [Ferrer-i-Cancho et al., 2004] (but see also lab
session on degree distributions).

» Frequency spectrum of words in texts [Corral et al., 2015].
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Visual fitting

What is this distribution?

liner-linear scale (normal scale) linear-log scale
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Visual fitting

Solution: a "logarithmic” distribution

y = c(log(xmax) — log x))
with x = 1,2, ..., Xmax and ¢ being a normalization term, i.e.

1
>t (log(xmax) — log x))

C =
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Visual fitting

The problems of visual fitting

>

The right transformation to show linearity might not be
obvious (taking logs is just one possibility).

v

Looks can be deceiving with noisy data.

v

A good guess or strong support for the hypothesis requires
various decades.

v

Solution: a quantitative approach.
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Non-linear regression

Non-linear regression | [Ritz and Streibig, 2008]

> A univariate response y.
» A predictor variable x

» Goal: functional dependency between y and x.

Formally: y = f(x, 3), where
» f(x, ) is the "model”.

» K parameters.

> 8= (51, Bk)
Examples:
» Linear model: f(x,(a,b)) = ax+ b (K = 2).
» A non-linear model (power-law): f(x, (a, b)) = ax® (K = 2)
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Non-linear regression

Non-linear regression I

Problem of regression:

» A data set of n pairs: (x1,y1), ..., (Xn, ¥n). Example: x; is
vertex degree (k) and y; is the number of vertices of degree k
(n(k)) of a real network.

> nis the sample size.

» f(x, ) is unlikely to give a perfect fit. y1, y2, ..., yn may
contain error.

Solution: the conditional mean response

E(yilxi) = f(xi, B)

(f(x, B) is not actually the model for the data points but a model
for expectation given x;).
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Non-linear regression

Non-linear regression I

The full model is then
vi = E(yilxi) +ei = f(x,8) + ¢
The quality of the fit of a model with certain parameters: the
residual sums of squares
RSS(8) = 3" (i — F(xi, B))?
i=1
The parameters of the model are estimated minimizing the RSS.

Non-linear regression: minimization of RSS.
Common metric of the quality of the fit: the residual standard error

&2 RSS(pB)

n—K
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Non-linear regression

Example of non-linear regression

Non-linear regression yields
y = 2273.8x7 13 (is the
exponent that low?)

Is the method robust? (=not
distracted by undersampling,
noise, and so on)

Likely and unlikely events are
weighted equally.

Solution: weighted
regression, taking likelihood
into account,...
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Likelihood

Likelihood | [Burnham and Anderson, 2002]

» A probabilistic metric of the quality of the fit.

» L(parameters|data, model): likelihood of the parameters given
the data (sample of size n) and a model.
Example: L(vy|data, Zeta distribution with parametery)

> Best parameters: the parameters that maximize
L(parameters|data, model).
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Likelihood

Likelihood I

» Consider a sample xi, x, ...x, (e.g., the degree sequence of a
network).

» Definition (assuming independence)

L(parameters|data, model) = H p(xj; parameters)
i=1

» For a zeta distribution

L(v|x1, x2, .., Xn; Zeta distribution) = Hp(Xi;V)
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Likelihood

Log-likelihood

Likelihood is a vanishingly small number. Solution: taking logs.

L(parameters|data, model) = log L(parameters|data, model)
= Zlogp(x,-;parameters)
i=1
Example:
n
L(v|x1, X2, .., Xn; Zeta distribution) = Zlogp(x,-;y)
i=1

= 7)) _logx — nlog(¢(7))

i=1
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The challenge of parsimony

Question to the audience

What is the best model for data?

Cue: a universal method.

Ramon Ferrer-i-Cancho & Argimiro Arratia The degree distribution



The challenge of parsimony

What is the best model for data?

» The best model of the data is the data itself. Overfitting!

» The quality of the fit cannot decrease if more parameters are
added (wisely). Indeed, the quality of the fit normally
increases when adding parameters.

» The metaphor of picture compression. Compressing a picture
(with quality reduction). A good compression technique shows
a nice trade-off between file size and image quality).
» Modelling is compressing a sample, the empirical distribution
(e.g., compressing the degree sequence of a network).
» Models with many parameters should be penalized!

» Models compressing the data with a low quality should be also
penalized.

How?
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The challenge of parsimony

Akaike's information criterion (AIC)

AIC = —2L + 2K,

with K being the number of parameters of the model. For small
samples, a correction is necessary

n
AIC. = 2L +2K [ —F—— ),
C.— 20+ <n_K_1>

2K(K +1)
n—K-1
2K(K—|—1))

or equivalently

AIC. = —2L4+2K +

= AIC
+(n—K—l

AIC. is recommended if n > K is not satisfied!
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The challenge of parsimony

Model selection with AIC

» What is the best of a set of models? The model that
minimizes AIC

» AlCpest: the AIC of the model with smallest AIC.

» A: "AIC difference”, the difference between the AIC of the
model and that of the best model (A = 0 for the best model).
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The challenge of parsimony

Example of model selection with A/IC

Consider the case of model selection with three nested models:

Model 1 p(k) =
Model 2 p(k) = @) (zeta distribution)
vy

Model 3 p(k) = H(f%

(zeta distribution with (-)2 exponent)

»J\
Q\_/

N

— ) (right-truncated zeta distribution)

Model i is nested model of i — 1 if the model / is a generalization
of model i — 1 (adding at least one parameter).
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The challenge of parsimony

Example of model selection with A/IC

Model K L AIC A

1 0
2 1
3 2

Imagine that the true model is a zeta distribution with v = 1.5 and
the sample is large enough, then

Model K L AIC A

1 0o .. >0
2 1 .. 0
3 2 . >0
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The challenge of parsimony

AIC for non-linear regression |

» RSS: "distance” between the data and fitted regression curve
based on the the model fit.

» AIC: estimate of the "distance” from the model fit to the true
but unknown model that generated the data.

> In a regression model one assumes that the error ¢ follows a
normal distribution, the p.d.f. is

(e — p)?

0= e~ 2t )

The only parameter is ¢ as standard non-linear regression
assumes p = 0.
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The challenge of parsimony

AIC for non-linear regression Il

» Applying 1 =0 and ¢; = y; — f(x;, B)

1 i — f(xi, B))?
) = Gray 2P {_(y 25;2 2 }

> Likelihood in a regression model:

n

L(B,0%) = [] (e

i=1

> After some algebra one gets

[_(,8702) — RSS(B)} )

(2ma2)n/2 P {_ 202
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The challenge of parsimony

AIC for non-linear regression Il

Equivalence between maximization of likelihood and minimization
of error (under certain assumptions)

» If 3 is the best estimate of 3 then

1

L
{070 = Grrss(B)/ny

exp(—n/2)

RSS(5)

~2 _ n—K 2 2 _
thanks to 6 = =s° (recall s = ==

Models selection with regression models:

AIC = —2logL(f,6%)+2(K +1)
= nlog(27) + nlog(RSS(B)/n) + n+2(K + 1)

Why the term for parsimony is 2(K 4+ 1) and not K?
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The challenge of parsimony

Concluding remarks

» Under non-linear regression AIC is the way to go for model
selection if the models are not nested (alternative methods do
exist for nested models [Ritz and Streibig, 2008]).

» Equivalence between maximum likelihood and non-linear
regression implies some assumption (e.g., homocedasticity).
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The challenge of parsimony

Burnham, K. P. and Anderson, D. R. (2002).

Model selection and multimodel inference. A practical
information-theoretic approach.

Springer, New York, 2nd edition.

Corral, A., Boleda, G., and Ferrer-i-Cancho, R. (2015).
Zipf's law for word frequencies: word forms versus lemmas in
long texts.

PLoS ONE, 10:e0129031.

Ercsey-Ravasz, M., Markov, N., Lamy, C., VanEssen, D.,
Knoblauch, K., Toroczkai, Z., and Kennedy, H. (2013).

A predictive network model of cerebral cortical connectivity
based on a distance rule.

Neuron, 80(1):184 — 197.

Ferrer-i-Cancho, R., Solé, R. V., and Kohler, R. (2004).

Ramon Ferrer-i-Cancho & Argimiro Arratia The degree distribution



The challenge of parsimony
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